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Classical motion of a particle and Newton's Law

The motion of electrons or holes in a semiconductor does not follow
Newton's law. They follow a generalized Newton law.
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First-order equation of motion and phase-space Lagrangian

e If (x, p) fully characterize the state of a particle, then their equation of
motion is first-order:

x = 0pH(x,p), p=—0<H(x,p)  Why this form?
which can be obtained via phase-space Lagrangian
L(x,x,p,p) = px — H(x,p), S= /dt L(x,x,p,P).

- A classical system is fully characterized by 1) EOM + Hamiltonian, or
by 2) phase-space Lagrangian.

- A phase-space point fully characterises a classical state.

- Phase-space Lagrangian contains only first order time derivative.

- From S to first-order equation of motion

55 = [ dt dp i~ Bphlx,p)] +6x [ — 3:Hlx. )]
=0 =0
we got that above equation of motion.
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Phase-space Lagrangian description of Shrodinger equation

For a quantum system, its state is fully characterized
by a vector ¢) in a Hilbert space V:

$1
|p) = ®2 | — first-order E.O.M i(/'ﬁm: Hmn®n

(Why ¢,, is complex? Why |¢ | related to probability?)
e Phase-space Lagrangian (taking i =1 unit)

L= i0bm — GiHnon = (0li g, — Hlo), = [drL
e From (Can we have non-linear Shrédinger equation?)
§S = / At 567, [1dm — Hmntn] + 5hn[—id — &rHumn
we get the equation of motion

id.)m - Hmn¢n7 _1¢2 - QZST,-,Hmn-
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Quantum — classical: Dynamical variational approach

e Given a Hamiltonian H, we can use variational approach to get an
approximate ground state, by minimizing (¢/|H|¢,1), where ¢! are the
variational parameters — approximate ground state \¢£é).

But how to get the low energy excited states?

e Dynamical variational approach (semi-classical approach):

- we assume the variational parameters has a time-dependence &/(t).

- The variational parameters ¢/ fully characterize the state, ie &/
parametrize a phase-space.

- The dynamics of £/(t) is given by the phase-space Lagrangian

— Hldei(ry) = —ai(§")e" — AE"

£(£I7él) <¢)§
where
ia,(f’) = <¢’§/|35"</>§/>;

which is the vector potential in the phase-space.
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Most general phase—space description of classical system

From S = [dt L(¢' ¢!y = [ dt [~aE! — H], we get
6S = / dt [—( aJa,)(ngg’ + 306! — 6¢loAEN)

= / dt 5§I[—(618J)£J + (3Ja/)§:J — a//:l] = / dt 55’[—[)1_15'1 — 8[/:1]
and the equation of motion
: OH
byél = ——
IJg 85”
- The above EOM conserve energy 0, H(¢/(t)) = 0.
e Choose an equivalent (redundant) trial wave function eie(gl)|1/1£/>:

L ey =—-aé -0y - A =[-a — 0,01 — AN

which gives rise to the same EOM. Phase space Lagrangian is a way to
lable/describe a physical system. Two phase space Lagrangians,
differing by a total time derivative of any function, label/describe
the same system — Gauge redundancy

byy = 0jay — 0ya; = “magnetic field” in phase-space
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Gauge “symmetry” and symmetry

Gauge redundancy (also called gauge symmetry by mistake)
and symmetry (real physical symmetry) in quantum system:

- If we give a single quantum state two names |a) and |b), then |a) and
|b) will have the same properties (since |a) = |b)). We say there is a
gauge redundancy or gauge symmetry, and the theory of |a) and |b) is a
gauge theory.

- If two orthogonal states |a) and |b) same properties, then we say there
is a symmetry between |a) and |b) (since (a|lb) = 0).

Gauge “symmetry” is indeed a symmetry in classical system
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Differential form

e The phase space “vector potential” a; gives rise to a differential 1-form,
a=asde.
The phase space “magnetic field” by, gives rise to a differential 2-form,
b = bydel A dé? /2! (assuming the sum of indices), where A is the
wedge product d¢/ A déd = —ded A del

e The physical meaning of the 2-form: for any 2-dimensional submanifold
M? C Myhase space, the pair b, M? give rise to a number:

(b, M?) = /M b= /W byyde'ded /21 = /MZ by, dxdy = number = flux.

which is called evaluate 2-form b on 2-manifiold V2.

So the 2-form b describes a “magnetic field” in the phase space
M

phase space-
e n-form: w, = w,l..,/ndé”l A AdEh/nl
Evaluate n-form w, on n-manifiold M": (w,, M") = an wp = number

e For a m-form and a n-form, we have w,, A w, = (=) "w, A wp,.
Xiao-Gang Wen (MIT)
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Generalized Stokes theorem in differential form

e Exterior derivative d maps a n-form to a n+ 1-form: w, — vp41
Vi1 = dw, = (Owyy.p,)dEO A - A d€™ /(n 4 1)1 (with sum of indices)
Vnil = Vit dEO A - A dER /(0 4 1)1,

Vigeoil, = (3[000/1...[" — 8,1w,0...,n + - ) n—+ 1)!

anti—symmetrize/(
- b/_j = 6,3J — 8Ja, — b= (8,aJ — aJa,)dE’de/2! = 8/3Jd§ldfj = da.
- dwpvm = (dwn)vm + (=) "wnp(dvm).

e Generalized Stokes theorem dw, = / Wn

e Definition: w, is closed if dw, = 0.
Definition: w, is exact there is a n — 1-form 1,1 such that
wp = drp_1. Since dd = 0, an exact form is also a closed form.
- Two vector potential 1-forms differing by an exact 1-from are equivalent

e w, is exact iff an wp = 0 for any closed manifold M". w, is closed iff
Jiyn wn = 0 for any contractible closed manifold M".

e A magpnetic field is described by a closed (or exact?) 2-form b.

Xiao-Gang Wen (MIT) Modern quantum many-body physics — Semi-classical approach



Generalized Liouville’'s theorm

e Generalized Liouville’s theorem
Consider a time evolution from t — £, &/ — ¢/, determined by the
equation of motion y oH
b = ——
1§ o€l

Then Pf(by(¢"))d"e! = Pf(biy(€'))d"¢"  (bypdxdp = bgzdXdp)

In other words, the sympletic volume Pf(b;,(¢'))d"¢! is invariant
under time evolution.

- The phase space is a sympletic manifold characterized by
anti-symmetric tensor by;: area element dS? = b;;d¢! A dg7 /21

- It is different from the usual manifold characterized by symmetric
matrics tensor g;;: distance® element ds® = g;;d¢! - d¢/.

e A classical system is described by pair (Mpase space: H(E')),
a sympletic manifold and a function (Hamiltonian) on it.
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Change of variables

If we change the variables to 7/ = 7)/(¢/), we get

. . 7 . al__/ 7] 7 7]
L(771>77/) - / dt [—3777/ - H(UI)L b?ﬂlj = _8777/7 b[{j - arj’aj] - anJaI]
where

n . . 85J aé-J Ui | I

a, :_1<¢’877"¢)> :—1<¢‘85J‘d)>87nl :a_/ainl. a, dT] *a/df
oK oK oK oK
bZ = 6771(3}{ 87]J) anj(aKW) ( nIaK)TnJ (anJ K)W
a a/
oet ok et ok oet ok
(85LaK)a i aUJ *( gLaK)a 7 877’ (8£L3K 8£K3L)8 10777J

exchange K<L

bl dn'dn’ = byde’ d¢’.
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Derive generalized Liouville’s theorm

e For the time evolution from t — £, f’ — f’, we have

anl _ N 4" i o aél
§ = Det(:/) &, Ju= 876]
For f =t +dt, & =¢! — b'KgTFL(St, where b b’ = 6.
Jiyy=941— 8J(bIK)gTI—/<(St — bIKagiaHSJ(St trac DCt(j) =1- 8/(bIK)%(St

e Assume for 1)/ variable, b}, is indenpendent of 7. Then, 9;(b'%) =0

A~

and Det(J) = 1. We have the Liouville’s theorm
d"y! = d"i" or \/Det(b],(n"))d™" = \/Det(b],(ii'))d" " (b" ind. of ')
e Change variables — Generalized Liouville's theorem
; on' o' - i’ OE" | .
\/Det(b/J)Det(a—gJ)Det(a—nJ)d n = \/Det(b,’J)Det(agJ )Det(aﬁJ)d 7j

Det(by(&1))d ¢! = /Det(by(£1))d"E!
— Pf(byy(¢"))a"¢" = Pf(by(¢'))a"¢’
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Phase-space volume occupied by a quantum state

e For a classical theory every phase-space point represents a distinct
state. There is an oo number of states for a finite phase space.

e For a quantum system, |¢¢/(;)) and ‘¢£l(t)> are &

orthogonal (ie are different quantum states) only ¢

when ¢/ and ¢/ are different enough — 1
uncertainty of ¢/. There is a finite number of

states for a finite phase space.

e How many quantum states does a phase space region D" contain?
From the generalized Liouville's theorm and conservation of degrees of
freedom, we guess

B dngl
N = /D amy(bw)

We will confirm it later.
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Density of quantum states and the sympletic structure

e The number of quantum state in a region D" in n-dimensional phase
space can also be written in term of diferetial 2-form, b = b;;d¢/ d¢? /21,
that defines the sympletic structure of the phase space:

B d"fl pn/2
V= o = e

Example: For 2-dimensional phase space

b bydghagljat bypdet de?
/Dz (27) /Dz 27 N /D2 27

The number of quantum state in the region D? is equal to the number
of flux quantum (also called Chern number) through D? for the phase
space “magnetic” field byj.

e Quantization of “magnetic” field: If D" is closed (/e is the whole

phase space)

n/2
/ (2b)n/2 €Z (higher Chern number)
Dn ™
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An example: an anharmonic oscillator

e What is low energy spectrum of

k1 1

[tho) = (%)1/4 o2

The value of « is determined by minimizing the average energy

e Trial ground state:

ol D1 3+ 402 + 4av
wlAlg) = SHAE LA
We find
2
2% 6% v+ 63 (274 V729 4813)’ 3
a= i ZW+E+O(1/V2)
6 <27+\/729748 v3)3
1 3
(A) = v+ — + 0(1/v?)

2 16v
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An anharmonic oscillator

e Dynamical trial ground state

1/4
) = (2) 7 ei€xedabey

™

a state with position x = £ and momentum k = £2 fluctuations.

. d L
L' e = Yenlig, — Hlvew) = (3]

where a; = —i(ver| 2 [ver), A" = (e |Hler)
e The resulting equation of motion is given by
: OH
b¢? = by = 01a; — 0,2

el
e Calculate a; = i<w$/!8%,\1/)5/>:
: /2 . :
ap = —i/ dx (2) eflgzxe*%a(xfglya(x - 51)6152)(67%0[0(761)2 =0

™

a=—i / dx (g)l/z e 16X g 3alx—€)? 4 018X g —jalx—€1)? _ ¢t
T
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An anharmonic oscillator

We find by = ¢j; and

- 1 1 3 1 3+4ad+4av
Feh = (22 -~y (1 12 | Lrely4
e The corresponding equation of motion
has a form
: : 3
1_ 2 &2 1 (¢1)3
g 2= —v(145 ) = ()

e The number of quantum states in a phase space region D?

detde? delde? dxdk
/v:/ $ 5Pf(bu):/ 3 ’5:/ x
D2 27T D2 27T D2 27T

which is what we expected.

Xiao-Gang Wen (MIT) Modern quantum many-body physics — Semi-classical approach



An anharmonic oscillator

e The small motions around the ground state 5(’) — A collection of
Harmonic oscillators — low energy spectrum.

- This is why for many interacting systems, the low energy excitations are
non-interacting (like phonons in interacting crystals).

- This is why semi-classical approach works well for many systems.

e For small motion around the ground state £' = 0, £ = 0:

G- 2= (it e

2av
A harmonic oscillator with mass m = 1,
. 2
spring constant K = 221200y

and frequency w = /v (1 + 5>).

e Re-quantizing the harmonic oscillator —

low energy spectrum for the Hamiltonian o 3
-6 4 2 0 2 4 v
k2 1 1
H:?+§VX2+1X4, k:—lax
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Geometric phase and related mathematics

§¢ = ajde! = —i<1/1£/\a%,|w£/)d§’ is the so call geometric phase.

e What is the geometric phase?
Consider [¢¢1) and |t)¢1 s501), what is the phase difference between [t)/)

and |1Z)£I+5£I>?

® But [t)r) and |ther 5¢1) are not parallel: |ther 5e1) # ei5¢"l/)£/>.
They differnce cannot be characterized by a phase.

e But for small 6¢/, the leading difference is just a phase factor
(Ve |ther o) m 1+10(57),  (erygerltber) = 1—10(6¢")
since, to the first order in §
0= 5<’l/)g'\’¢g'> = (<¢§’+6§" - Wg")Wg’) + <’l/)g"(\"/)g'+5g'> - W)g'>)
= [(Veryser|Ver) — 1 + [(Ver[Yeryser) — 1 = [(eryser[er) — 1] = imag
Therefore (V1| 1er se1) ~ e10008) or
i vaer) = €' %Pler) + #(5¢")?,  geometric phase = 3¢ = a(¢')d¢!
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Is the geometric phase meaningless?
ia,&&’

e Geometric phase e¢!%¢ = (Ve ey 5e1) = e . But we can always
change the phase of |1 5e1) — [V 501)1 = e*ia";g’\l/)g/Jr{;g/), to make
the geometric phase to be zero: (Vgr|ter se1) = emiade! giade! —

- The move |¢)¢1) — [thg15¢1) is a generic transportation.

- The move |)¢1) — |t)e1,5¢1)" is a parallel transportation.

It appears that we can always make geometric phase = 0,
and the geometric phase is meaningless. This is wrong!

e As we change the phase of [ic/): [1)er) — eif(f/)w&/), the
geometric phase (ie the connection) also changes: a’ — a/ + Oer

- We can always choose a f to make a' = 0 along a particular path ¢/(t),
to make [1z/(;)) to have the same phase for all t — parallel
transportation along the path.

- But, we cannot find a f to make a’ = 0 for all ¢/, je to make all |er)'s
to have the same phase. Some part of geometric phase (or vector
potential) a’ is physical, and other part is not. The meaningful part is
the “magnetic field": by = 85131 — Ogja/, which is quantized.
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What is the geometric phase for spin-1/27

Consider a spin-1/2 state in n-direction |n) = <

e~ 1%/2cos(6/2)
el?/2sin(0/2)

e Let us compare the phase of |n(6,¢)) and |n(0 + 60, ¢ + dp)):

(n(0,0)|n(0 + 60,0 + d¢))

= 14 (n(0. )] g (0.9)) 36 -+ (n(6.2)| 5 (0, )

=1+ iagdf + ia,0p ~ ¢!(@000+a00)

where i3 = {n(6, 2)| 3 (6, 2)) and 12, = (n(6, )| 2 In(6, )
- ei(@0d0+az00) — ciadt! s the geometric phase as we change |n(f, )
to |n(0 + 60,0+ 0p)) = |n+ An).

- a = (ag, a,) is the connection (vector potential) of the geometric
phase. (Like the vector potential in electromagnetism.)
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The notion of the “flux” of the geometric phase

e Consider a loop |n(t)), t € [0,1], n(0) = n(1). The total geometric
phase of the loop

el 200 = (n(0)|n(t1)) (n(t)|n(t2)) (n(t ( )\n(r3)>---< (tN 1)|n(1)
— el Xa(t)dn(t) _ i [a(t)-dn(t) _ lfa(t aiz)

o If we change the phase of |n): [n) — elf( ")|n>, the total geometric
phase for a loop — the geometric flux — does not change.

e Computing the geometric flux:

$cagdl + a,dp = [,(dpa, — Oya9)d0de or $.a= [pda= [ b
where C = 0D, ie the loop C is the boundary of the disk D.

- b= 0ga, — O,ap is called the geometric curvature (magnetic field):
bAOAp = the total geometric phase for a small loop
(0,0) = (0 + A8, 0) = (6 + Ab, 0 + Ap) = (0,0 + Ap) = (0,¢).

e The total geometric phase for a loop fc a - dmn and the geometric
curvature b are meaningful, since they are invariant under the gauge
transformation |n) — ¢'/("|n) and a — a + 9f.
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The geometric phase (the flux) for spin-1/2

From iag = (n(6,¢)| In(0, ¢)) and ia, = (n(6,¢)|35|n(0, ¢)) and

i | ; —cos(6
|n) = (cicgzgn(/e/g)) —ap=0, a,= sin(0/2)sin(6/2) = 1 2 (9)
“Flux" of geometric phase: total geometric phase around a loop

For a loop (6, ) — (6 + A8, 0) — (0 + A0, 0+ Ap) — (00,0 + Ap) — (0, ©):

1 — cos(0 + Af 1 — cos(d
7{ 2pd0 + a,dp = 0 + cos(0+ AN p, 4 g 2=Cos0) 5,
[86,A¢] - -

1 1
=3 sin(0)A0Ap = by,dfdy = EQ([AG’ Ayp]) = half solid angle.

e The total “flux” of the geometric phase on
any campact space S2 must be quantized

e On shpere the number states = Chern number +1.

On torus the number states = Chern number (Landau levels counting)
Xiao-Gang Wen (MIT)
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The geometric phase of spin-1

e The geometric connection for spin-1/2 |ng 1) is
n—3
s=1 s=! 1—cos(6
(3, Z,a, 2)= (0, 1<),

e The geometric connection for spin-1 |ng,—1) is
S=1 S=1 S=3 S5=3
(a >a<p ) = 2(39 ) dp ) = (0 1-— COS(Q))'

- This is because we may view |ns,—1) = |ng _1) @ |ng _

)

) = eizA@SZ%

N[

1
2

iA S=1
180 = (g, |k, ) = (ng, s Inf, ) x (n, s |,

N[

How to visualize the geometric phase of spin-1

Different arrows in the plan at a point n pa \

on the sphere correspond to the different A\

phase choices e!?|ns, ;). We try to %é

choose ¢ for the spin-1 states along the % %

loop, such that |ns,—1) all have the same

phase. But after going around the loop, Tangentbundeon 2 phe

the phase miss match is the total geometric phase along the loop.
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Classical motion of spin-1/2: two views

The phase-space action
1 1
S= / dt[—§(1 —cosf)p — V(0,p)] = / dt[§ cosfp — V(0,0)] + ...

e Near the equator, cost = 5 — 0 = L;:

S = [ dtlLed — V(5 — Lo o)

- The uniform phase-space magnetic field — (=6, ) = (L, ¢) = (p, x)
the usual canonical coordinate-momentum pair.

e A particle moving on 52 with a uniform magnetic field by, of total flux
27. It is the motion in the lowest Landau level assuming fw. is large.
Modified Newton law F = v x B (not F = ma).

- A spin-S — a sphere with a uniform magnetic field of 27 Ncpern flux,
where Nchern = 25 — lowest Landau level has 25 + 1 = Ncpern + 1-fold
degeneracy on a shere.

Lowest Landau level has Ncpern-fold degeneracy on a torus.
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Global view of geometric phase: S! fiber bundle

Why the “magnetic field” b is quantuized (/e cannot be deformed to 0)7
The physical states are characterized by a point £’ on the phase-space,
only after we pick the phase of |/)(¢7)). Different choices of
phases are equivalent — the notion of S! fiber bundle:
e The phase space ¢’ is the base space. The equivalent
normalized quantum states e!?|¢)(¢)) form the fiber S*.
- A S* fiber bundle is (locally) S x phase-space. base space
- the ¢/-labeled quantum states [1/(¢7)) is a cross section of the S*
bundle. Pick a phase = pick a cross section.
e Trivial S bundle = S* x base-space (globally).
Non-trivial S* fiber bundle has different topology from S* x base-space.
No smooth cross section. Trivial and non-trivial bundles describes
different classes of classical systems that cannot deform into each other.
e Vector bundle: fiber = vector space.
An example: fiber = R — Mobius strip:
a non-trivial R bundle on base-space S*
No non-zero smooth cross section.
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Spin-1/2 example: geometric phase and fiber bundle

e All possible spin-1/2 states (or qubit states)

ib
(a+ib)| 1) + (c + id)| |) = <jiid> 2 PR+ =1

form a 3-dimensional sphere S (a sphere in 4-dimensional space).

e But since [¢)) ~ ¢!?|¢)), all possible spin-1/2 states
(or qubit states) actually form a 2-dimensional sphere ;
S?. Zlez=n:amap S® — S? — |n): spin-1/2 [ O ,_
in n direction. - ;

e 53 locally looks like St x S?: S3 is a non-trivial
fiber bundle with fiber S* and base space S:

pt — ST 2y 63 2, 62 ot

O
1)

e If we pick a phase ¢ for each |n), we may get one cross section of the

o () o ()

- No smooth cross section — non-trivial fiber bundle # fiber x base space.
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The patch-picture of fiber bundle

The “megnetic field” b in the phase space of a spin is a closed 2-form,
but not a exact 2-form, depite b = da, since the connection 1-form a
has singularities on the sphere S? (the phase space). There is no
continous 1-form a, such that b = da, since this will imply that

/b/ da/ a=2~0
s2 s? 952

- b is exact iff the S'-fiber boundle is trivial (ie Chern number = 0)

- A fiber boundle is trivial iff it has no continuously N
defined connection a (/e the vector potential a)). G% =

e Any S'-fiber boundle can be described by collection of &V
continous connections a4 on patchs D, that cover the C
whole base space. On the overlap of two patchs, Dy and Dg, the two
gauge connections, as and ag are gauge equivalent ag = aa + dfga.

- Locally on each patch, the S!-fiber boundle looks like D4 x S*, with
cross section [14(¢)), ¢/ € Da. On the overlap of two patchs, the two

cross sections, [14(¢!)) and [vg(¢")), are related by U(1)
transformation [¢5(£)) = el (¢)) — U(1)-bundle.
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The obstruction to have globally defined connection

Can we deform the gauge transformations eifeal€) on the overlaps to 1,
and turn a patchwise defined connection to a globally defined one?

e Consider a U(1)-bundle on S%. We divide S? into y -
two patchs with trivial topology (/e two disks). /
The overle_lp is the equator S'. The transformation &\

U(p) = e'/84(¥) on the S connects the connections '
S patch
on the two patchs 2 = ay — iU~LdU = ay + dfey
correct form incorrect form

e The non-trivial winding number of the transformation U : S* — U(1),
due to m1(U(1)) = Z, is the obstruction to have globally defined
connection — non-trivial U(1)-bundle on S? with

Chern number = winding number.

- On S3 there is no non-trivial U(1)-bundle, but on S? x S* or
St x St x 52 there is non-trivial U(1)-bundle.

- On S* there is non-trivial SU(2)-bundle, since m3(SU(2) = 53) = 7.
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The motion of a neutron in a non-uniform magnetic field

Geometric phase is a quantum effect that can affect equation of motion

Consider a spin-1/2 neutron moving in a strong non-uniform spin
magnetic field B(x). The neutron magnetic moment is

tn = —1.91304272(45)1p, where iy = % in Sl unit (or uy = 2;];C
in CGS unit). The interaction between the magnetic moment and the
magnetic field, —p,B - o, will force the neutron spin to be anti-parallel

to the magnetic field B at low energies.

e What is the classical theroy (such as equation of motion and
Lagrangian) that describes the motion of the above low energy neutron?

e What is the quantum Hamiltonian H that describes the quantum
motion of the above low energy neutron?

Our first guess:

e Classical: mx = —9V(x)and L =p-x — tmp*> - 9V(x),
where V/(x) = —|u,B(x)| is the effective potential energy.

A

Quantum: H = —2—;"82 + V/(x) Is this guess correct?
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Schrodinger equation and coordinate basis

e Schrodinger equation (basis independent): 19:|¢)) = H(p, %)[1))
e In a coordinate basis [¢)) = [ dx (x)|x), it becomes

1000(x, t) = H(—18, x)(x, t) = (f 2;”82 + V(x))zb(x, t)

e In the above, we have assumed that there is no geometric phase for
|x),ie the phase change from |x) to |x + 0x) is 0.

e But for our neutron problem, the phase change from |x) to [x + dx) is
not 0. How to to compute the phase change?

- For our neutron problem, |x) is actually |x) @ |n(x)).

- The phase change from |x) @ |n(x)) to |x + 0x) ® |n(x + dx)) is given
by a-dx:

! 7)X — (n(x)|n(x +6x)) — ia(x) = (n(x)|d|n(x))

e If there is a geometric phase for |x), ie a phase change ela(x)0x from
|x) to |x + dx) , what will the Schrédinger equation look like?

- The result H = —2%””82 — |unB(x)| is valid only when the direction of
B(x) does not change.
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How geometric phase affects Schrodinger equation?

o If we choose a new basis |x)y, = e'?)|x). |x)4, will have an non-zero
geometric phase: The phase change from [x)u, to [x + 0x)4, is
ei[d)(x+6x)7</>(x)] = eia(x)~5x where a = 8(;5()()

e What is the Schrodinger equation in the new basis
[¥) = [ dx (x)|x) = [ dx Yo (x)[x)ew or ¥, = v(x)
10pb(x, t) = Hi(x, t) = He' Xy,
e iolx latw(x t)=e Tio0) frelolx ¢tw
10ppw(x, t) = Aotbew, Haw = e 12X [Fele),
e M, (8, x) is obtained from H(8,x) by replacing @ in H by
e 1) Pei?x) = 9 1 i9¢p(x) = D + ia(x).

1
2mn(8 +ia)® + V.

The above is derived for a = 9¢. But we assume it remains valid for
general a — How geometric phase affects Schrodinger equation

Hew = H(® + ia,x) = —
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Effective Hamiltonian for neutron in spin magnetic field

where

B(x)

1a(x) = (n(x)|8In(x)),  m=—rg s

V(x) = ~|unB(x)|.

a(x) comes from geometric phase and V/(x) is potential energy.

e V/(x) generates a potential force F = —dV on the particle.

e We will see that a(x) generates a Lorentz force F o< v x b on the
particle, as if there is a “orbital magnetic field” b= 0 x a.

The geometric phase gives rise to an effective orbital magnetic
field.

Xiao-Gang Wen (MIT) Modern quantum many-body physics — Semi-classical approach



Obtain classical equation of motion

e Consider wavepacket with
space-time dependent spin

a\ 1/4
’¢X07k0> — <;> €
Phase space Lagrangian (I:I = —%32 — pupB - o)

. d
L= <¢x0(t),ko(t)|1&\%0@),:(0 1) — o (6).ko(0) ¥ (6) o (1))

. k2
— @k @k~ al) o~ 5%~ B (o)
= 0 —i{n[0x|m)

. 2

= —Xo - ko —a(x0) - %o — - B(xo)|
2
~ po - Xo — a(xo) - Xo — "— ~V(xo). (h=1 unit)
2mp,
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Obtain classical equation of motion

For S= [dt[p-x—a(x) % — £ — V(x)]

~ 2m,
From [ dt §(ai(x)x') = [ dt [6x/(0;ja;)x" — 4;(x)0x]
0S5 = / dt (5,0,‘[5(i — %] + (5Xi[_/-7i - (8,'3j)5<j + (8ja,-)>'<j — 0; \/]
we obtain the phase space equation of motion

)'(i = ﬂ, [5,‘ = —(8,-aj - 8ja,-)>'<j —8,‘\/ - —bijkj - 81'\/

mp

Lorentz force

Spin twist gives rise to simulated vector potential
a(x) = —i(n(x)|0d|n(x)) — simulated magnetic field.
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Geometric phase = orbital magnetic field

- Equation of motion for x> = z
mpz = —0,V — x[0,ax — Oxaz| — y|0.a, — Oy a,|
- Compare with the equation of motion in a magnetic field B
mps = —0,V + S(wy — VB,
e e

e e
- = zV . Z*Ax - X*Az - *Az - z*A .
0,V + x(0 c 19) c ) y(OyC 19) c y)

o We find that a = —€A (or a= — £ Ain i # 1 unit, [a] = Length™ ).

C

e The geometric meaning of magnetic field

B

h 1
#offluxquanta—/dS-B/C_j{ dx.iA:_i dx -
JS € oS hc 21 Jos

= geometric phase around a loop/2m
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Simulate orbital magnetic field by twisted spin

When an electron move in a background twisted spins, the electron spin
may following the direction of the background twisted spins —
geometric phase = simulated magnetic field.

The geometric phase around a loop/27 = The number of flux
quanta of the simulated magnetic field through the loop.

e Note that hc/e = 4.135667516 x 107 15T m?.

- If there is one flux quantum per (1078m)?, then
B = 4.135667516 x 10715/(1078)2 = 41T
(About the highest static magnetic field produced)

- For electron hoping in a non-coplannar magnet, the geometric phase
from the spin-twist is of order 1 per unit cell:
There is one flux quantum per (10~9m)?, or the simulated magnetic
field by the spin-twist geometric phase is
Bepin = 4.135667516 x 1071°/(1079)? = 4100T
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Geometric phases in energy bands of a crystal

e Hopping Hamiltonian Si
Hma;nﬁ - z _tﬁﬁn(sm,nJrAm

An
n lable unit cell, a, 8 label orbitals

e Plane wave state (x, = nma; + map + nzas)

Yi(n, B) = s(k)e™ ™ N " Hpnging Pr(n, B) = extiu(m, ).
nf

e The energy bands ¢, are eigenvall;es of Mys(k) Si bands
S Mas(k)a(k) = extia(K),
B

e Number of bands =
number of orbitals

in a unit cell.
Xiao-Gang Wen (MIT) Modern quantum many-body physics — Semi-classical approach
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Dynamics of an electron in semiconductor

The standard theory

A

e Quantum dynamics: H(p) = ¢(p), p= —i0 —
A plane wave e'k*q, (k) = e'k*|y(k))
%(

3 e(k k
evolves as ek *¢ )>

With potential term, the Hamiltonian is changed to
H(p, %) = e(p) + V(X), where [p', ¥] = —i;
H(p, %) = e(—10) + V(%)
e Classical dynamics: %(é) = i([H,0]) —
_OH(p.x) . _ OH(p,x)
ox op
o [

U1

e The standard theory is wrong.
Xiao-Gang Wen (MIT)
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Obtain classical EOM of an electron in a band
A(k) I" "| » |‘_ . "i
e Consider wavepacket with
*- i

space-time dependent spin
Q@

/4 —La(x—x
ko) = () ehore 10 g (ko)
Phase space Lagrangian (% # 1 unit)

o d
E - <¢Xo(t),ko(t)’lhdt H‘T/]XO ko(t >

. : - . h2k2
=0 X0 —i (10 19
. - . 12 k?
= —hxg - ko — ha(ko) - ko — 5 0 + |,u,,B(X0)|
mp
p2
~ po - xo — a(po/h) - po — 2;;” — V(xo0)
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Obtain classical EOM of an electron in a band

e The k-space connection (vector potential) in Brillouin zone.
1d(k) = (¥ (k)| Okl (k))

o For S= [dt [p-)'(—é(p/h)~ fﬁ— V( )]
From [ dt 6(3(p/h)p’) = [ dt [6p/(0p,5))p — 5i(p/h)5p']
0S = f dt 5/3,'[5(’ — miln —hl (8kl.aj)pf +h” (8kj§,-)bj] + (SXi[—b,' — 8,-V]

we obtain the phase space equation of motion

x = % + W (0,3 — 01, 3) P = m L m by, =0V

Velocity correction

where by, = O, dj — 8kj§; is the k-space
“magnetic” field (geometric curvature).

The k-space connection (e the k-space magnetic |
field) also modifies the equation of motion Qian Niu
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The correct classical EOM of an electron in a band

2
L:p-x+§A<x>-x—5(p/h>-p V()
=hlk-x — . k] — -V
k- x —a(x) % — (k) k] = -~ V(x)
The real equation of motion in semiconductor
oV Oe
= — B, = F, %= —— +hthy(k)p;
P O -+ —Bjx! X ap; + i(k)pj

F; include both potential force and Lorentz force.
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Compare with Newton's law

From the EOM
Oe

fl&
Oki

ki=h"Fi %= hoto e o+ bi(k)kg = ht o+ bt hy(K)F;

and assume H = % + V(x), we obtain

X = h*2(8k,.8kj H)FJ + hilg,'j/;_j + hfzak,B,-ijF,
or X' = (0p,0p,H)F; + DjF; + (95, Dy) F;Fi
= m™'F; + DyiFj + (95, Dy) F F

where p; = hk;, D; = h~'b;.
We obtain correction to the Newton law D F; + (9, D;)F;F).

p’ /m2c% & 2p2 | visti ;
5~ \/m*c® + c<p* is the relativistic correction.
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AC conductivity (from classical Drude model)

First way to include a friction force
Fi — Fi —~x'
We obtain
%1 = mH(F = 4%") 4 Dy(F; — 9%) + 0p Dy(F; — 159)(Fi — 1)
- Assume J,,Dj; = 0 and go to w-space x = X, e 1wt

[~w?(8 +yDy) — iwym ™ 35]x, = [m™*0; — iwD;]F;
x, = [~w?(m+ymD) — iwy]"}(1 — iwmD)F,
Vo = [y — iwm(1 +~D)] "1 — iwmD)F,

Effect of Djj disappear for DC conductance, for the first way to model
dissipation Fiiction = —7Xx'.
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AC conductivity (from classical Drude model)

Second way to include a friction force
Fi — Fi —y0pH = Fi —ym™p;
Still assume 0, Dj; = 0:
x = 0pH + D(F —ym™1p) = (1 —+D)m 'p + DF
p=F— ym_lp.

- Go to w-space x = x, e ¢t —iwp, = F, —ym™p,
Ve = —lwx, = (1 — 'yD)mflpw + DF,
1

=(1—~D)m!
(1—+D)m P

F.+ DF,
w

1
= (1—-~yD)————F,, + DF,
vy — lwm

= (1 — iwDm)(y — iwm)~'F,
Effect of Dj; also disappear for DC conductance, for the second way to

model dissipation Feiction = —Y0Op, H. But the result is different from
the first way Feiction = —YX'.
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Transport: Boltzmann equation

Hydrodynamics in phase space:
In the third way to model dissipation, we find that Dj; has effect on DC

conductance!
e Phase space is parametrized by ¢/ = x', x?, x>, k', k?, k3

. . . oH
L' ¢y = —nhai' — H, hb&? = ~ el biy = 01a; — 0ja

where the phase space curvature (/ = x*, x%, x3, k', k?, k3) is given by
bj 0 0 —6;\ [ bj 0 o; by
e=(55) ()% 8) -G 5)

0jj
log Det (b'-

Iy

U) = Trlog <ZU ?J) = 2b,‘j[3j,' + O(b,’k[)kj)2
ij ij  Ojj

b

)
bj 95\ _ P P o2
Pf _50_ B )= Pf(b,b) =1+ b,'jbj,' + O(b,'kbkj) .
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Density distribution in phase space

e To set up phase space hydrodynamics, we first introduce phase space
density distribution

aN = (€ PIBEN TS
; (Qﬂ)n/2
g is the number per orbital.
e Local equilibrium distribution
1
I _ .
go(é- ) - 65(51)“_[(5,)7#] + 17 fOf ferm|0ns
1
Iy
g(&') = BENHE) ] — 1’ for bosons
go(¢) = C_B(él)[H(fl)_"], for classical particles
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Hydrodynamic equation of motion

e Consider a small cluster of gas, that evolve from time t to t
dngl dngl
Pf[b( :
Gy = €PN 5
Due to Liouville's theorm Pf[b(¢/)]d ¢! = Pf[ (€N]d ¢!, we have
g(e)=g(&) or g[E ()] =0
We obtain hydrodynamic equation
d ! o ag yi o ag
ag[f (t)]=0 — a‘*‘f 018 = ot
e Consistent with the conservation of particle number (7' = gé’):

8 I I 1 A n _
a"‘ I+ f( )[3/Pf( )]j -l- f(B)c‘), [Pf(b)j] =0

See Appendix at the end of this note for derivation.

AN =dN  or  g(¢")Pflb()]

— hbo,Ho g =0

- When Pf[b(¢!)] = 1, say when either b; =0 or E,-J- = 0, the conservation
of particle number reduces to 0g +0,.7' =0.
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Go to &/ = x, k phase space

L=nlk-x—a(x)-x— a(k)-k] — E(k,x), E(k,x)=e(k)+ V(x)

. OE j o~ 9B L bp ki
hki = =55 = Dby ¥ ki = e+ by ()l
:—EB,'J'

e (x, k)-density distribution function

3 3
g(x.k.0): AN = g(x. k. ) Pf(b, ) XLk

(2m)3
g is the number per orbital, and Pf(b, b) = 1 + b;ibj; +
e Local equilibrium distribution
1 .
go(x, k) = FONE*R) ] 51" for fermions
1
go(x, k) = INER) (] 1’ for bosons
go(x, k) = e POIE(kx)=p(x)] for classical particles
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Adding dissipation — relaxationtime approximation

Impurity scattering — dissipation.
e We model large Ak redistribution caused by impurities in k-space by

og og 8g . Og 1
-2 k- (o —
gt TCNE= G tX G TR G T e &)
- i—f = %(g — go) corresponds to the change of g caused by scattering

process in k space.

e Local chemical potential ;/(x) and local temperature T(x):
- 6g (g go)/T should conserve the x-space particle density
= [ Pf(b, b) d’k g. Thus the local chemical potential ;(x) in gp

( ™)
is chosen to make gp to satisfy

5n(x) = / Pf(b, B)d3k (g — go) = 0.

No particle diffusion in x-space.
- Impurity scattering conserve the energy density in x-space

ne(x) = [ Pf(b, b) (g;')‘ E(x k)g. The local temperature T(x) satisfies

dne(x) = [ Pf(b, b)d3k E(x, k)(g — &) = 0.
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Linear responce in steady state

e Steady state: %t =0or x + k - dg =—1(g— &)
with EOM for particles h/( hbux hx; = g,f + hbu(k)k
and go(x, k) = 1/(eﬁ(x)[e(k)+V( ) /L(X)] +1)

e When 0,V =0, bj =0, Oep=0, 0xf(x)=0
go satisfies the EOM, since k = 0, % = % =0

e Linear responce: first order in

k ~ 8.V, bj,  Oxgo~0x(V—p), %B, Jdg=g— g

K
e Linear response for steady state
0g + Th™ 10 €0y,08 = —T[h 10y €D 80 + ki, g0]
or g+ 7vidog = —7[v'Oxg0 + kiOkgol, V' =h Oke.

- Make another assumption X" £« = % Since hik; = eE; — hb,-jvf:

TV'
1

T
%(e i thV )akigb? 80 = Cﬁ(x)[e(k)fﬁ(x)] + 1

5g - 7Tviax,'g0 +
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2D conductivity from k-space “magnetic” field Bij

Assume real space magnetic field bjj = 0 and T(x), fi(x) are
independent of x:
0g = TeE; Oe 8go = reE;v ,8go
"hok; de Oe
The current (Pf(b;j, b;) = Pf(0, b;) = 1)
i d3k L d3k ,ago

J :/Wexg:/(zﬂ)3(ev + eb; iteE;)(go + TeEiv 86)

Note that (try to show this in 1-dimension)

N S d3k  Oe(k) B Pk 9Go[e(k)]
/ @ w=[ 2r)7 ok ()= | e ok

where 0Gp(€)/0e = go(€). Keeping only linear E; term

; L &>k 080
J:/ exg:/[hbugoJrTevJva}Ej

(27)3 (2m)3 €

e Conductivity: A3k ")
J— J 080
i / (2m)3 [ h b,Jgo ety Oe }
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Quantized Hall conductance in 2D

For a filled band, gp =1

(27)? h
where (let b; = ¢;;b) Thouless
NChern = / ﬂb’ = / ﬂ (% — %> = integer,
Bz 2T g.z. 2m \Ok,  Oky

13; = (Y(k)| 0k v (k)).

We have a quantized Hall conductance. ncpern is Chern number.

We have a Chern insulator if the total Chern number of the filled
bands is non-zero.

e How to make a Chern insulator?
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Complex hopping to break time-reversal and parity symm.

e Conductance j, = 0, E, jx = E, = 0.

Under time reversal t — —t:
E—E, j— —j, 0 — —0x

Under parity (x,y) — (x, —y):
(EXa Ey) — (EXv *Ey)a (.ij.jy) — (.ij *J.y)a Oxy = —Oxy

e Use complex hopping to generate uniform flux
and break time-reversal and parity symmetries.
— Chern insulator i

Staggered flux breaks time-reversal symmetry
but not parity symmetry.
— not Chern insulator

e Next we compute the hopping matrix in k-space

Map(k) = — Z tﬁé’e*i“”'k
An
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m-flux, Dirac fermion, and its geometric connection 3(k)

1 1
Hopping matrix in k-space (a; = 2x, ay=y): plot n(ky, k)
—2tcos(ay - k) —t— te iark —2tcosk, —t— te?ik
M(k) = iar-k = —2ik
—t — te!® 2t cos(as - k) —t—te " 2tcosk,

e M(k) =v(k)-o: e ==*|v(k)|. The vector field v(k) on B.Z.:

vy = —t — tcos(2ky), v, = —tsin(2ky), v, = —2tcos(ky).

lv| = t1/2 + 2cos(2ky) + 4 cos?(k,) = t+/4cos?(ky) + 4 cos?(ky).

e Eigenstate in conduction band |n(k)), plot n(k., k,)—
n(k) = v(k)/|v(k)|, has geometric connection

13;(k) = (n(k)|Ok|n(k)): by, = Ok 3y — Ok,ax # 0 Zii
¢ dk-d=m, §,, dk-d=m — two m-flux tubes. S i
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7 /2-flux state: complex hopping — Chern insulator

1 L T
1
a i/ T2/ 0 ‘~‘K
A 2 v
r i ' —Ts AT
— 1 [N
é é o
1 L L2 .
" " K
1 -1 1 -1 -

Hopping matrix in k-space (a1 = 2x, a» =y): M(k) =
—2t cos(a - k) —t—te 1Ak _ jpelak /g i(@ktark)
—t —teldrk _jpfemiak _ i pl@ktark) 2t cos(as - k)
e M(k)=v(k)-o: e ==*|v(k)|. The vector field v(k) on B.Z.:
vy = —t — tcos(2ky) — t'sin(ky) + t'sin(k, + 2ky),
v, = —tsin(2ky) — t' cos(ky,) — t' cos(ky, + 2ky), v, = —2t cos(k,)

e Eigenstate in conduction band |n(k)), t=1t
n(k) = v(k)/|v(k)|, has geometric connection g§
151(k) = (n(K)| 0, In(k)): ey = Ok, 3, — Ok 5 # 01

— The wrapping number (Chern number) =1
Chern insulator (IQH state)
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How to compute the Chern number

e Geometric phase ¢ = ¢, dk - d(k) = 1Q

o= 7{ dk - d(k) = 27 x wraping num.
0B.Z.

3k, [ DA
ok,

e Geometric curvature B = Ok dy — Ok, ax.
o= ¢ dk-a(k)= / d%kB,
oD D
/ d?kB = 27 x Chern number
JB.Z.

e Compute geometric curvature:
Bokeok, = 1n- ([n(k + Skyex) — n(k)] x [n(k + Skyy) — n(k)]>

~ 1
B(k) = En - [0k, n(k) x Ok, n(k)]
e Compute Chern number (the wrapping number):

(477)1/ d?k n - [0k, n(k) x Ok, n(k)] = Chern number
B.7
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I 1 T

1 A A L T

(SRR gty | o

1 é Y e
i b —Ts AT
T | o

1 PN PN | ,"’ ]
b b K

1 A 1 A -

Hopping matrix in k-space (a; = 2x, a»=y):
_ [—2tcos(ax- k) —t — re—iark
M(k) = ( i ecos(m - ) )

e M(k)=v(k)-o: ¢=+|v(k)|. The vector field v(k) on B.Z.:
vy = —t' — tcos(2ky), v, = —tsin(2ky), v, = —2tcos(ky).

e Eigenstate in conduction band |n(k)), "fk‘g@
n(k) = v(k)/|v(k)|, has geometric connection ' "
13;(k) = (n(k)|O|n(k)): by, = Ok, 8, — Ok,dx #0 ﬂ -

— The wrapping number (Chern number) = 0

Atomic insulator
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Chern number of the bands

(b) (©)

+1
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Appendix: Hydrodynamic equation and continuity equation

(for byy = const.)

e Hydrodynamic equation

d g 0
el =0 » Z4éog="5_bY9,Hog =0

ot ot

e Continuity equation conservation of particle number (b, = const.):

gf+aj’—o current: J' = g€ = —g bMo,H
They are equivalent:
0 0
0= S +017" = 55— b01g0,H — bg0,0,H
t 8 ~—

=0
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Appendix: continuity equation (for by, # const.)

e Assume for phase space coordinates ¢/, by = const.

Hydrodynamic EOM: % +§'5/§ = % —bYo,HHE =0
Conitnuity equation: % +9,7"'=0, J'= gf’, 5’ — —bMd,H
e Change of coordinates ¢/ = ¢/(¢!): (scaler, vector, tensor)
. o, o oc!
N=gE, 9 =248, ¢ £J gl =% 74
g(&)=¢8("), o a7 § = 8515 oe
odk oét - u_ 0¢o¢’ o
U= o a.gbks b
9g" ¢ ek agL

- The subscript and superscript indecate how the quantity transforms
under the coordinate transformation.

e The form of the hydrodynamic EOM remain unchanged:
8g _ Og

—l—fé? =5

b“(?JHé?,g =0
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Appendix: continuity equation (for by, # const.)

e The form of the continuity equation is changed:

og afK 85’ L 78g I 4 85K 35’ L
8t+agl( agtj) o PO (a"agt>‘7

N ‘9;;( oc )Tt

T ot Loek
In fact: da%(@ ng) = Det'/2(b”)dxDet'/?(byy), since the RHS
o) o &l ~
= Det(%)Det/2(5)ox [})a(%)})a”%b, J)} Det( % )8KDet( )
We also have (let M, = gg)
Det(MY)éDet(M,;) = Det(MY)Det(My; + M) — 1
= Det () + MIK(SMKJ) —1= MIK5MK/
Continuity equation: (not just dt g 19,7 =0)
og ;1 oo Og 1 o
er I+ —|0/Pf(b)| T’ = + —=—=0,|Pf(b)J"| =0
8407+ s OPTBLT = P 0 PH(ET
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Appendix: continuity equation = Hydrodynamic equation

Jg 1 p o 08 1 P 1
+ —0 b = — — 0y |Pf(b b~0o,H
ot * pr(h) 1 [Pf(b)T"] ot i) i [Pf(b) g JH]
og 1 1 A
== —bY01g0;H — g0;H —0;|Pf(b)b
By 180, — g0sH oo 1 [Pf(b)b"™]

=0
We first note that 0 = 8M(bIKbKL) = (aMbIK)bKL + b’K(é?MbKL) —
0= a/\//bl‘j + bIK(aMbKL)bLJ
This allows us to obtain

0 [Pf(B)bY]  bKLO bk o bMob L
~ _ p? g0 = == IR pIK(9, by )b
Pf(b) 2 ) 2 ( ! KL)
bKLbIJ o
— al(aL;K 8KaL) — b’Kb“c’),(aKaL — aLaK)

= bKLb’JalﬁLaK + b’KbLJG,OLaK = bKLbUO,@LaK + bLKb’JﬁL&aK =0

We recover the hydrodynamic equation g—f — bY9,g0,H
Xiao-Gang Wen (MIT)
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Appendix: Adding dissipation — difffusion in phase space

The enviromental influence only change &' slightly each time.
Diffusion current

Thee = ,yugggj =—"og. (Should v be symmetric?)
New EOM (new continuity equation)

g 1 A 1 A

— + ——0,|Pf(b — ——0;|Pf(b)J4is| =0

ot PF(b /[ ( )gf] Pf(h) /[ (b) dff]
g | gl YY)

or —+¢&0,g=—=0|Pf(b)y"-0

9t §0ig P(B) 1 [Pf(b)y" 08|

- But the above difusion model does not satisfy detail balance. It assume
the transition rates caused by environmntal influence between two
states A, B to be the same in either direction: t4_.g = tg_,a. Such a
transition rates give rise to equilibrium probability distribution that
satisfies P4 = Pp regardless the energy difference E4 — Eg of the two
states. This coresponds to T = oo case. Indeed the above diffusion
model tends to make g to be uniform in phase space, which is the
T = oo case.
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Appendix: Adding dissipation — difffusion in phase space

How to find a difussion model that satisfy detail balance?

How to find a difussion model that make g to evolve into the
equilibrium distributions for a finite temperature T:

Iy _
gO(g ) - eB[H(gl _

n_ +
g(&) = eBlHEN -] — 1’

Diffusion current

The = —~"gd,(log g + BH),

for fermions

for bosons

for classical particles

for classical particles

jdliff = —v"g(1 - g)a[~log(g™* — 1) + BH], for fermions
Tdir = —7"g(1 + g)ds[~log(g "' +1) + BH], for bosons
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Appendix: Hydrodynamics in phase space with diffusion

For classical particles (high temperature limit g < 1)

og 1 T
E+§ g = Pf(B)al[Pf(b)'V g0,(logg + BH)]
For fermions
NI g
F & ¢log Pf(B)al [P(b)y"g(1 - g)ds(log 1= Fhl BH)]
For bosons
g : _ L
5, T g = Pf(B)a, [Pf(b)y"g(1 +£)0,(log { +6 )]

e The equilibrium distribution gy satisfies the above EOM.

e The above diffusion term only incorporates the particle number
conservation, not energy conservation, since we consider an open
system and assume T to be fixed.

How to include energy conservation for a closed system?
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