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Classical motion of a particle and Newton’s Law

The motion of electrons or holes in a semiconductor does not follow
Newton’s law. They follow a generalized Newton law.
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First-order equation of motion and phase-space Lagrangian

• If (x , p) fully characterize the state of a particle, then their equation of
motion is first-order:

ẋ = ∂pH(x , p), ṗ = −∂xH(x , p) Why this form?

which can be obtained via phase-space Lagrangian

L(x , ẋ , p, ṗ) = pẋ − H(x , p), S =

∫
dt L(x , ẋ , p, ṗ).

- A classical system is fully characterized by 1) EOM + Hamiltonian, or
by 2) phase-space Lagrangian.

- A phase-space point fully characterises a classical state.
- Phase-space Lagrangian contains only first order time derivative.
- From S to first-order equation of motion

δS =

∫
dt δp [ẋ − ∂pH(x , p)]︸ ︷︷ ︸

=0

+δx [−ṗ − ∂xH(x , p)]︸ ︷︷ ︸
=0

,

we got that above equation of motion.
Xiao-Gang Wen (MIT) Modern quantum many-body physics – Semi-classical approach 3 / 66



Phase-space Lagrangian description of Shrödinger equation

For a quantum system, its state is fully characterized
by a vector φ〉 in a Hilbert space V:

|φ〉 =

φ1

φ2
...

 → first-order E.O.M i φ̇m = Hmnφn

(Why φm is complex? Why |φm|2 related to probability?)

• Phase-space Lagrangian (taking ~ = 1 unit)

L = iφ∗mφ̇m − φ∗mHmnφn = 〈φ| i d

dt
− H|φ〉, S =

∫
dt L.

• From (Can we have non-linear Shrödinger equation?)

δS =

∫
dt δφ∗m[ i φ̇m − Hmnφn] + δφn[− i φ̇∗m − φ∗mHmn]

we get the equation of motion

i φ̇m = Hmnφn, − i φ̇∗n = φ∗mHmn.
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Quantum → classical: Dynamical variational approach

• Given a Hamiltonian H, we can use variational approach to get an
approximate ground state, by minimizing 〈φξI |H|φξI 〉, where ξI are the
variational parameters → approximate ground state |φξI0〉.
But how to get the low energy excited states?

• Dynamical variational approach (semi-classical approach):
- we assume the variational parameters has a time-dependence ξI (t).
- The variational parameters ξI fully characterize the state, ie ξI

parametrize a phase-space.
- The dynamics of ξI (t) is given by the phase-space Lagrangian

L(ξI , ξ̇I ) = 〈φξI (t)| i
d

dt
− H|φξI (t)〉 = −aI (ξI )ξ̇I − H̄(ξI )

where

iaI (ξ
I ) ≡ 〈φξI |∂ξI |φξI 〉,

which is the vector potential in the phase-space.
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Most general phase-space description of classical system

From S =
∫
dt L(ξ̇I , ξI ) =

∫
dt [−aI ξ̇I − H̄], we get

δS =

∫
dt [−(∂JaI )δξ

J ξ̇I + ȧI δξ
I − δξI∂I H̄(ξI )]

=

∫
dt δξI [−(∂IaJ)ξ̇J + (∂JaI )ξ̇

J − ∂I H̄] =

∫
dt δξI [−bIJ ξ̇J − ∂I H̄]

and the equation of motion

bIJ ξ̇
J = −∂H̄

∂ξI
, bIJ = ∂IaJ − ∂JaI = “magnetic field” in phase-space

- The above EOM conserve energy ∂tH̄(ξI (t)) = 0.

• Choose an equivalent (redundant) trial wave function e iθ(ξI )|ψξI 〉:
L(ξ̇I , ξI ) = −aI ξ̇I − θ̇(ξI )− H̄(ξI ) = [−aI − ∂I θ]ξ̇I − H̄(ξI )

which gives rise to the same EOM. Phase space Lagrangian is a way to
lable/describe a physical system. Two phase space Lagrangians,
differing by a total time derivative of any function, label/describe
the same system → Gauge redundancy
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Gauge “symmetry” and symmetry

Gauge redundancy (also called gauge symmetry by mistake)
and symmetry (real physical symmetry) in quantum system:

- If we give a single quantum state two names |a〉 and |b〉, then |a〉 and
|b〉 will have the same properties (since |a〉 = |b〉). We say there is a
gauge redundancy or gauge symmetry, and the theory of |a〉 and |b〉 is a
gauge theory.

- If two orthogonal states |a〉 and |b〉 same properties, then we say there
is a symmetry between |a〉 and |b〉 (since 〈a|b〉 = 0).

Gauge “symmetry” is indeed a symmetry in classical system
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Differential form

• The phase space “vector potential” aI gives rise to a differential 1-form,
a = aI dξ

I .
The phase space “magnetic field” bIJ gives rise to a differential 2-form,
b = bIJ dξ

I ∧ dξJ/2! (assuming the sum of indices), where ∧ is the
wedge product dξI ∧ dξJ = −dξJ ∧ dξI .

• The physical meaning of the 2-form: for any 2-dimensional submanifold
M2 ⊂ Mphase space, the pair b, M2 give rise to a number:

〈b,M2〉 =

∫
M2

b =

∫
M2

bIJ dξ
I dξJ/2! =

∫
M2

bxy dx dy = number = flux.

which is called evaluate 2-form b on 2-manifiold M2.
So the 2-form b describes a “magnetic field” in the phase space
Mphase space.

• n-form: ωn = ωI1···In dξ
I1 ∧ · · · ∧ dξIn/n!

Evaluate n-form ωn on n-manifiold Mn: 〈ωn,M
n〉 =

∫
Mn ωn = number

• For a m-form and a n-form, we have ωm ∧ ωn = (−)m+nωn ∧ ωm.
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Generalized Stokes theorem in differential form

• Exterior derivative d maps a n-form to a n + 1-form: ωn → νn+1

νn+1 ≡ dωn = (∂I0ωI1···In)dξI0 ∧ · · · ∧ dξIn/(n + 1)! (with sum of indices)

νn+1 = νI0···In dξ
I0 ∧ · · · ∧ dξIn/(n + 1)!,

νI0···In =
(
∂I0ωI1···In − ∂I1ωI0···In ± · · ·

)
anti-symmetrize

/(n + 1)!

- bIJ = ∂IaJ − ∂JaI → b = (∂IaJ − ∂JaI )dξI dξJ/2! = ∂IaJ dξ
I dξJ = da.

- dωnνm = (dωn)νm + (−)nωn(dνm).

• Generalized Stokes theorem
∫
Mn+1

dωn =

∫
∂Mn+1

ωn

• Definition: ωn is closed if dωn = 0.
Definition: ωn is exact there is a n − 1-form µn−1 such that
ωn = dνn−1. Since dd = 0, an exact form is also a closed form.

- Two vector potential 1-forms differing by an exact 1-from are equivalent

• ωn is exact iff
∫
Mn ωn = 0 for any closed manifold Mn. ωn is closed iff∫

Mn ωn = 0 for any contractible closed manifold Mn.

• A magnetic field is described by a closed (or exact?) 2-form b.
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Generalized Liouville’s theorm

• Generalized Liouville’s theorem
Consider a time evolution from t → t̃, ξI → ξ̃I , determined by the
equation of motion

bIJ ξ̇
J = −∂H̄

∂ξI

Then Pf(bIJ(ξI ))dnξI = Pf(bIJ(ξ̃I ))dnξ̃I (bxpdx dp = bx̃ p̃dx̃ dp̃)

In other words, the sympletic volume Pf(bIJ(ξI ))dnξI is invariant
under time evolution.

- The phase space is a sympletic manifold characterized by
anti-symmetric tensor bIJ : area element dS2 = bIJ dξ

I ∧ dξJ/2!.

- It is different from the usual manifold characterized by symmetric
matrics tensor gIJ : distance2 element ds2 = gIJ dξ

I · dξJ .

• A classical system is described by pair
(
Mphase space,H(ξI )

)
,

a sympletic manifold and a function (Hamiltonian) on it.
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Change of variables

If we change the variables to ηI = ηI (ξI ), we get

L(η̇I , ηI ) =

∫
dt [−aηI η̇

I − H̄(ηI )], bηIJ η̇
J = − ∂H̄

∂ηI
, bηIJ = ∂ηI a

η
j − ∂ηJa

η
I

where

aηI = − i〈φ|∂ηI |φ〉 = − i〈φ|∂ξJ |φ〉
∂ξJ

∂ηI
= aJ

∂ξJ

∂ηI
. aηI dη

I = aI dξ
I .

bηIJ = ∂ηI (aK
∂ξK

∂ηJ︸ ︷︷ ︸
aηJ

)− ∂ηJ (aK
∂ξK

∂ηI︸ ︷︷ ︸
aηI

) = (∂ηI aK )
∂ξK

∂ηJ
− (∂ηJaK )

∂ξK

∂ηI

= (∂ξLaK )
∂ξL

∂ηI
∂ξK

∂ηJ
− (∂ξLaK )

∂ξL

∂ηJ
∂ξK

∂ηI︸ ︷︷ ︸
exchange K↔L

= (∂ξLaK − ∂ξK aL)
∂ξL

∂ηI
∂ξK

∂ηJ

= bLK
∂ξL

∂ηI
∂ξK

∂ηJ
. bηIJ dη

I dηJ = bIJ dξ
I dξJ .
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Derive generalized Liouville’s theorm

• For the time evolution from t → t̃, ξI → ξ̃I , we have

dnξ̃I = Det(Ĵ)dnξI , JIJ =
∂ξ̃I

∂ξJ

For t̃ = t + δt, ξ̃I = ξI − bIK ∂H̄
∂ξK

δt, where bIJb
JK = δIK .

JIJ = δIJ − ∂J(bIK ) ∂H̄
∂ξK

δt − bIK ∂2H̄
∂ξK∂ξJ

δt
trace−→ Det(Ĵ) = 1− ∂I (bIK ) ∂H̄

∂ξK
δt

• Assume for ηI variable, bηIJ is indenpendent of ηI . Then, ∂I (b
IK ) = 0

and Det(Ĵ) = 1. We have the Liouville’s theorm

dnηI = dnη̃I or
√

Det(bηIJ(ηI ))dnηI =
√

Det(bηIJ(η̃I ))dnη̃I (bη ind. of ηI )

• Change variables → Generalized Liouville’s theorem√
Det(bηIJ)Det(

∂ηI

∂ξJ
)Det(

∂ξI

∂ηJ
)dnηI =

√
Det(b̃ηIJ)Det(

∂η̃I

∂ξ̃J
)Det(

∂ξ̃I

∂η̃J
)dnη̃I√

Det(bIJ(ξI ))dnξI =

√
Det(bIJ(ξ̃I ))dnξ̃I

→ Pf(bIJ(ξI ))dnξI = Pf(bIJ(ξ̃I ))dnξ̃I
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Phase-space volume occupied by a quantum state

• For a classical theory every phase-space point represents a distinct
state. There is an ∞ number of states for a finite phase space.

ξ2

ξ1

t

t=0

• For a quantum system, |φξI (t)〉 and |φξ̃I (t)〉 are

orthogonal (ie are different quantum states) only
when ξI and ξ̃I are different enough →
uncertainty of ξI . There is a finite number of
states for a finite phase space.

• How many quantum states does a phase space region Dn contain?
From the generalized Liouville’s theorm and conservation of degrees of
freedom, we guess

N =

∫
Dn

dnξI

(2π)n/2
Pf(bIJ)

We will confirm it later.
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Density of quantum states and the sympletic structure

• The number of quantum state in a region Dn in n-dimensional phase
space can also be written in term of diferetial 2-form, b = bIJ dξ

I dξJ/2!,
that defines the sympletic structure of the phase space:

N =

∫
Dn

dnξI

(2π)n/2
Pf(bIJ) =

∫
Dn

bn/2

(2π)n/2

Example: For 2-dimensional phase space∫
D2

b

(2π)
=

∫
D2

bIJ dξ
I dξJ/2!

2π
=

∫
D2

b12dξ
1dξ2

2π

The number of quantum state in the region D2 is equal to the number
of flux quantum (also called Chern number) through D2 for the phase
space “magnetic” field bIJ .

• Quantization of “magnetic” field: If Dn is closed (ie is the whole
phase space) ∫

Dn

bn/2

(2π)n/2
∈ Z (higher Chern number)
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An example: an anharmonic oscillator

• What is low energy spectrum of

H =
k2

2
+

1

2
vx2 +

1

4
x4, k = − i∂x

• Trial ground state:

|ψ0〉 =
(α
π

)1/4
e−

1
2
αx2

The value of α is determined by minimizing the average energy

〈ψα0 |Ĥ|ψα0 〉 =
3 + 4α2 + 4αv

16α2
.

We find

α =
2× 6

2
3 v + 6

1
3

(
27 +

√
729− 48 v3

) 2
3

6
(

27 +
√

729− 48 v3
) 1

3

=
√
v +

3

4v
+ O(1/v2)

〈Ĥ〉 =
1

2

√
v +

3

16v
+ O(1/v2)
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An anharmonic oscillator

• Dynamical trial ground state

|ψξI 〉 =
(α
π

)1/4
e iξ

2x e−
1
2
α(x−ξ1)2

a state with position x = ξ1 and momentum k = ξ2 fluctuations.

L(ξ̇I , ξI ) = 〈ψξI (t)| i
d

dt
− H|ψξI (t)〉 = −aI (ξI )ξ̇I − H̄(ξI )

where aI = − i〈ψξI | ∂∂ξI |ψξI 〉, H̄(ξI ) = 〈ψξI |Ĥ|ψξI 〉
• The resulting equation of motion is given by

bIJ ξ̇
J = −∂H̄

∂ξI
, bIJ = ∂IaJ − ∂JaI

• Calculate aI = i〈ψξI | ∂∂ξI |ψξI 〉:

a1 = − i
∫

dx
(α
π

)1/2
e− iξ2x e−

1
2
α(x−ξ1)2

α(x − ξ1)e iξ
2x e−

1
2
α(x−ξ1)2

= 0

a2 = − i
∫

dx
(α
π

)1/2
e− iξ2x e−

1
2
α(x−ξ1)2

ix e iξ
2x e−

1
2
α(x−ξ1)2

= ξ1
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An anharmonic oscillator

We find bIJ = εij and

H̄(ξI ) =
1

2
(ξ2)2 +

1

2
v
(

1 +
3

2αv

)
(ξ1)2 +

1

4
(ξ1)4 +

3 + 4α3 + 4α v

16α2

• The corresponding equation of motion
has a form

ξ̇1 = ξ2, ξ̇2 = −v
(

1 +
3

2αv

)
ξ1 − (ξ1)3

• The number of quantum states in a phase space region D2

N =

∫
D2

dξ1dξ2

2π
Pf(bIJ) =

∫
D2

dξ1dξ2

2π
=

∫
D2

dx dk

2π

which is what we expected.
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An anharmonic oscillator

• The small motions around the ground state ξI0 → A collection of
Harmonic oscillators → low energy spectrum.

- This is why for many interacting systems, the low energy excitations are
non-interacting (like phonons in interacting crystals).

- This is why semi-classical approach works well for many systems.

• For small motion around the ground state ξ1 = 0, ξ2 = 0:

E

v
−10

−5

 0

 5

 10

−6 −4 −2  0  2  4

ξ̇1 = ξ2, ξ̇2 = −v
(

1 +
3

2αv

)
ξ1

A harmonic oscillator with mass m = 1,
spring constant K = 3α+2α2v

2α2 ,

and frequency ω =
√

v
(
1 + 3

2αv

)
.

• Re-quantizing the harmonic oscillator →
low energy spectrum for the Hamiltonian

H =
k2

2
+

1

2
vx2 +

1

4
x4, k = − i∂x
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Geometric phase and related mathematics

δφ = aI dξ
I = − i〈ψξI | ∂∂ξI |ψξI 〉dξ

I is the so call geometric phase.

• What is the geometric phase?
Consider |ψξI 〉 and |ψξI +δξI 〉, what is the phase difference between |ψξI 〉
and |ψξI +δξI 〉?

• But |ψξI 〉 and |ψξI +δξI 〉 are not parallel: |ψξI +δξI 〉 6= e iδφ|ψξI 〉.
They differnce cannot be characterized by a phase.

• But for small δξI , the leading difference is just a phase factor

〈ψξI |ψξI +δξI 〉 ≈ 1 + iO(δξI ), 〈ψξI +δξI |ψξI 〉 ≈ 1− iO(δξI )

since, to the first order in δ

0 = δ〈ψξI |ψξI 〉 = (〈ψξI +δξI | − 〈ψξI |)|ψξI 〉+ 〈ψξI |(|ψξI +δξI 〉 − |ψξI 〉)
= [〈ψξI +δξI |ψξI 〉 − 1] + [〈ψξI |ψξI +δξI 〉 − 1]→ [〈ψξI +δξI |ψξI 〉 − 1] = imag

Therefore 〈ψξI |ψξI +δξI 〉 ≈ e iO(δξ), or

|ψξI +δξI 〉 = e iδφ|ψξI 〉+ #(δξI )2, geometric phase = δφ = aI (ξ
I )δξI
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Is the geometric phase meaningless?

• Geometric phase e iδφ = 〈ψξI |ψξI +δξI 〉 = e iaI δξ
I
. But we can always

change the phase of |ψξI +δξI 〉 → |ψξI +δξI 〉1 = e− iaI δξ
I |ψξI +δξI 〉, to make

the geometric phase to be zero: 〈ψξI |ψξI +δξI 〉′ = e− iaI δξ
I
e iaI δξ

I
= 1.

.

- The move |ψξI 〉 → |ψξI +δξI 〉 is a generic transportation.
- The move |ψξI 〉 → |ψξI +δξI 〉′ is a parallel transportation.

It appears that we can always make geometric phase = 0,
and the geometric phase is meaningless. This is wrong!

• As we change the phase of |ψξI 〉: |ψξI 〉 → e i f (ξI )|ψξI 〉, the

geometric phase (ie the connection) also changes: aI → aI + ∂ξI f

- We can always choose a f to make aI = 0 along a particular path ξI (t),
to make |ψξI (t)〉 to have the same phase for all t → parallel
transportation along the path.

- But, we cannot find a f to make aI = 0 for all ξI , ie to make all |ψξI 〉’s
to have the same phase. Some part of geometric phase (or vector
potential) aI is physical, and other part is not. The meaningful part is
the “magnetic field”: bIJ = ∂ξI aJ − ∂ξJaI , which is quantized.
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What is the geometric phase for spin-1/2?

Consider a spin-1/2 state in n-direction |n〉 =

(
e− iϕ/2 cos(θ/2)
e iϕ/2 sin(θ/2)

)
• Let us compare the phase of |n(θ, ϕ)〉 and |n(θ + δθ, ϕ+ δϕ)〉:

〈n(θ, ϕ)|n(θ + δθ, ϕ+ δϕ)〉

= 1 + 〈n(θ, ϕ)| ∂
∂θ
|n(θ, ϕ)〉︸ ︷︷ ︸

iaθ

δθ + 〈n(θ, ϕ)| ∂
∂ϕ
|n(θ, ϕ)〉︸ ︷︷ ︸

iaϕ

δϕ

= 1 + iaθδθ + iaϕδϕ ≈ e i (aθδθ+aϕδϕ),

where iaθ = 〈n(θ, ϕ)| ∂∂θ |n(θ, ϕ)〉 and iaϕ = 〈n(θ, ϕ)| ∂∂ϕ |n(θ, ϕ)〉

- e i (aθδθ+aϕδϕ) = e iaI δξ
I

is the geometric phase as we change |n(θ, ϕ)〉
to |n(θ + δθ, ϕ+ δϕ)〉 = |n + ∆n〉.

- a = (aθ, aϕ) is the connection (vector potential) of the geometric
phase. (Like the vector potential in electromagnetism.)
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The notion of the“flux” of the geometric phase

• Consider a loop |n(t)〉, t ∈ [0, 1], n(0) = n(1). The total geometric
phase of the loop

e i
∑
δϕ(t) = 〈n(0)|n(t1)〉〈n(t1)|n(t2)〉〈n(t2)|n(t3)〉 · · · 〈n(tN−1)|n(1)〉

= e i
∑

a(t)·δn(t) = e i
∫
a(t)·dn(t) = e i

∫
a(t)· dn(t)

dt
dt

• If we change the phase of |n〉: |n〉 → e i f (n)|n〉, the total geometric
phase for a loop – the geometric flux – does not change.

• Computing the geometric flux:∮
C aθdθ + aϕdϕ =

∫
D(∂θaϕ − ∂ϕaθ)dθdϕ or

∮
C a =

∫
D da =

∫
D b.

where C = ∂D, ie the loop C is the boundary of the disk D.

- b = ∂θaϕ − ∂ϕaθ is called the geometric curvature (magnetic field):
b∆θ∆ϕ = the total geometric phase for a small loop
(θ, ϕ)→ (θ + ∆θ, ϕ)→ (θ + ∆θ, ϕ + ∆ϕ)→ (θ, ϕ+ ∆ϕ)→ (θ, ϕ).

• The total geometric phase for a loop
∮
C a · dn and the geometric

curvature b are meaningful, since they are invariant under the gauge
transformation |n〉 → e i f (n)|n〉 and a → a + ∂f .
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The geometric phase (the flux) for spin-1/2

From iaθ = 〈n(θ, ϕ)| ∂∂θ |n(θ, ϕ)〉 and iaϕ = 〈n(θ, ϕ)| ∂∂ϕ |n(θ, ϕ)〉 and

|n〉 =
(

cos(θ/2)
e iϕ sin(θ/2)

)
→ aθ = 0, aϕ = sin(θ/2) sin(θ/2) = 1−cos(θ)

2

“Flux” of geometric phase: total geometric phase around a loop
For a loop (θ, ϕ)→ (θ + ∆θ, ϕ)→ (θ + ∆θ, ϕ+ ∆ϕ)→ (θθ, ϕ+ ∆ϕ)→ (θ, ϕ):∮

[∆θ,∆ϕ]
aθdθ + aϕdϕ = 0 +

1− cos(θ + ∆θ)

2
∆ϕ+ 0− 1− cos(θ)

2
∆ϕ

=
1

2
sin(θ)∆θ∆ϕ = bθϕdθdϕ =

1

2
Ω([∆θ,∆ϕ]) = half solid angle.

..

• The total “flux” of the geometric phase on
any campact space S2 must be quantized∫

C2

1

2!
bIJ dξ

I dξJ = 2π × integer

= 2π × Chern number. Spin-1/2 has a Chern number = 1

• On shpere the number states = Chern number +1.
On torus the number states = Chern number (Landau levels counting)
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The geometric phase of spin-1

• The geometric connection for spin-1/2 |nSn= 1
2
〉 is

(a
S= 1

2
θ , a

S= 1
2

ϕ ) = (0, 1−cos(θ)
2 ).

• The geometric connection for spin-1 |nSn=1〉 is

(aS=1
θ , aS=1

ϕ ) = 2(a
S= 1

2
θ , a

S= 1
2

ϕ ) = (0, 1− cos(θ)).
- This is because we may view |nSn=1〉 = |nSn= 1

2
〉 ⊗ |nSn= 1

2
〉

e i∆φ
S=1

= 〈nSn=1|n′Sn=1〉 = 〈nSn= 1
2
|n′

Sn= 1
2
〉 × 〈nSn= 1

2
|n′

Sn= 1
2
〉 = e i2∆φS= 1

2

How to visualize the geometric phase of spin-1

.

Different arrows in the plan at a point n
on the sphere correspond to the different
phase choices e iφ|nSn=1〉. We try to
choose φ for the spin-1 states along the
loop, such that |nSn=1〉 all have the same
phase. But after going around the loop,
the phase miss match is the total geometric phase along the loop.
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Classical motion of spin-1/2: two views

The phase-space action

S =

∫
dt[−1

2
(1− cos θ)ϕ̇− V (θ, ϕ)] =

∫
dt[

1

2
cos θϕ̇− V (θ, ϕ)] + ...

• Near the equator, cos θ = π
2 − θ = Lz :

S =
∫
dt[Lz ϕ̇− V (π2 − Lz , ϕ)]

- The uniform phase-space magnetic field → (−θ, ϕ) = (Lz , ϕ) = (p, x)
the usual canonical coordinate-momentum pair.
• A particle moving on S2 with a uniform magnetic field bθϕ of total flux

2π. It is the motion in the lowest Landau level assuming ~ωc is large.
Modified Newton law F = v × B (not F = ma).

- A spin-S → a sphere with a uniform magnetic field of 2πNChern flux,
where NChern = 2S → lowest Landau level has 2S + 1 = NChern + 1-fold
degeneracy on a shere.

Lowest Landau level has NChern-fold degeneracy on a torus.
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Global view of geometric phase: S1 fiber bundle

Why the “magnetic field” b is quantuized (ie cannot be deformed to 0)?
The physical states are characterized by a point ξi on the phase-space,
only after we pick the phase of |ψ(ξi )〉. Different choices of

fiber

base space

cross section

.

phases are equivalent → the notion of S1 fiber bundle:
• The phase space ξi is the base space. The equivalent

normalized quantum states e iφ|ψ(ξi )〉 form the fiber S1.
- A S1 fiber bundle is (locally) S1 × phase-space.
- the ξi -labeled quantum states |ψ(ξi )〉 is a cross section of the S1

bundle. Pick a phase = pick a cross section.
• Trivial S1 bundle = S1 × base-space (globally).

Non-trivial S1 fiber bundle has different topology from S1 × base-space.
No smooth cross section. Trivial and non-trivial bundles describes
different classes of classical systems that cannot deform into each other.

.

• Vector bundle: fiber = vector space.
An example: fiber = R → Möbius strip:
a non-trivial R bundle on base-space S1

No non-zero smooth cross section.
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Spin-1/2 example: geometric phase and fiber bundle

.• All possible spin-1/2 states (or qubit states)

(a + ib)| ↑〉+ (c + id)| ↓〉 =

(
a + ib
c + id

)
= z , a2 + b2 + c2 + d2 = 1

form a 3-dimensional sphere S3 (a sphere in 4-dimensional space).

• But since |ψ〉 ∼ e iφ|ψ〉, all possible spin-1/2 states
(or qubit states) actually form a 2-dimensional sphere
S2. z†σz = n: a map S3 → S2 → |n〉: spin-1/2
in n direction.

• S3 locally looks like S1 × S2: S3 is a non-trivial
fiber bundle with fiber S1 and base space S2:

pt → S1 inj−→ S3 surj−−→ S2 → pt

• If we pick a phase φ for each |n〉, we may get one cross section of the

fiber bundle |n〉 =

(
e− iϕ/2 cos(θ/2)
e iϕ/2 sin(θ/2)

)
or another |n〉 =

(
cos(θ/2)

e iϕ sin(θ/2)

)
- No smooth cross section→ non-trivial fiber bundle 6= fiber× base space.
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The patch-picture of fiber bundle

The “megnetic field” b in the phase space of a spin is a closed 2-form,
but not a exact 2-form, depite b = da, since the connection 1-form a
has singularities on the sphere S2 (the phase space). There is no
continous 1-form a, such that b = da, since this will imply that∫

S2

b =

∫
S2

da =

∫
∂S2

a = 0

- b is exact iff the S1-fiber boundle is trivial (ie Chern number = 0)
- A fiber boundle is trivial iff it has no continuously

defined connection a (ie the vector potential aI ).

• Any S1-fiber boundle can be described by collection of
continous connections aA on patchs DA that cover the
whole base space. On the overlap of two patchs, DA and DB , the two
gauge connections, aA and aB are gauge equivalent aB = aA + dfBA.

- Locally on each patch, the S1-fiber boundle looks like DA × S1, with
cross section |ψA(ξI )〉, ξI ∈ DA. On the overlap of two patchs, the two
cross sections, |ψA(ξI )〉 and |ψB(ξI )〉, are related by U(1)
transformation |ψB(ξI )〉 = e i fBA |ψA(ξI )〉 → U(1)-bundle.
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The obstruction to have globally defined connection

Can we deform the gauge transformations e i fBA(ξI ) on the overlaps to 1,
and turn a patchwise defined connection to a globally defined one?

.

• Consider a U(1)-bundle on S2. We divide S2 into
two patchs with trivial topology (ie two disks).
The overlap is the equator S1. The transformation
U(ϕ) = e i fBA(ϕ) on the S1 connects the connections
on the two patchs aS = aN − iU−1dU︸ ︷︷ ︸

correct form

= aN + dfSN︸ ︷︷ ︸
incorrect form

• The non-trivial winding number of the transformation U : S1 → U(1),
due to π1(U(1)) = Z, is the obstruction to have globally defined
connection → non-trivial U(1)-bundle on S2 with

Chern number = winding number.

- On S3 there is no non-trivial U(1)-bundle, but on S2 × S1 or
S1 × S1 × S2 there is non-trivial U(1)-bundle.

- On S4 there is non-trivial SU(2)-bundle, since π3(SU(2) = S3) = Z.
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The motion of a neutron in a non-uniform magnetic field

Geometric phase is a quantum effect that can affect equation of motion

Consider a spin-1/2 neutron moving in a strong non-uniform spin
magnetic field B(x). The neutron magnetic moment is
µn = −1.91304272(45)µN , where µN = e~

2mp
in SI unit (or µN = e~

2mpc

in CGS unit). The interaction between the magnetic moment and the
magnetic field, −µnB · σ, will force the neutron spin to be anti-parallel
to the magnetic field B at low energies.

• What is the classical theroy (such as equation of motion and
Lagrangian) that describes the motion of the above low energy neutron?

• What is the quantum Hamiltonian Ĥ that describes the quantum
motion of the above low energy neutron?

Our first guess:

• Classical: mẍ = −∂V (x) and L = p · ẋ − 1
2mp

2 − ∂V (x),
where V (x) = −|µnB(x)| is the effective potential energy.
Quantum: Ĥ = − 1

2mn
∂2 + V (x) Is this guess correct?
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Schrödinger equation and coordinate basis

• Schrödinger equation (basis independent): i∂t |ψ〉 = Ĥ(p̂, x̂)|ψ〉
• In a coordinate basis |ψ〉 =

∫
dx ψ(x)|x〉, it becomes

i∂tψ(x , t) = H(− i∂, x)ψ(x , t) =
(
− 1

2mn
∂2 + V (x)

)
ψ(x , t)

• In the above, we have assumed that there is no geometric phase for
|x〉,ie the phase change from |x〉 to |x + δx〉 is 0.
• But for our neutron problem, the phase change from |x〉 to |x + δx〉 is

not 0. How to to compute the phase change?
- For our neutron problem, |x〉 is actually |x〉 ⊗ |n(x)〉.
- The phase change from |x〉 ⊗ |n(x)〉 to |x + δx〉 ⊗ |n(x + δx)〉 is given

by a · δx :

e ia(x)·δx = 〈n(x)|n(x + δx)〉 → ia(x) = 〈n(x)|∂|n(x)〉

• If there is a geometric phase for |x〉, ie a phase change e ia(x)·δx from
|x〉 to |x + δx〉 , what will the Schrödinger equation look like?

- The result Ĥ = − 1
2mn
∂2 − |µnB(x)| is valid only when the direction of

B(x) does not change.
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How geometric phase affects Schrödinger equation?

• If we choose a new basis |x〉tw = e iφ(x)|x〉. |x〉tw will have an non-zero
geometric phase: The phase change from |x〉tw to |x + δx〉tw is
e i [φ(x+δx)−φ(x)] = e ia(x)·δx where a = ∂φ(x).

• What is the Schrödinger equation in the new basis
|ψ〉 =

∫
dx ψ(x)|x〉 =

∫
dx ψtw(x)|x〉tw or e iφ(x)ψtw = ψ(x)

i∂tψ(x , t) = Ĥψ(x , t) = Ĥ e iφ(x)ψtw

e− iφ(x) i∂tψ(x , t) = e− iφ(x)Ĥ e iφ(x)ψtw

i∂tψtw(x , t) = Ĥtwψtw, Ĥtw = e− iφ(x)Ĥ e iφ(x).

• Ĥtw(∂, x) is obtained from Ĥ(∂, x) by replacing ∂ in Ĥ by
e− iφ(x)∂ e iφ(x) = ∂ + i∂φ(x) = ∂ + ia(x).

Ĥtw = Ĥ(∂ + ia, x) = − 1

2mn
(∂ + ia)2 + V .

The above is derived for a = ∂φ. But we assume it remains valid for
general a → How geometric phase affects Schrödinger equation
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Effective Hamiltonian for neutron in spin magnetic field

Ĥeff = − 1

2mn
(∂ + ia)2 + V

where

ia(x) = 〈n(x)|∂|n(x)〉, n = − B(x)

|B(x)|
, V (x) = −|µnB(x)|.

a(x) comes from geometric phase and V (x) is potential energy.

• V (x) generates a potential force F = −∂V on the particle.

• We will see that a(x) generates a Lorentz force F ∝ v × b on the
particle, as if there is a “orbital magnetic field” b = ∂ × a.

The geometric phase gives rise to an effective orbital magnetic
field.
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Obtain classical equation of motion

• Consider wavepacket with
space-time dependent spin

|ψx0,k0
〉 =

(α
π

)1/4
e ik0x e−

1
2
α(x−x0)2 |n(x0)〉

Phase space Lagrangian (Ĥ = − 1
2m∂

2 − µnB · σ)

L = 〈ψx0(t),k0(t)| i
d

dt
|ψx0(t),k0(t)〉 − 〈ψx0(t),k0(t)|Ĥ|ψx0(t),k0(t)〉

= − a′︸︷︷︸
=0

·ẋ0 − a′′︸︷︷︸
x0

·k̇0 − a(x0)︸ ︷︷ ︸
− i 〈n|∂x0 |n〉

·ẋ0 −
k2

0

2mn
− |µnB(x0)|

= −x0 · k̇0 − a(x0) · ẋ0 −
k2

0

2mn
+ |µnB(x0)|

≈ p0 · ẋ0 − a(x0) · ẋ0 −
p2

0

2mn
− V (x0). (~ = 1 unit)
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Obtain classical equation of motion

For S =
∫
dt [p · ẋ − a(x) · ẋ − p2

2mn
− V (x)]

From
∫
dt δ(ai (x)ẋ i ) =

∫
dt [δx j(∂jai )ẋ

i − ȧi (x)δx i ]

δS =

∫
dt δpi [ẋ

i − pi
mn

] + δx i [−ṗi − (∂iaj)ẋ
j + (∂jai )ẋ

j − ∂iV ]

we obtain the phase space equation of motion

ẋ i =
pi
mn

, ṗi = −(∂iaj − ∂jai )ẋ j︸ ︷︷ ︸
Lorentz force

−∂iV = −bij ẋ j − ∂iV

Spin twist gives rise to simulated vector potential
a(x) = − i〈n(x)|∂|n(x)〉 → simulated magnetic field.
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Geometric phase = orbital magnetic field

- Equation of motion for x3 = z

mnz̈ = −∂zV − ẋ [∂zax − ∂xaz ]− ẏ [∂zay − ∂yaz ]

- Compare with the equation of motion in a magnetic field B

mnz̈ = −∂zV +
e

c
(ẋBy − ẏBx)

= −∂zV + ẋ(∂z
e

c
Ax − ∂x

e

c
Az)− ẏ(∂y

e

c
Az − ∂z

e

c
Ay ).

• We find that a = − e
cA (or a = − e

~cA in ~ 6= 1 unit, [a] = Length−1).

• The geometric meaning of magnetic field

# of flux quanta =

∫
S
dS · B

/hc

e
=

∮
∂S

dx · e

hc
A = − 1

2π

∮
∂S

dx · a

= geometric phase around a loop/2π
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Simulate orbital magnetic field by twisted spin

When an electron move in a background twisted spins, the electron spin
may following the direction of the background twisted spins →
geometric phase = simulated magnetic field.

The geometric phase around a loop/2π = The number of flux
quanta of the simulated magnetic field through the loop.

• Note that hc/e = 4.135667516× 10−15T m2.

- If there is one flux quantum per (10−8m)2, then
B = 4.135667516× 10−15/(10−8)2 = 41T
(About the highest static magnetic field produced)

- For electron hoping in a non-coplannar magnet, the geometric phase
from the spin-twist is of order 1 per unit cell:
There is one flux quantum per (10−9m)2, or the simulated magnetic
field by the spin-twist geometric phase is
Bspin = 4.135667516× 10−15/(10−9)2 = 4100T
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Geometric phases in energy bands of a crystal

.

• Hopping Hamiltonian Si

Hmα;nβ =
∑
∆n

−t∆n
αβ δm,n+∆n,

n lable unit cell, α, β label orbitals

• Plane wave state (xn = n1a1 + n2a2 + n3a3)

ψk(n, β) = ψβ(k)e ik·xn ,
∑
n,β

Hmα;nβ ψk(n, β) = εkψk(m, α).

• The energy bands εk are eigenvalues of Mαβ(k) Si bands∑
β

Mαβ(k)ψβ(k) = εkψα(k),

Mαβ(k) = −
∑
∆n

t∆n
αβ e− ix∆n ·k

• Number of bands =
number of orbitals
in a unit cell. .
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Dynamics of an electron in semiconductor

The standard theory

• Quantum dynamics: H(p̂) = ε(p̂), p̂ = − i∂ →
A plane wave e ik·xψα(k) = e ik·x |ψ(k)〉
evolves as e ik·x e

− i
ε(k)t
| ψ(k)〉

.

With potential term, the Hamiltonian is changed to
H(p̂, x̂) = ε(p̂) + V (x̂), where [p̂i , x̂ j ] = − iδij , or
H(p̂, x̂) = ε(− i∂) + V (x̂)

• Classical dynamics: d
dt 〈Ô〉 = i〈[H, Ô]〉 →

ṗ = −∂H(p, x)

∂x
, ẋ =

∂H(p, x)

∂p
.

• The standard theory is wrong.
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Obtain classical EOM of an electron in a band

• Consider wavepacket with
space-time dependent spin

|ψx0,k0
〉 =

(α
π

)1/4
e ik0x e−

1
2
α(x−x0)2 |ψ(k0)〉

Phase space Lagrangian (~ 6= 1 unit)

L = 〈ψx0(t),k0(t)| i~
d

dt
− H|ψx0(t),k0(t)〉

= −~ a′︸︷︷︸
=0

·ẋ0 − ~ a′′︸︷︷︸
x0

·k̇0 − ~ ã(k0)︸ ︷︷ ︸
− i 〈ψ|∂k0

|ψ〉

·k̇0 −
~2k2

0

2mn
− |µnB(x0)|

= −~x0 · k̇0 − ~ã(k0) · k̇0 −
~2k2

0

2mn
+ |µnB(x0)|

≈ p0 · ẋ0 − ã(p0/~) · ṗ0 −
p2

0

2mn
− V (x0)
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Obtain classical EOM of an electron in a band

• The k-space connection (vector potential) in Brillouin zone.

i ã(k) = 〈ψ(k)|∂k |ψ(k)〉

• For S =
∫
dt [p · ẋ − ã(p/~) · ṗ − p2

2mn
− V (x)]

From
∫
dt δ(ãi (p/~)ṗi ) =

∫
dt [δpj(∂pj ãi )ṗ

i − ˙̃ai (p/~)δpi ]

δS =
∫
dt δpi [ẋ

i − pi
mn
− ~−1(∂ki ãj)ṗ

j + ~−1(∂kj ãi )ṗ
j ] + δx i [−ṗi − ∂iV ]

we obtain the phase space equation of motion

ẋ i =
pi
mn

+ ~−1(∂ki ãj − ∂kj ãi )ṗ
j︸ ︷︷ ︸

Velocity correction

=
pi
mn

+ ~−1b̃IJ ṗ
j , ṗi = −∂iV

Qian Niu

where b̃IJ = ∂ki ãj − ∂kj ãi is the k-space
“magnetic” field (geometric curvature).

The k-space connection (ie the k-space magnetic
field) also modifies the equation of motion

Xiao-Gang Wen (MIT) Modern quantum many-body physics – Semi-classical approach 41 / 66



The correct classical EOM of an electron in a band

L = p · ẋ +
e

c
A(x) · ẋ − ã(p/~) · ṗ − p2

2mn
− V (x)

= ~[k · ẋ − a(x) · ẋ − ã(k) · k̇]− p2

2mn
− V (x)

The real equation of motion in semiconductor

ṗi = −∂V
∂x i

+
e

c
Bij ẋ

j = Fi , ẋi =
∂ε

∂pi
+ ~−1b̃ij(k)ṗj .

Fi include both potential force and Lorentz force.
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Compare with Newton’s law

From the EOM

k̇i = ~−1Fi , ẋi = ~−1 ∂ε

∂ki
+ b̃ij(k)k̇j = ~−1 ∂ε

∂ki
+ ~−1b̃ij(k)Fj

and assume H = ~2k2

2m + V (x), we obtain

ẍ i = ~−2(∂ki∂kjH)Fj + ~−1b̃ij Ḟj + ~−2∂kl b̃ijFjFl

or ẍ i = (∂pi∂pjH)Fj + Dij Ḟj + (∂plDij)FjFl

= m−1Fi + Dij Ḟj + (∂plDij)FjFl

where pi = ~ki , Dij = ~−1b̃ij .

We obtain correction to the Newton law Dij Ḟj + (∂plDij)FjFl .

p2

2m →
√
m2c4 + c2p2 is the relativistic correction.
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AC conductivity (from classical Drude model)

First way to include a friction force

Fi → Fi − γẋ i

We obtain

ẍ i = m−1(Fi − γẋ i ) + Dij(Ḟj − γẍ i ) + ∂plDij(Fj − γẋ j)(Fl − γẋ l)

- Assume ∂plDij = 0 and go to ω-space x = xω e
− iωt :

[−ω2(δij + γDij)− iωγm−1δij ]x
j
ω = [m−1δij − iωDij ]Fj

xω = [−ω2(m + γmD)− iωγ]−1(1− iωmD)Fω

vω = [γ − iωm(1 + γD)]−1(1− iωmD)Fω

Effect of Dij disappear for DC conductance, for the first way to model
dissipation Ffriction = −γẋ i .
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AC conductivity (from classical Drude model)

Second way to include a friction force

Fi → Fi − γ∂piH = Fi − γm−1pi
Still assume ∂plDij = 0:

ẋ = ∂pH + D(F − γm−1p) = (1− γD)m−1p + DF

ṗ = F − γm−1p.

- Go to ω-space x = xω e
− iωt : − iωpω = Fω − γm−1pω

vω = − iωxω = (1− γD)m−1pω + DFω

= (1− γD)m−1 1

γm−1 − iω
Fω + DFω

= (1− γD)
1

γ − iωm
Fω + DFω

= (1− iωDm)(γ − iωm)−1Fω

Effect of Dij also disappear for DC conductance, for the second way to
model dissipation Ffriction = −γ∂piH. But the result is different from
the first way Ffriction = −γẋ i .
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Transport: Boltzmann equation

Hydrodynamics in phase space:
In the third way to model dissipation, we find that Dij has effect on DC
conductance!

• Phase space is parametrized by ξI = x1, x2, x3, k1, k2, k3

L(ξ̇I , ξI ) = −~aI ξ̇I − H, ~bIJ ξ̇J = −∂H
∂ξI

, bIJ = ∂IaJ − ∂JaI

where the phase space curvature (I = x1, x2, x3, k1, k2, k3) is given by

(bIJ) =

(
bij δij
−δij b̃ij

)
,

(
0 −δij
δij 0

)(
bij δij
−δij b̃ij

)
=

(
δij b̃ij
bij δij

)

logDet

(
δij b̃ij
bij δij

)
= Tr log

(
δij b̃ij
bij δij

)
= 2bij b̃ji + O(bik b̃kj)

2

Pf

(
bij δij
−δij b̃ij

)
≡ Pf(b, b̃) = 1 + bij b̃ji + O(bik b̃kj)

2.
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Density distribution in phase space

• To set up phase space hydrodynamics, we first introduce phase space
density distribution

dN = g(ξI )Pf[b(ξI )]
dnξI

(2π)n/2

g is the number per orbital.

• Local equilibrium distribution

g0(ξI ) =
1

eβ(ξI )[H(ξI )−µ] + 1
, for fermions

g0(ξI ) =
1

eβ(ξI )[H(ξI )−µ] − 1
, for bosons

g0(ξI ) = e−β(ξI )[H(ξI )−µ], for classical particles
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Hydrodynamic equation of motion

• Consider a small cluster of gas, that evolve from time t to t̃

dN = dÑ or g(ξI )Pf[b(ξI )]
dnξI

(2π)n/2
= g(ξ̃I )Pf[b(ξ̃I )]

dnξ̃I

(2π)n/2

Due to Liouville’s theorm Pf[b(ξI )]dnξI = Pf[b(ξ̃I )]dnξ̃I , we have

g(ξI ) = g(ξ̃I ) or
d

dt
g [ξI (t)] = 0

We obtain hydrodynamic equation
d

dt
g [ξI (t)] = 0 → ∂g

∂t
+ ξ̇I∂Ig =

∂g

∂t
− ~bIJ∂JH∂Ig = 0

• Consistent with the conservation of particle number (J I = g ξ̇I ):

∂g

∂t
+ ∂IJ I +

1

Pf(b̂)

[
∂IPf(b̂)

]
J I =

∂g

∂t
+

1

Pf(b̂)
∂I
[
Pf(b̂)J I

]
= 0

See Appendix at the end of this note for derivation.

- When Pf[b(ξI )] = 1, say when either bij = 0 or b̃ij = 0, the conservation

of particle number reduces to ∂g
∂t + ∂IJ I = 0.
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Go to ξI = x , k phase space

L = ~[k · ẋ − a(x) · ẋ − ã(k) · k̇]− E (k , x), E (k , x) = ε(k) + V (x)

~k̇i = − ∂E
∂x i
− ~bij︸︷︷︸

=− e
c
Bij

ẋ j , ~ẋi =
∂E

∂ki
+ ~b̃ij(k)k̇j .

• (x , k)-density distribution function

g(x , k , t) : dN = g(x , k , t) Pf(b, b̃)
d3x d3k

(2π)3

g is the number per orbital, and Pf(b, b̃) = 1 + bij b̃ji + · · ·.
• Local equilibrium distribution

g0(x , k) =
1

eβ(x)[E(k,x)−µ(x)] + 1
, for fermions

g0(x , k) =
1

eβ(x)[E(k,x)−µ(x)] − 1
, for bosons

g0(x , k) = e−β(x)[E(k,x)−µ(x)], for classical particles
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Adding dissipation – relaxationtime approximation

Impurity scattering → dissipation.
• We model large ∆k redistribution caused by impurities in k-space by

∂g

∂t
+ ξ̇I∂Ig =

∂g

∂t
+ ẋ · ∂g

∂x
+ k̇ · ∂g

∂k
= −1

τ
(g − g0)

- dg
dt = 1

τ (g − g0) corresponds to the change of g caused by scattering
process in k space.

• Local chemical potential µ(x) and local temperature T (x):
- δg = (g − g0)/τ should conserve the x-space particle density

n(x) =
∫

Pf(b, b̃) d3k
(2π)3 g . Thus the local chemical potential µ(x) in g0

is chosen to make g0 to satisfy

δn(x) =

∫
Pf(b, b̃)d3k (g − g0) = 0.

No particle diffusion in x-space.
- Impurity scattering conserve the energy density in x-space
nE (x) =

∫
Pf(b, b̃) d3k

(2π)3 E (x , k)g . The local temperature T (x) satisfies

δnE (x) =

∫
Pf(b, b̃)d3k E (x , k)(g − g0) = 0.
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Linear responce in steady state

• Steady state: ∂g
∂t = 0 or ẋ · ∂g∂x + k̇ · ∂g∂k = − 1

τ (g − g0)

with EOM for particles ~k̇i = − ∂V
∂x i
− ~bij ẋ j , ~ẋi = ∂ε

∂ki
+ ~b̃ij(k)k̇j

and g0(x , k) = 1/(eβ(x)[ε(k)+V (x)−µ(x)] + 1)

• When ∂xV = 0, bij = 0, ∂xµ = 0, ∂xβ(x) = 0,

g0 satisfies the EOM, since k̇ = 0, ∂g0
∂x = ∂g0

∂t = 0

• Linear responce: first order in

k̇ ∼ ∂xV , bij , ∂xg0 ∼ ∂x (V − µ)︸ ︷︷ ︸
−µ̄

, ∂xβ, δg = g − g0.

• Linear response for steady state

δg + τ~−1∂ki ε∂xi δg = −τ [~−1∂ki ε∂xig0 + k̇i∂kig0]

or δg + τv i∂xi δg = −τ [v i∂xig0 + k̇i∂kig0], v i = ~−1∂ki ε.

- Make another assumption
∂xi δg

δg �
1
τv i = 1

l . Since ~k̇i = eEi − ~bijv j :

δg = −τv i∂xig0 +
τ

~
(eEi − ~bijv j)∂kig0, g0 =

1

eβ(x)[ε(k)−µ̄(x)] + 1
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2D conductivity from k-space “magnetic” field b̃ij

Assume real space magnetic field bij = 0 and T (x), µ̄(x) are
independent of x :

δg = τeEi
∂ε

~∂ki
∂g0

∂ε
= τeEiv

i ∂g0

∂ε

The current (Pf(bij , b̃ij) = Pf(0, b̃ij) = 1)

J i =

∫
d3k

(2π)3
eẋ ig =

∫
d3k

(2π)3
(ev i + eb̃ij ~−1eEj)(g0 + τeEiv

i ∂g0

∂ε
)

Note that (try to show this in 1-dimension)∫
d3k

(2π)3
ev ig0 =

∫
d3k

(2π)3
e
∂ε(k)

∂ki
g0(ε) =

∫
d3k

(2π)3
e
∂G0[ε(k)]

∂ki
= 0

where ∂G0(ε)/∂ε = g0(ε). Keeping only linear Ei term

J i =

∫
d3k

(2π)3
eẋ ig =

∫
d3k

(2π)3

[e2

~
b̃ijg0 + τe2v jv i

∂g0

∂ε

]
Ej

• Conductivity:
σij =

∫
d3k

(2π)3

[e2

~
b̃ijg0 + τe2v jv i

∂g0

∂ε

]
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Quantized Hall conductance in 2D

For a filled band, g0 = 1

σHij =

∫
d2k

(2π)2

e2

~
b̃ijg0 = εijnChern

e2

h

where (let b̃ij = εij b̃) Thouless

nChern =

∫
B.Z .

d2k

2π
b̃ =

∫
B.Z .

d2k

2π

(∂ãx
∂ky
− ∂ãy
∂kx

)
= integer,

i ãi = 〈ψ(k)|∂ki |ψ(k)〉.

We have a quantized Hall conductance. nChern is Chern number.

We have a Chern insulator if the total Chern number of the filled
bands is non-zero.

• How to make a Chern insulator?
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Complex hopping to break time-reversal and parity symm.

b b

−t t

it’

• Conductance jy = σxyEx , jx = Ey = 0.

Under time reversal t → −t:
E → E , j → −j , σxy → −σxy
Under parity (x , y)→ (x ,−y):
(Ex ,Ey )→ (Ex ,−Ey ), (jx , jy )→ (jx ,−jy ), σxy → −σxy

b b

t

it’

• Use complex hopping to generate uniform flux
and break time-reversal and parity symmetries.
→ Chern insulator

Staggered flux breaks time-reversal symmetry
but not parity symmetry.
→ not Chern insulator

• Next we compute the hopping matrix in k-space

Mαβ(k) = −
∑
∆n

t∆n
αβ e− ix∆n ·k
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π-flux, Dirac fermion, and its geometric connection ã(k)

π

1

1

1

1 1−1 −1

a2

a1
π

π

−π

−π

K

K’

k = π/2x

k = π/2y

z
y

x

Hopping matrix in k-space (a1 = 2x , a2 = y): plot n(kx , ky )

M(k) =

(
−2t cos(a2 · k) −t − t e− ia1·k

−t − t e ia1·k 2t cos(a2 · k)

)
=

(
−2t cos ky −t − t e2 ikx

−t − t e−2 ikx 2t cos ky

)
• M(k) = v(k) · σ: ε = ±|v(k)|. The vector field v(k) on B.Z.:

vx = −t − t cos(2kx), vy = −t sin(2kx), vz = −2t cos(ky ).
|v | = t

√
2 + 2 cos(2kx) + 4 cos2(ky ) = t

√
4 cos2(kx) + 4 cos2(ky ).

• Eigenstate in conduction band |n(k)〉, plot n(kx , ky )
n(k) = v(k)/|v(k)|, has geometric connection
i ãi (k) = 〈n(k)|∂ki |n(k)〉: b̃xy = ∂kx ãy − ∂ky ãx 6= 0∮
K dk · ã = π,

∮
K ′ dk · ã = π → two π-flux tubes.
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π/2-flux state: complex hopping → Chern insulator

π/2

π/2

1

1

1

1 1−1 −1

a2

a1

i

π

π

−π

−π

K

K’

k = π/2x

k = π/2y

x
y

z

Hopping matrix in k-space (a1 = 2x , a2 = y): M(k) =(
−2t cos(a2 · k) −t − t e− i a1·k − it′ e i a2·k + it′ e− i (a2·k+a1·k)

−t − t e i a1·k − it′ e− i a2·k − it′ e i (a2·k+a1·k) 2t cos(a2 · k)

)
• M(k) = v(k) · σ: ε = ±|v(k)|. The vector field v(k) on B.Z.:

vx = −t − t cos(2kx)− t ′ sin(ky ) + t ′ sin(ky + 2kx),
vy = −t sin(2kx)− t ′ cos(ky )− t ′ cos(ky + 2kx), vz = −2t cos(ky ).

−2.5−2−1.5−1−0.5 0 0.5 1 1.5 2 −3
−2

−1
 0

 1
 2

 3

−2
−1.5

−1
−0.5

 0
 0.5

 1
 1.5

 2

.

• Eigenstate in conduction band |n(k)〉, t = t ′

n(k) = v(k)/|v(k)|, has geometric connection
i ãi (k) = 〈n(k)|∂ki |n(k)〉: b̃xy = ∂kx ãy − ∂ky ãx 6= 0
→ The wrapping number (Chern number) = 1
Chern insulator (IQH state)
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How to compute the Chern number

δ

δ

D

n
Ω

kx

ky

• Geometric phase φ =
∮
∂D dk · ã(k) = 1

2 Ω

φ =

∮
∂B.Z .

dk · ã(k) = 2π × wraping num.

• Geometric curvature B̃ = ∂kx ãy − ∂ky ãx .

φ =

∮
∂D

dk · ã(k) =

∫
D
d2kB̃,∫

B.Z .
d2kB̃ = 2π × Chern number

• Compute geometric curvature:

B̃δkxδky = 1
2n ·

(
[n(k + δkxx)− n(k)]× [n(k + δkyy)− n(k)]

)
B̃(k) =

1

2
n · [∂kxn(k)× ∂kyn(k)]

• Compute Chern number (the wrapping number):

(4π)−1

∫
B.Z .

d2k n · [∂kxn(k)× ∂kyn(k)] = Chern number
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Dimmer state

π

1

1

1

1 1−1 −1

a2

a1
π

π

−π

−π

K

K’

k = π/2x

k = π/2y

x

z
y

Hopping matrix in k-space (a1 = 2x , a2 = y): plot n(kx , ky )

M(k) =

(
−2t cos(a2 · k) −t′ − t e− i a1·k

−t′ − t e i a1·k 2t cos(a2 · k)

)
• M(k) = v(k) · σ: ε = ±|v(k)|. The vector field v(k) on B.Z.:

vx = −t ′ − t cos(2kx), vy = −t sin(2kx), vz = −2t cos(ky ).

k = π/2x

k = π/2y

x

z
y

• Eigenstate in conduction band |n(k)〉,
n(k) = v(k)/|v(k)|, has geometric connection
i ãi (k) = 〈n(k)|∂ki |n(k)〉: b̃xy = ∂kx ãy − ∂ky ãx 6= 0
→ The wrapping number (Chern number) = 0

Atomic insulator
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Chern number of the bands
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Appendix: Hydrodynamic equation and continuity equation
(for bIJ = const.)

• Hydrodynamic equation

d

dt
g [ξI (t)] = 0 → ∂g

∂t
+ ξ̇I∂Ig =

∂g

∂t
− bIJ∂JH∂Ig = 0

• Continuity equation conservation of particle number (bIJ = const.):

∂g

∂t
+ ∂IJ I = 0, current: J I = g ξ̇I = −g bIJ∂JH

They are equivalent:

0 =
∂g

∂t
+ ∂IJ I =

∂g

∂t
− bIJ∂Ig∂JH − bIJg∂I∂JH︸ ︷︷ ︸

=0

=
∂g

∂t
− bIJ∂Ig∂JH
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Appendix: continuity equation (for bIJ 6= const.)

• Assume for phase space coordinates ξ̃I , b̃IJ = const.

Hydrodynamic EOM:
∂g̃

∂t
+ ˙̃ξI ∂̃I g̃ =

∂g̃

∂t
− b̃IJ ∂̃JH ∂̃I g̃ = 0

Conitnuity equation:
∂g̃

∂t
+ ∂̃I J̃ I = 0, J̃ I = g̃ ˙̃ξI , ˙̃ξI = −b̃IJ ∂̃JH

• Change of coordinates ξI = ξI (ξ̃I ): (scaler, vector, tensor)

g(ξI ) = g̃(ξ̃I ), ∂I =
∂ξ̃J

∂ξI
∂̃J , ξ̇I =

∂ξI

∂ξ̃J
˙̃ξJ , J I =

∂ξI

∂ξ̃J
J̃ J ,

bIJ =
∂ξ̃K

∂ξI
∂ξ̃L

∂ξJ
b̃KL, bIJ =

∂ξI

∂ξ̃K
∂ξJ

∂ξ̃L
b̃KL

- The subscript and superscript indecate how the quantity transforms
under the coordinate transformation.

• The form of the hydrodynamic EOM remain unchanged:

∂g

∂t
+ ξ̇I∂Ig =

∂g

∂t
− bIJ∂JH∂Ig = 0
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Appendix: continuity equation (for bIJ 6= const.)

• The form of the continuity equation is changed:

0 =
∂g

∂t
+
∂ξK

∂ξ̃I

(
∂K

∂ξ̃I

∂ξL
J L
)

=
∂g

∂t
+ ∂IJ I +

∂ξK

∂ξ̃I

(
∂K

∂ξ̃I

∂ξL

)
J L

=
∂g

∂t
+ ∂IJ I +

∂ξK

∂ξ̃I

(
∂L
∂ξ̃I

∂ξK

)
J L

In fact: ∂ξK

∂ξ̃I

(
∂L

∂ξ̃I

∂ξK

)
= Det1/2(bIJ)∂KDet1/2(bIJ), since the RHS

= Det(∂ξ
J

∂ξ̃I
)Det1/2(b̃IJ)∂K

[
Det( ∂ξ̃

I

∂ξJ
)Det1/2(b̃IJ)

]
= Det(∂ξ

J

∂ξ̃I
)∂KDet( ∂ξ̃

I

∂ξJ
)

We also have (let MIJ = ∂ξ̃I

∂ξJ
)

Det(M IJ)δDet(MIJ) = Det(M IJ)Det(MIJ + δMIJ)− 1
= Det(δIJ + M IKδMKJ)− 1 = M IKδMKI

Continuity equation: (not just ∂g
∂t + ∂IJ I = 0)

∂g

∂t
+ ∂IJ I +

1

Pf(b̂)

[
∂IPf(b̂)

]
J I =

∂g

∂t
+

1

Pf(b̂)
∂I
[
Pf(b̂)J I

]
= 0
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Appendix: continuity equation = Hydrodynamic equation

0 =
∂g

∂t
+

1

Pf(b̂)
∂I
[
Pf(b̂)J I

]
=
∂g

∂t
− 1

Pf(b̂)
∂I
[
Pf(b̂) g bIJ∂JH

]
=
∂g

∂t
− bIJ∂Ig∂JH − g∂JH

1

Pf(b̂)
∂I
[
Pf(b̂)bIJ

]
︸ ︷︷ ︸

=0

We first note that 0 = ∂M(bIKbKL) = (∂MbIK )bKL + bIK (∂MbKL) →
0 = ∂MbIJ + bIK (∂MbKL)bLJ

This allows us to obtain

∂I
[
Pf(b̂)bIJ

]
Pf(b̂)

=
bKL∂IbLK

2
bIJ + ∂Ib

IJ =
bKLbIJ∂IbLK

2
− bIK (∂IbKL)bLJ

=
bKLbIJ∂I (∂LaK − ∂KaL)

2
− bIKbLJ∂I (∂KaL − ∂LaK )

= bKLbIJ∂I∂LaK + bIKbLJ∂I∂LaK = bKLbIJ∂I∂LaK + bLKbIJ∂L∂IaK = 0

We recover the hydrodynamic equation ∂g
∂t − bIJ∂Ig∂JH = 0.
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Appendix: Adding dissipation – difffusion in phase space

The enviromental influence only change ξI slightly each time.
Diffusion current

J I
diff = γIJ

∂g

∂ξJ
= −γIJ∂Jg . (Should γIJ be symmetric?)

New EOM (new continuity equation)
∂g

∂t
+

1

Pf(b̂)
∂I
[
Pf(b̂) g ξ̇I

]
− 1

Pf(b̂)
∂I
[
Pf(b̂)J I

diff

]
= 0

or
∂g

∂t
+ ξ̇I∂Ig =

1

Pf(b̂)
∂I
[
Pf(b̂)γIJ∂Jg

]
- But the above difusion model does not satisfy detail balance. It assume

the transition rates caused by environmntal influence between two
states A,B to be the same in either direction: tA→B = tB→A. Such a
transition rates give rise to equilibrium probability distribution that
satisfies PA = PB regardless the energy difference EA − EB of the two
states. This coresponds to T =∞ case. Indeed the above diffusion
model tends to make g to be uniform in phase space, which is the
T =∞ case.
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Appendix: Adding dissipation – difffusion in phase space

How to find a difussion model that satisfy detail balance?

How to find a difussion model that make g to evolve into the
equilibrium distributions for a finite temperature T :

g0(ξI ) =
1

eβ[H(ξI )−µ] + 1
, for fermions

g0(ξI ) =
1

eβ[H(ξI )−µ] − 1
, for bosons

g0(ξI ) = e−β[H(ξI )−µ], for classical particles

Diffusion current

J I
diff = −γIJg∂J(log g + βH), for classical particles

J I
diff = −γIJg(1− g)∂J [− log(g−1 − 1) + βH], for fermions

J I
diff = −γIJg(1 + g)∂J [− log(g−1 + 1) + βH], for bosons
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Appendix: Hydrodynamics in phase space with diffusion

For classical particles (high temperature limit g � 1)

∂g

∂t
+ ξ̇I∂Ig =

1

Pf(b̂)
∂I
[
Pf(b̂)γIJg∂J(log g + βH)

]
For fermions

∂g

∂t
+ ξ̇I∂Ig =

1

Pf(b̂)
∂I
[
Pf(b̂)γIJg(1− g)∂J(log

g

1− g
+ βH)

]
For bosons

∂g

∂t
+ ξ̇I∂Ig =

1

Pf(b̂)
∂I
[
Pf(b̂)γIJg(1 + g)∂J(log

g

1 + g
+ βH)

]
• The equilibrium distribution g0 satisfies the above EOM.

• The above diffusion term only incorporates the particle number
conservation, not energy conservation, since we consider an open
system and assume T to be fixed.
How to include energy conservation for a closed system?
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