Modern quantum many-body physics - Interacting bosons

Xiao-Gang Wen

https://canvas.mit.edu/courses/11339

Quantum many-boson systems

The first step to build a theory: how to label states?

One particle states

- How to label states of one boson in 1D space? $\rightarrow|x\rangle$. The most general state $|\psi\rangle=\int \mathrm{d} x \psi(x)|x\rangle$
- Energy eigenstates (momentum eigenstates) $|k\rangle=\int \mathrm{d} x \mathrm{e}^{\mathrm{i} k x}|x\rangle$, where wave vector $k=$ int. $\times \frac{2 \pi}{L}$. (The space is a 1D ring of size L)
- Momentum $=p=\hbar k$.
- Energy $=\epsilon_{k}=\frac{\hbar^{2} k^{2}}{2 M}\left(\operatorname{Or} \epsilon_{k}=\hbar|k| c\right.$ for massless photons $)$

Many-particle states

- Label all zero-, one-, two-, three-, ... boson states:
$|\emptyset\rangle$
$\left|k_{1}\right\rangle$
$\left|k_{1}, k_{2}\right\rangle, k_{1} \leq k_{2}\left(\left|k_{1}, k_{2}\right\rangle=\left|k_{2}, k_{1}\right\rangle\right.$ for identical particles) $\left|k_{1}, k_{2}, k_{3}\right\rangle, k_{1} \leq k_{2} \leq k_{3}$
- Label all zero-, one-, two-, three-, ... boson states
(The second quantization - quantum field theory of bosons):
$n_{k} \equiv$ the number of bosons with wave vector k.
$\left|\left\{n_{k}=0\right\}\right\rangle$ is the ground state. $\left|\left\{n_{k} \neq 0\right\}\right\rangle$ is an excitated state.
$\left|\left\{n_{k}=0\right\}\right\rangle=|\emptyset\rangle$. No boson
$\mid\left\{n_{k_{1}}=1\right.$, others $\left.\left.=0\right\}\right\rangle=\left|k_{1}\right\rangle$. One boson
$\mid\left\{n_{k_{1}}=1, n_{k_{2}}=1\right.$, others $\left.\left.=0\right\}\right\rangle=\left|k_{1}, k_{2}\right\rangle=\left|k_{2}, k_{1}\right\rangle$.
$\mid\left\{n_{k_{1}}=1, n_{k_{2}}=1, n_{k_{3}}=1\right.$, others $\left.\left.=0\right\}\right\rangle=\left|k_{1}, k_{2}, k_{3}\right\rangle=\left|k_{2}, k_{3}, k_{1}\right\rangle=\cdots$.
$\mid\left\{n_{k_{1}}=2, n_{k_{2}}=1\right.$, others $\left.\left.=0\right\}\right\rangle=\left|k_{1}, k_{1}, k_{2}\right\rangle=\left|k_{1}, k_{2}, k_{1}\right\rangle=\cdots$.

A many-boson system with no interaction $=$ a collection of decoupled harmonic oscillators

$n_{k} \rightarrow$ the occupation number of the bosons on orbital- k.

(a)

(b)

- If we ignore the interaction between bosons $\left|\left\{n_{k}\right\}\right\rangle$ is an energy eigenstate with energy $E=\sum_{k} n_{k} \epsilon_{k}$
- The above energy can be viewed as the total energy of a collection of decoupled harmonic oscillators. The oscillators are labeled by $k=$ int. $\times \frac{2 \pi}{L}$. The oscillator labeled by k has a frequency $\omega_{k}=\epsilon_{k} / \hbar$.
- A collection of decoupled harmonic oscillators $=$ vibration modes of a vibrating string. The two polarizations of bosons \rightarrow two directions of string vibrations
\rightarrow quantum field theory of 1D boson gas.

Many-body Hamiltonian for non-interacting bosons

View 1D non-interacting bosons (with $0,1,2,3, \cdots$ bosons) as a collection of oscillators with frequencies ω_{k} :

$$
\hat{H}=\sum_{k}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\frac{1}{2}\right) \hbar \omega_{k}, \quad \hbar \omega_{k}=\epsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m}, \quad k=\text { int. } \times \frac{2 \pi}{L}
$$

raising-lowering operator

$$
\begin{aligned}
\hat{a}_{k} & =\sqrt{\frac{m \omega_{k}}{2 \hbar}}\left(\hat{x}_{k}+\frac{\mathrm{i}}{m \omega_{k}} \hat{p}_{k}\right), \quad\left[\hat{a}_{k}, \hat{a}_{k^{\prime}}^{\dagger}\right]=\delta_{k, k^{\prime}} \\
\hat{a}_{k}^{\dagger} \hat{a}_{k}\left|n_{k}\right\rangle & =n_{k}\left|n_{k}\right\rangle, \quad \hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle=\left|n_{k}+1\right\rangle, \quad \hat{a}_{k}\left|n_{k}\right\rangle=\left|n_{k}-1\right\rangle .
\end{aligned}
$$

- All the energy eigenstates are labeled by $\left|\left\{n_{k}\right\}\right\rangle=\bigotimes_{k}\left|n_{k}\right\rangle$. The total energy $E_{\text {tot }}=\sum_{k}\left(n_{k}+\frac{1}{2}\right) \epsilon_{k}$. The total particle number $N=\sum_{k} n_{k}$.
$\hat{a}_{k}^{\dagger}, \hat{a}_{k}$ are also creation-annihilation operator of bosons.

Many-body Hamiltonian for bosons on lattice

- Infinite problem on quantum field theory: The vaccum energy $E_{0}=0$ or $E_{0}=\sum_{k} \frac{1}{2} \epsilon_{k}$? The right answer $E_{0}=\sum_{k} \frac{1}{2} \epsilon_{k}=\infty$
- Non-interacting bosons on a lattice

For 1D non-interacting bosons
(with $0,1,2,3, \cdots$ bosons)

$$
\begin{aligned}
\hat{H} & =\sum_{k \in B Z}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\frac{1}{2}\right) \epsilon_{k}, \quad \epsilon_{k}=2 t[1-\cos (k a)], \\
k & =\text { int. } \times \frac{2 \pi}{L} \in\left[-\frac{\pi}{a}, \frac{\pi}{a}\right] .
\end{aligned}
$$

- The vacuum energy now is finite

$$
E_{0}=\sum_{k \in B Z} \frac{1}{2} \epsilon_{k}=L \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{\mathrm{~d} k}{2 \pi} 2 t[1-\cos (k a)]=L \frac{2 t}{a}=2 t N .
$$

- The vacuum energy can be measured via Casimir effect.

Many-body Hamiltonian for interacting bosons on lattice

- The total particle number operator

$$
\begin{aligned}
\hat{N} & =\sum_{k \in B Z} \hat{a}_{k}^{\dagger} \hat{a}_{k}=\sum_{i} \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}, \quad\left[\hat{\varphi}_{i}, \hat{\varphi}_{j}^{\dagger}\right]=\delta_{i j} . \\
\hat{a}_{k} & =\sum_{x_{i}} N^{-1 / 2} \mathrm{e}^{\mathrm{i} k x_{i}} \hat{\varphi}_{i}, \quad x_{i}=a i, \quad i=1, \cdots, N ;
\end{aligned}
$$

- $\hat{n}_{k}=\hat{a}_{k}^{\dagger} \hat{a}_{k}$ is the number operator for bosons on orbital k.
- $\hat{n}_{i}=\hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}$ is the number operator for bosons on site $i . \hat{\varphi}_{i}^{\dagger}, \hat{\varphi}_{i}$ are creation-annihilation operator of bosons at site- i.
- Many-body Hamiltonian for interacting bosons

$$
\begin{gathered}
H=\sum_{k}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\frac{1}{2}\right) \epsilon_{k}-\sum_{i} \mu \hat{n}_{i}+\sum_{i \leq j} V_{i j} \hat{n}_{i} \hat{n}_{j} \\
=\sum_{k} \frac{1}{2}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\hat{a}_{k} \hat{a}_{k}^{\dagger}\right) \epsilon_{k}-\sum_{i} \mu \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}+\sum_{i \leq j} V_{i j} \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i} \hat{\varphi}_{j}^{\dagger} \hat{\varphi}_{j} \\
=\sum_{i}\left[t\left(\hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i}+\hat{\varphi}_{i} \hat{\varphi}_{i}^{\dagger}\right)-t\left(\hat{\varphi}_{i+1}^{\dagger} \hat{\varphi}_{i}+\hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i+1}\right)\right]-\sum_{i} \mu \hat{\varphi}_{i}^{\dagger} \varphi_{i}+\sum_{i \leq j} V_{i j} \hat{\varphi}_{i}^{\dagger} \hat{\varphi}_{i} \hat{\varphi}_{j}^{\dagger} \hat{\varphi}_{j}
\end{gathered}
$$

Hard-core bosons and spin-1/2 systems

- Assume on-site interaction $V_{i j}=U \delta_{i j}, \quad \mu=U+2 B+t \rightarrow$ $U \hat{n}_{i} \hat{n}_{i}-\mu \hat{n}_{i}=U\left(\hat{n}_{i}-1\right) \hat{n}_{i}-(2 B+t) \hat{n}_{i}, \quad U \rightarrow+\infty$
The low energy sector for interaction $\rightarrow n_{i}=0,1(\downarrow, \uparrow)$ or

$$
n_{i}=\frac{\sigma_{i}^{z}-1}{2}, \quad \hat{\varphi}_{i}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\sigma_{i}^{-}=\frac{\sigma_{i}^{x}-\mathrm{i} \sigma_{i}^{y}}{2} .
$$

Hamiltonian for interacting bosons $=$ a spin- $1 / 2$ system

$$
\begin{aligned}
H_{\mathrm{XY} \text {-model }} & =\sum_{i}\left[-t\left(\sigma_{i}^{+} \sigma_{i+1}^{-}+\sigma_{i}^{-} \sigma_{i+1}^{+}\right)-B \sigma_{i}^{z}\right] \\
& =\sum_{i}\left[-J\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)-B \sigma_{i}^{z}\right], \quad J=\frac{1}{2} t
\end{aligned}
$$

- $U(1)$ symmetry generated by $U_{\phi}=\prod_{i} \mathrm{e}^{\mathrm{i} \phi \sigma_{i}^{2} / 2}: U_{\phi} H U_{\phi}=H$. $\sum_{i} \sigma_{i}^{z} \sim N+$ const. conservation.
- Phase diagram: Treat operators σ as classical unit-vector (spin) \boldsymbol{n}.
$B<0:|\downarrow \cdots \downarrow\rangle \quad B \sim 0:|\rightarrow \cdots \rightarrow\rangle \quad B>0:|\uparrow \cdots \uparrow\rangle$

Hard-core bosons and spin-1 systems

- Assume on-site interaction to have a form $U\left[\left(n_{i}-1\right)^{4}-\left(n_{i}-1\right)^{2}\right]$. The low energy sector for the interaction: $n_{i}=0,1,2(\downarrow, 0, \uparrow)$ or

$$
n_{i}=S_{i}^{z}-1, \quad \hat{\varphi}_{i}=S_{i}^{-}
$$

Hamiltonian for interacting bosons $=$ a spin-1 system $(U(1)$ symm.)

$$
\begin{aligned}
H & =\sum_{i}\left[-t\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)-B S_{i}^{z}+V\left(S_{i}^{z}\right)^{2}\right] \\
& =\sum_{i}\left[-J\left(S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}\right)-B S_{i}^{z}+V\left(S_{i}^{z}\right)^{2}\right]
\end{aligned}
$$

- $B-V$ phase diagrame Treat operators σ as classical unit-vector (spin) n.
- Two different critical points:
- The black-line represents a $z=2$ critical point. (ie excitations have dispertion relation $\omega_{k} \sim k^{2}$)
- The filled dot represents a different
 $\begin{array}{cc}\left(\text { ie excitations have dispertion relation } \omega_{k} \sim k \text {) }\right. \\ \text { Xiao-Gang Wen } & J=1 \\ 9 / 91\end{array}$

Many-body Hamiltonian

- Consider a system formed by two spin- $1 / 2$ spins. The spin-spin interaction: $H=J\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}+\sigma_{1}^{z} \sigma_{2}^{z}\right)$.
where $\sigma_{i}^{x, y, z}$ are the Pauli matrices acting on the $i^{\text {th }}$ spin.
$J<0 \rightarrow$ ferromagnetic, $J>0 \rightarrow$ antiferromagnetic.
Is H a two-by-two matrix? In fact
$H=-J\left[\left(\sigma^{x} \otimes I\right) \cdot\left(I \otimes \sigma^{x}\right)+\left(\sigma^{y} \otimes I\right) \cdot\left(I \otimes \sigma^{y}\right)+\left(\sigma^{z} \otimes I\right) \cdot\left(I \otimes \sigma^{z}\right)\right]$
H is a four-by-four matrix:
$\sigma_{1}^{z} \sigma_{2}^{z}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \sigma_{1}^{\times} \sigma_{2}^{\times}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \quad \sigma_{1}^{\times} \sigma_{2}^{z}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$
- $\sigma_{i}^{z}=I \otimes \cdots \otimes I \otimes \sigma^{z} \otimes I \otimes \cdots \otimes I$ is a $2^{N_{\text {site }}-d i m e n s i o n a l ~ m a t r i x ~}$

Example: An 1D ring formed by L spin- $1 / 2$ spins:

$$
H=-\sum_{i=1}^{L} \sigma_{i}^{x} \sigma_{i+1}^{x}-h \sum_{i=1}^{L} \sigma_{i}^{z}
$$

- transverse Ising model. H is a $2^{L} \times 2^{L}$ matrix.

Condensed matter: A local many-body quantum system

- A many-body quantum system
$=$ Hilbert space $\mathcal{V}_{\text {tot }}+$ Hamiltonian H
- The locality of the Hilbert space:

$$
\mathcal{V}_{t o t}=\otimes_{i=1}^{N} \mathcal{V}_{i}
$$

- The i also label the vertices of a graph

- A local Hamiltonian $H=\sum_{x} H_{x}$ and H_{x} are local hermitian operators acting on a few neighboring \mathcal{V}_{i} 's.
- A quantum state, a vector in $\mathcal{V}_{\text {tot }}$:

$$
\begin{aligned}
& |\Psi\rangle=\sum_{i} \Psi\left(m_{1}, \ldots, m_{N}\right)\left|m_{1}\right\rangle \otimes \ldots \otimes\left|m_{N}\right\rangle \\
& \left|m_{i}\right\rangle \in \mathcal{V}_{i}
\end{aligned}
$$

- A gapped Hamiltonian has the following spectrum as $N \rightarrow \infty$ $\left(\mathrm{eg} H=-\sum\left(J \sigma_{i}^{z} \sigma_{i+\delta}^{z}+h \sigma_{i}^{x}\right)\right)$
ground-state $\quad \Delta->$ finite gap
subspace $\underset{4}{=} \varepsilon \rightarrow>0$

Many-body spectrum using Octave (Matlab or Julia)

Transverse Ising model on a ring of L site:

$$
H=-J \sum_{i=1}^{L} \sigma_{i}^{x} \sigma_{i+1}^{x}-h \sum_{i=1}^{L} \sigma_{i}^{z}
$$

H is an 2^{L}-by- 2^{L} matrix, whose eigenvalues can be computed via the following Octave code (the code also run in Matlab or Julia with minor modifications):

```
X=sparse([0,1;1,0]); Z=sparse([1,0;0,-1]); XX=kron(X,X);
L=13;h=1.0; J=1.0
H=-kron(kron(X, speye(2^(L-2)) ),X);
for i=1:L-1
    H=H - kron( speye(2^(i-1)), kron(J*XX, speye(2^(L-1-i))));
end
for i=1:L
    H=H - kron( speye(2^(i-1)), kron(h*Z, speye(2^(L-i)))) ;
end
eigs( H,10, 'sa') # compute the lowest 10 eigenvalues
```

The 100 lowest energy eigenvalues for $L=16$, as functions of $h / J \in[0,2]$.

Quantum phases and quantum phase transitions

- Phases are defined through phase transitions. What are phase transitions?

As we change a parameter g in Hamiltonian $H(g)$, the ground state energy density $\epsilon_{g}=E_{g} / V$ or the average of a local operator $\langle\hat{O}\rangle$ may have a singularity at g_{c} : the system has a phase transition at g_{c}.
The Hamiltonian $H(g)$ is a smooth function of g. How can the ground state energy density ϵ_{g} be singular at a certain g_{c} ?

- There is no singularity for finite systems. Singularity appears only for infinite systems.

$E_{2}-E_{1}$ of trans. Ising for $L=3, \cdots, 13$

- Spontaneous symmetry breaking is a mechanism to cause a singularity in ground state energy density ϵ_{g}.
\rightarrow Spontaneous symmetry breaking causes phase transition.

Symmetry breaking theory of phase transition

It is easier to see a phase transition in the semi classical approximation of a quantum theory.

- Variational ground state $\left|\Psi_{\phi}\right\rangle$ for H_{g} is obtained by minimizing energy $\epsilon_{g}(\phi)=\frac{\left\langle\Psi_{\phi}\right| H_{g}\left|\Psi_{\phi}\right\rangle}{V}$ against the variational parameter ϕ.
$\epsilon_{g}(\phi)$ is a smooth function of ϕ and g. How can its minimal value $\epsilon_{g} \equiv \epsilon_{g}\left(\phi_{\text {min }}\right)$ have singularity as a function of g ?
- Minimum splitting \rightarrow singularity in $\frac{\partial^{2} \epsilon_{g}}{\partial g^{2}}$ at g_{c}. Second order trans. State-B has less symmetry than state-A.
State-A \rightarrow State-B: spontaneous symmetry breaking.
- For a long time, we believe that phase transition $=$ change of symmetry the different phases $=$ different symmetry.

- Minimum switching \rightarrow singularity in $\frac{\partial \epsilon_{g}}{\partial g}$ at g_{c}. First order trans.

Example: meanfield symmetry breaking transition

Consider a transverse field Ising model $H=\sum_{i}-J \sigma_{i}^{\times} \sigma_{i+1}^{\times}-h \sigma_{i}^{z}$ Use trial wave function $\left|\Psi_{\phi}\right\rangle=\otimes_{i}\left|\psi_{i}\right\rangle,\left|\psi_{i}\right\rangle=\cos \frac{\phi}{2}|\uparrow\rangle+\sin \frac{\phi}{2}|\downarrow\rangle$ to estimate the ground state energy
$\left\langle\Psi_{\phi}\right| H\left|\Psi_{\phi}\right\rangle=-\sum\left\langle\psi_{i}\right| \sigma_{i}^{\times}\left|\psi_{i}\right\rangle\left\langle\psi_{i+1}\right| \sigma_{i+1}^{\times}\left|\psi_{i+1}\right\rangle-h \sum\left\langle\psi_{i}\right| \sigma_{i}^{z}\left|\psi_{i}\right\rangle$.
$=\left(2 J \cos \frac{\phi}{2} \sin \frac{\phi}{2}\right)^{2}-h\left(\cos ^{2} \frac{\phi}{2}-\sin ^{2} \frac{\phi}{2}\right)=\sin ^{2} \phi-h \cos \phi$
Phase transition at $h / J=2 .(h / J=1.5,2.0,2.5)$

Order parameter and symmetry-breaking phase transition ϕ or σ_{i}^{χ} are order parameters for the Z_{2} symm.-breaking transition:

- Under $Z_{2}\left(180^{\circ} S^{z}\right.$ rotation), $\phi \rightarrow-\phi$ or $\sigma_{i}^{\times} \rightarrow-\sigma_{i}^{\times}$
- In symmetry breaking phase $\phi= \pm \phi_{0},\left\langle\sigma_{i}^{x}\right\rangle= \pm$. In symmetric phase $\phi=0,\left\langle\sigma_{i}^{\times}\right\rangle=0$. (Classical picture)

Ginzberg-Landau theory of continuous phase transition

- Quantum Z_{2}-Symmetry: generator $U=\prod_{j} \sigma_{j}^{z}, U^{2}=1$.

Symmetry trans.: $U \sigma_{i}^{z} U^{\dagger}=\sigma_{i}^{z}, U \sigma_{i}^{\times} U^{\dagger}=-\sigma_{i}^{x}, U \sigma_{i}^{y} U^{\dagger}=-\sigma_{i}^{y}$.
$\rightarrow U H U^{\dagger}=H$. If $H|\psi\rangle=E_{\text {grnd }}|\psi\rangle$, then $U H|\psi\rangle=E_{\text {grnd }} U|\psi\rangle \rightarrow$
$U H U^{\dagger} U|\psi\rangle=E_{\text {grnd }} U|\psi\rangle \rightarrow H U|\psi\rangle=E_{\text {grnd }} U|\psi\rangle$
Both $|\psi\rangle$ and $U|\psi\rangle$ are ground states of H :
Either $|\psi\rangle \propto U|\psi\rangle$ (symmetric) or $|\psi\rangle \nless U|\psi\rangle$ (symm.-breaking).

- Trial wave function $\left|\Psi_{\phi}\right\rangle=\bigotimes_{i}\left(\cos \frac{\phi}{2}|\uparrow\rangle_{i}+\sin \frac{\phi}{2}|\downarrow\rangle_{i}\right): U\left|\Psi_{\phi}\right\rangle=\left|\Psi_{-\phi}\right\rangle$
$\rightarrow\left\langle\Psi_{\phi}\right| H\left|\Psi_{\phi}\right\rangle=\left\langle\Psi_{\phi}\right| U^{\dagger} U H U^{\dagger} U\left|\Psi_{\phi}\right\rangle=\left\langle\Psi_{-\phi}\right| H\left|\Psi_{-\phi}\right\rangle \rightarrow$ $\epsilon(h, \phi)=\epsilon(h,-\phi)$
- If $\left|\Psi_{\phi=0}\right\rangle$ is the ground state \rightarrow symmetric phase.

If $\left|\Psi_{\phi \neq 0}\right\rangle$ is the ground state \rightarrow symmetry breaking phase.

- Near the phase transition ϕ is small \rightarrow

$$
\epsilon(h, \phi)=\epsilon_{0}(h)+\frac{1}{2} a(h) \phi^{2}+\frac{1}{4} b(h) \phi^{4}+\cdots
$$

Transition happen at $a\left(h_{c}\right)=0$.

Properties near the $T=0$ (quantum) phase transition

- Ground state energy density:
$\phi=0, \epsilon_{\text {grnd }}(h)=\epsilon_{0}(h)$ if $a(h)>0$
$\phi= \pm \sqrt{\frac{-a}{b}}, \epsilon_{\text {grnd }}(h)=\epsilon_{0}(h)-\frac{1}{4} \frac{a(h)^{2}}{b}$ if $a(h)<0$
$\epsilon_{\text {grnd }}(h)$ is non-analytic at the transition point: $a(h)=a_{0}\left(h-h_{c}\right)$:

$$
\epsilon_{\text {grnd }}(h)= \begin{cases}\epsilon_{0}(h), & h>h_{c} \\ \epsilon_{\text {grnd }}(h)=\epsilon_{0}(h)-\frac{1}{4} \frac{a_{0}\left(h-h_{c}\right)^{2}}{b}, & h<h_{c}\end{cases}
$$

- Magnetization in z-direction: $M_{z}=\frac{\partial \epsilon_{g r n d}(h)}{\partial h}$.

$$
\begin{aligned}
& M_{z}=\frac{\partial \epsilon_{0}(h)}{\partial h}, h>h_{c} \\
& M_{z}=\frac{\partial \epsilon_{0}(h)}{\partial h}-\frac{1}{2} \frac{a_{0}\left(h-h_{c}\right)}{b}, \quad h<h_{c} \\
& \rightarrow \Delta M_{z} \sim|\Delta h|
\end{aligned}
$$

- Magnetization in x-dir.: $M_{x}=\left\langle\sigma^{x}\right\rangle=\sin \phi$ $\phi= \pm \sqrt{\frac{-a(h)}{b}} \rightarrow \Delta M_{x} \sim|\Delta h|^{1 / 2}$
- Magnetic susceptibility in x-direction:

From $\epsilon\left(h, \phi, h_{x}\right)=\frac{1}{2} a(h) \phi^{2}-h_{x} \phi+\cdots$
$\rightarrow M_{x}=\phi=\frac{1}{a(h)} \rightarrow \chi_{x}=\frac{1}{a(h)} \rightarrow \Delta \chi_{x} \sim|\Delta h|^{-1}$

Quantum picture of continuous phase transition

No symmetry breaking in quantum theory according: If $[H, U]=0$, then H and U share a commom set of eigenstates. The ground state $\left|\Psi_{\text {grnd }}\right\rangle$ of H, is an eigenstate of $U: U\left|\Psi_{\text {grnd }}\right\rangle=\mathrm{e}^{\mathrm{i} \theta}\left|\Psi_{\text {grnd }}\right\rangle$.
No symmetry breaking.
$\left|\Psi_{\phi}\right\rangle$ and $\left|\Psi_{-\phi}\right\rangle$ in semi classical approximation are not true ground states. The true ground state is $\left|\Psi_{\text {grnd }}\right\rangle=\left|\Psi_{\phi}\right\rangle+\left|\Psi_{-\phi}\right\rangle$ which do not break the symmetry.

- Quantum picture: Symmetry-breaking order parameter is zero, $\left\langle\Psi_{\text {grnd }}\right| \sigma_{i}^{x}\left|\Psi_{\text {grnd }}\right\rangle=0$, for the true ground state. But the ground states, $\left|\Psi_{\text {grnd }}\right\rangle=\left|\Psi_{\phi}\right\rangle+\left|\Psi_{-\phi}\right\rangle$ and $\left|\Psi_{\text {grnd }}^{\prime}\right\rangle=\left|\Psi_{\phi}\right\rangle-\left|\Psi_{-\phi}\right\rangle$, have an exponentially small energy separation $\Delta \sim e^{-L / \xi}$. Symmetry-breaking order parameter is non-zero only for approximate ground states, $\left|\Psi_{\phi}\right\rangle$ and $\left|\Psi_{-\phi}\right\rangle$.
- Detect symmetry breaking from correlation function: $\lim _{|i-j| \rightarrow \infty}\left\langle\Psi_{\text {grnd }}\right| \sigma_{i}^{\times} \sigma_{j}^{\times}\left|\Psi_{\text {grnd }}\right\rangle=$ const..
Symmetric phase: $\lim _{|i-j| \rightarrow \infty}\left\langle\Psi_{\text {grnd }}\right| \sigma_{i}^{\times} \sigma_{j}^{\times}\left|\Psi_{\text {grnd }}\right\rangle=0$

Collective mode of order parameter ϕ : guess

- From the energy $\epsilon(h, \phi)=\epsilon_{0}(h)+\frac{1}{2} a(h) \phi^{2}+\frac{1}{4} b(h) \phi^{4}+\cdots$
\rightarrow Restoring force $f=-a \phi-b \phi^{3} \rightarrow$ EOM $\rho \ddot{\phi}=-a \phi-b \phi^{3}$.
- $k \neq 0$ mode: $\epsilon(h, \phi)=\frac{1}{2} g\left(\partial_{x} \phi\right)^{2}+\frac{1}{2} a(h) \phi^{2}+\frac{1}{4} b(h) \phi^{4}+\cdots$

Restoring force $f=g \partial_{x}^{2} \phi-a \phi-b \phi^{3}$
\rightarrow EOM $\rho \ddot{\phi}=g \partial_{x}^{2} \phi-a \phi-b \phi^{3}$.
Where does ρ come from?

- Collective mode: $\omega_{k}=\sqrt{\frac{g k^{2}+a}{\rho}}$

Energy gap: $\Delta=\sqrt{\frac{a(h)}{\rho}}=\sqrt{\frac{a_{0}\left(h-h_{c}\right)}{\rho}}$.

- At the critical point $h=h_{c}$:

Gapless $=$ diverging susceptibility $\omega_{k} \sim k^{z}, z=1 . z$ is the dynamical critical exponent. $z=1 \rightarrow$ Emergence of Lorentz symmetry.
Continuous quantum phase transition between gapped phases $=$ gap closing phase transition. Continuous quantum phase transition between gapless phases : more low energy modes at the critical point.

Collective mode of order parameter ϕ : calculate

Consider a transverse field Ising model $H=-\sum_{i}\left(J \sigma_{i}^{\times} \sigma_{i+1}^{\times}+h \sigma_{i}^{z}\right)$.
Trial wave function $\left|\Psi_{\phi_{i}}\right\rangle=\otimes_{i}\left|\phi_{i}\right\rangle, \quad\left|\phi_{i}\right\rangle=\frac{|\uparrow\rangle+\phi_{i}|\downarrow\rangle}{\left.\sqrt{1+\mid \phi_{i}}\right|^{2}}$ (Key: ϕ_{i} complex)

$$
\left\langle\sigma_{i}^{x}\right\rangle=\frac{\phi_{i}+\phi_{i}^{*}}{1+\left|\phi_{i}\right|^{2}}, \quad\left\langle\sigma_{i}^{z}\right\rangle=\frac{1+\left|\phi_{i}\right|^{2}}{1+\mid}
$$

- Average energy

$$
\bar{H}=-\sum_{i}\left[J \frac{\left(\phi_{i}+\phi_{i}^{*}\right)\left(\phi_{i+1}+\phi_{i+1}^{*}\right)}{\left(1+\left|\phi_{i}\right|^{2}\right)\left(1+\left|\phi_{i+1}\right|^{2}\right)}+h \frac{1-\left|\phi_{i}\right|^{2}}{1+\left|\phi_{i}\right|^{2}}\right]
$$

Geometric phase term

$$
\begin{aligned}
\left\langle\phi_{i}\right| \frac{\mathrm{d}}{\mathrm{~d} t}\left|\phi_{i}\right\rangle & =\frac{\phi_{i}^{*} \dot{\phi}_{i}}{1+\left|\phi_{i}\right|^{2}}+\left(1+\left|\phi_{i}\right|^{2}\right)^{1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(1+\left|\phi_{i}\right|^{2}\right)^{-1 / 2} \\
& =\frac{\phi_{i}^{*} \dot{\phi}_{i}}{1+\left|\phi_{i}\right|^{2}}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \log \left(1+\left|\phi_{i}\right|^{2}\right)
\end{aligned}
$$

Phase space Lagrangian (quadratic approximation: $\phi_{i}=q_{i}+\frac{i}{2} p_{i}$ small)
$L=\left\langle\Phi_{\phi_{i}}\right| \mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t}-H\left|\Phi_{\phi_{i}}\right\rangle=\sum_{i} \mathrm{i} \phi_{i}^{*} \dot{\phi}_{i}+J\left(\phi_{i}+\phi_{i}^{*}\right)\left(\phi_{i+1}+\phi_{i+1}^{*}\right)-2 h\left|\phi_{i}\right|^{2}$
$=\sum_{i}\left[p_{i} \dot{q}_{i}+4 J q_{i} q_{i+1}-2 h\left(q_{i}^{2}+\frac{1}{4} p_{i}^{2}\right)\right]$

Collective mode of order parameter ϕ : calculate

EOM:

$$
\dot{q}_{i}=\frac{\partial \bar{H}}{\partial p_{i}}=\frac{h}{2} p_{i},, \quad \dot{p}_{i}=-\frac{\partial \bar{H}}{\partial q_{i}}=4 J\left(q_{i+1}+q_{i-1}\right)-4 h q_{i}
$$

in k-space $\left(q_{i}=\sum_{k} N^{-1 / 2} \mathrm{e}^{\mathrm{i} k i a} q_{k}, p_{i}=\sum_{k} N^{-1 / 2} \mathrm{e}^{\mathrm{i} k i a} p_{k}\right)$:

$$
\dot{q}_{k}=\frac{h}{2} p_{k},, \quad \dot{p}_{k}=4\left(J \mathrm{e}^{\mathrm{i} k a}+J \mathrm{e}^{-\mathrm{i} k a}-h\right) q_{k}
$$

k label harmonic oscillators with EOM

$$
\ddot{q}_{k}=2 h[2 \cos (k a)-h] q_{k} \quad \rightarrow \quad-\omega_{k}^{2}=2 h[2 J \cos (k a)-h]
$$

The dispersion of the collective mode

$$
\omega_{k}=\sqrt{2 h[h-2 J \cos (k a)]}
$$

- For $h>2 J$, gap $=\sqrt{2 h(h-2 J)}$.

For $h=2 J$, gapless mode with velocity $v=2 a J$ and $\omega_{k}=v|k|$.

Many-body spectrum at the critical point

- At the critical point, the gapless excitation is described by a real scaler field ϕ (or q_{i}) with EOM:

$$
\ddot{\phi}=v^{2} \partial_{x}^{2} \phi
$$

$=$ an oscillator for every $k=\frac{2 \pi}{L} n$
$=$ a wave mode with $\omega_{k}=v|k|$
$=$ a boson with $\epsilon(p)=v|p|$

- Many-body spectrum for right movers:

Do not count for the $k=0$ orbital.

- Total energy and total momentum for right movers $E=v K$.

Magic at critical point: Emergence of Lorentz invariance $\epsilon=v k$.
Emergence of independent right-moving and left-moving sectors (extra degeneracy in mony-body spectrum): conformal invariance

$z=1$ and $z=2$ critical points

The transverse Ising model, $H=-\sum_{i}\left(J \sigma_{i}^{\times} \sigma_{i+1}^{\times}+h \sigma_{i}^{z}\right)$, has $z=1$ critical points at $h= \pm J$
The spin-1 XY model, $H=\sum_{i}\left(-J S_{i}^{x} S_{i+1}^{x}-J S_{i}^{y} S_{i+1}^{y}+V\left(S_{i}^{z}\right)^{2}-B S_{i}^{z}\right)$, has $z=1$ and $z=2$ critical points.

- The $z=1$ criticial point appears when $B=0$ and
 the spin-1 XY model has the $S^{z} \rightarrow-S^{z}$ symmetry.
- The phase space Lagrangian of has a form $\mathcal{L}=A \phi^{*} \dot{\phi}+B \dot{\phi}^{*} \dot{\phi}-C|\partial \phi|^{2}$ for the collective mode at the criticial point. When $B=0, A=0$, which leads to the $z=1$ critical point. When $B \neq 0, A \neq 0$, which leads to the $z=2$ critical point.

The minimal value of dynamical exponent z is 1

- The $z=2$ critical point can appear if we have $U(1)$ spin rotation symmetry in the $S^{x}-S^{y}$ plane. In this case, the critical point describe the transition from a gapped Mott insulator (spin polarized) phase to a gapless superfluid (XY spin order) phase ($U(1)$ symmetry breaking phase) with $z=1$ (ie $\omega \sim k$).
- The gapless is the Goldstone mode. Spontaneous breaking of a continuous symmetry always give rise to a gapless model.
- The critical point always has more low energy excitations then the two phases it connects.
- The $z=1$ critical point can appear if we have Z_{2} spin rotation symmetry in the $S^{x} \rightarrow-S^{x}$. In this case, the critical point describe the transition from a gapped symmetric phase to a gapped spontaneous Z_{2}-symmetry breaking phase.
- $z<1, \omega \sim|k|^{z}$ is not allowed for short range interaction, since the velocity for any excitations has an upper bound $v \lesssim a\left\|H_{i, i+a}\right\| / \hbar$

The property of $k=0$ mode (quadratic approx. valid?)

- Now consider transverse Ising model in dimensions ($g \sim J, h$)

$$
L=\sum_{i} \sum_{\mu=\boldsymbol{x}, \boldsymbol{y} \ldots}\left[p_{i} \dot{q}_{i}+4 J q_{i} q_{i+\mu}\right]-\sum_{i}\left[2 h\left(q_{i}^{2}+\frac{1}{4} p_{i}^{2}\right)-g q_{i}^{4}\right]
$$

The transition point now is at $h=2 d J$

- At the critical point $h=2 d J$, the $k=0$ mode is described by the Lagrangian

$$
\begin{aligned}
L & =N p \dot{q}-\frac{N}{2} h p^{2}-N g q^{4} \\
& =\tilde{p} \dot{\tilde{q}}-\frac{h}{2} \tilde{p}^{2}-\frac{g}{N} \tilde{q}^{4}, \quad \tilde{p}=\sqrt{N} p, \quad \tilde{q}=\sqrt{N} q .
\end{aligned}
$$

- The zero-point energy from the $k=0$ mode $\tilde{p} \tilde{q} \sim 1 \rightarrow \tilde{q} \sim N^{1 / 6}$

$$
\text { mininizing: } \frac{h}{2} \tilde{p}^{2}+\frac{g}{N} \tilde{q}^{4} \sim \frac{h}{2} \tilde{q}^{-2}+\frac{g}{N} \tilde{q}^{4} \sim J N^{-1 / 3}
$$

The non-linear term is important for $k=0$ mode.

- The zero-point energy from the k mode (ignoring the non-linear term) $\left.J k \sim J N^{-1 / d}\right|_{k \sim N^{-1 / d}}$

The non-linear effect for k mode

- At the critical point $h=2 d J$, the k mode is described by the Lagrangian

$$
\begin{aligned}
L & =N p \dot{q}-J N k^{2} q^{2}-\frac{N}{2} h p^{2}-N g q^{4} \\
& =\tilde{p} \dot{\tilde{q}}-J k^{2} \tilde{q}^{2}-\frac{h}{2} \tilde{p}^{2}-\frac{g}{N} \tilde{q}^{4}, \quad \tilde{p}=\sqrt{N} p, \quad \tilde{q}=\sqrt{N} q .
\end{aligned}
$$

- The zero-point energy from the k mode $\tilde{p} \tilde{q} \sim 1 \rightarrow \tilde{p} \sim 1 / \tilde{q} \sim \sqrt{k}$

$$
J k^{2} \tilde{q}^{2}+\frac{h}{2} \tilde{p}^{2}+\frac{g}{N} \tilde{q}^{4} \sim J k+\frac{h}{2} k+\frac{g}{N k^{2}}
$$

The non-linear term is important if

$$
\frac{g}{N k^{2}}>J k \quad \text { or } \quad k<\frac{1}{N^{1 / 3}}
$$

- Since the smallest k is $\frac{1}{N^{1 / d}}$. For $d>3$ there is no k satisfying the above condition (except $k=0$). We can ignore the non-linear term. Our critical theory from quadratic approximation is correct.
- For $d \leq 3$, we cannot ignore the non-linear term.

Our critical theory from quadratic approximation is incorrect.

Quantum fluctuations: relevant/irrelevant perturbations

EOM of Z_{2} order parameter for the $d+1$-transverse Ising model

$$
\rho \ddot{\phi}=g \partial_{\boldsymbol{x}}^{2} \phi+a \phi+b \phi^{3}
$$

Is the $b \phi^{3}$ term importent at the transition point $a=0$?

- The action $S=\int \mathrm{d} t \mathrm{~d}^{d} \boldsymbol{x}\left[\frac{1}{2} \rho(\dot{\phi})^{2}-\frac{1}{2} g\left(\partial_{\boldsymbol{x}} \phi\right)^{2}-\frac{1}{2} a \phi^{2}-\frac{1}{4} b \phi^{4}\right]$
- Treating the above as a quantum system with quatum fluctuations, the term $\frac{1}{4} b \phi^{4}$ is irrelevant if dropping it does not affect the low energy properties at critical point $a=0$. Otherwise, it is revelvent.
- Rescale t to make $\rho=g$ and rescale ϕ to make $\rho=g=1$.
- Consider the fluctuation at length scale ξ. The action for such fluctuation is $S_{\xi}=\int \mathrm{d} t\left[\frac{1}{2} \xi^{d}(\dot{\phi})^{2}-\frac{1}{2} \xi^{d-2} \phi^{2}-\frac{1}{4} b \xi^{d} \phi^{4}\right]$ \rightarrow Oscillator with mass $M=\xi^{d}$ and spring constant $K=\xi^{d-2}$. Oscillator frequency $\omega=\sqrt{K / M}=1 / \xi$. Potential energy for quantum fluctuation $E=\frac{1}{2} \omega=\frac{1}{2} \xi^{d-2} \phi^{2}$. Fluctuation $\phi^{2}=\xi^{1-d}$.
Compare $\xi^{d-2} \phi^{2}$ and $b \xi^{d} \phi^{4}: \frac{b \xi^{d} \phi^{4}}{\xi^{d-2} \phi^{2}}=b \xi^{3-d}$ for $\xi \rightarrow \infty$, we conclude the $b \phi^{4}$ term is irrelevant for $d>3$. Relevant for $d<3$

Simple rules to test relevant/irrelevant perturbations

- After rescaling t to make $\rho=g$ and rescaling ϕ to make $\rho=g=1$, the action becomes $S=\int \mathrm{d} t \mathrm{~d}^{d} \times\left[\frac{1}{2}(\dot{\phi})^{2}-\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-\frac{1}{2} a \phi^{2}-\frac{1}{4} b \phi^{4}\right]$
- Estimate from dimensional analysis:
$[S]=[L]^{0}\left(\right.$ from $\left.\mathrm{e}^{-\mathrm{i} S}\right) .[t]=[L]\left(\right.$ from $\left.\frac{1}{2}(\dot{\phi})^{2}-\frac{1}{2}\left(\partial_{x} \phi\right)^{2}\right)$
$[\phi]=[L]^{\frac{1-d}{2}},[a]=L^{-2},[b]=[L]^{d-3}$
- Counting dimensions:
$[t]=-1,[S]=0$.
$[\phi]=\frac{d-1}{2},[a]=2,[b]=3-d$.
- From the scaling dimensions, we can see that the quantum fluctuations of ϕ^{2} are given by $\phi^{2} \sim L^{1-d}$, and the dimensionless ratio of $L^{d} \frac{1}{L^{2}} \phi^{2}$ and $L^{d} b \phi^{4}$ terms is given by $\frac{b L^{d} \phi^{4}}{L^{d-2} \phi^{2}} \sim b L^{3-d}$
The $b \phi^{4}$ term is irrelevant if $[b]<0$. Relevant if $[b]>0$.
The $a \phi^{2}$ term is always relevant since $[a]=2>0$.
- More precise definition of scaling dimension:

The correlation of ϕ at the critical point $a=b=0$
$\langle\phi(x) \phi(y)\rangle=\frac{1}{|x-y|^{2 h} h^{2}} . h_{\phi}$ is the scaling dimension of $\phi: h_{\phi}=\frac{d-1}{2}$.

Specific heat at the critical point

- Thermal energy density

$$
\epsilon_{T}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} k}{2 \pi} \frac{v|k|}{\mathrm{e}^{v|k| / k_{B} T}-1}=2 \frac{k_{B}^{2} T^{2}}{2 \pi v} \int_{0}^{+\infty} \mathrm{d} x \frac{x}{\mathrm{e}^{x}-1}=\frac{k_{B}^{2} T^{2}}{v} \frac{\pi}{6}
$$

where $\int_{0}^{+\infty} \mathrm{d} x \frac{x}{\mathrm{e}^{x}-1}=\frac{\pi^{2}}{6}$

- Specific heat

$$
c_{T}=\frac{\partial \epsilon_{T}}{\partial T}=k_{B} \frac{k_{B} T}{v} \frac{\pi}{3}=\left(\frac{\pi}{6} k_{B} \frac{k_{B} T}{v}\right)_{R}+\left(\frac{\pi}{6} k_{B} \frac{k_{B} T}{v}\right)_{L}
$$

- The above result is incorrect. The correct one is

$$
c_{T}=\left(\frac{1}{2} \frac{\pi}{6} k_{B} \frac{k_{B} T}{v}\right)_{R}+\left(\frac{1}{2} \frac{\pi}{6} k_{B} \frac{k_{B} T}{v}\right)_{L}
$$

- $\frac{1}{2}=c$ is called the central charge $=$ number of modes.
- Many-body spectrum for one right-moving mode $(c=1)$:
$1,1,2,3,5,7,11, \cdots=$ partition number

Specific heat away from the critical point

Away from the critical point, the boson dispersion becomes $\epsilon_{k}=\sqrt{v^{2} k^{2}+\Delta^{2}}$ where Δ is the many-body spectrum gap on a ring (the energy to create a single boson).

Many-body spectrum for a ring many-body spectrum $=$ spectrum of the set of the oscillators ($\times 2$ in the symmetry breaking phases)
Specific heat

$$
c \sim T^{\alpha} \mathrm{e}^{-\frac{\Delta}{k_{B} T}}
$$

The above result is correct in the symmetric phase, but incorrect in the symmetry breaking phase. The correct one is

$$
c \sim T^{\alpha} \mathrm{e}^{-\frac{\Delta / 2}{k_{B} T}}
$$

Remark: The gap in many-body spectrum for an open line is $\Delta / 2$.

What really is a quasiparticle? \rightarrow factor $1 / 2$

The answer is very different for gapped system and gapless systems. Here, we only consider the definition of quasiparticle for gapped systems.
Consider a many-body system $H_{0}=\sum_{x} H_{x}$, with ground state $\left|\Psi_{\text {grnd }}\right\rangle$.

- a point-like excitation above the ground state is a many-body wave function $\left|\Psi_{\xi}\right\rangle$ that has an energy bump at location ξ : energy density $=\left\langle\Psi_{\xi}\right| H_{x}\left|\Psi_{\xi}\right\rangle$
excitation engergy density, $\xi \quad \begin{aligned} & \text { ground state } \\ & \text { engergy density }\end{aligned}$

More precisely, point-like excitations at locations ξ_{i} are something that can be trapped by local traps $\delta H_{\xi_{i}}:\left|\Psi_{\xi_{i}}\right\rangle$ is the gapped ground state of $H_{0}+\sum_{i} \delta H_{\xi_{i}}$

- the Hamiltonian with traps.

Local and topological excitations

Consider a many-body state $\left|\psi_{\xi_{1}, \xi_{2}, \ldots}\right\rangle$ with several point-like excitations at locations ξ_{i}.
Can the first point-like excitation at ξ_{1} be created by a local operator $O_{\xi_{1}}$ from the ground state: $\left|\Psi_{\left.\xi_{1}, \xi_{2}, \ldots\right\rangle}\right\rangle=O_{\xi_{1}}\left|\Psi_{\left.\xi_{2}, \ldots\right\rangle}\right\rangle$? $\left|\Psi_{\left.\xi_{1}, \xi_{2}, \cdots\right\rangle}\right\rangle=$ the ground state of $H_{0}+\delta H_{\xi_{1}}+\delta H_{\xi_{1}}+\cdots$
$\left|\Psi_{\xi_{2}, \ldots}\right\rangle=$ the ground state of $H_{0}+\delta H_{\xi_{1}}+\cdots$
If yes: the point-like excitation at ξ_{1} is a local excitation If no: the point-like excitation at ξ_{1} is a topological excitation

Local and topological excitations

Consider a many-body state $\left|\Psi_{\xi_{1}, \xi_{2}, \ldots}\right\rangle$ with several point-like excitations at locations ξ_{i}.
Can the first point-like excitation at ξ_{1} be created by a local operator $O_{\xi_{1}}$ from the ground state: $\left|\Psi_{\left.\xi_{1}, \xi_{2}, \ldots\right\rangle}\right\rangle=O_{\xi_{1}}\left|\Psi_{\left.\xi_{2}, \ldots\right\rangle}\right\rangle$? $\left|\Psi_{\xi_{1}, \xi_{2}, \cdots}\right\rangle=$ the ground state of $H_{0}+\delta H_{\xi_{1}}+\delta H_{\xi_{1}}+\cdots$
$\left|\Psi_{\xi_{2}, \cdots}\right\rangle=$ the ground state of $H_{0}+\delta H_{\xi_{1}}+\cdots$
If yes: the point-like excitation at ξ_{1} is a local excitation
If no: the point-like excitation at ξ_{1} is a topological excitation Example: Consider an 1D Ising model $H_{0}=-J \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z}$ with one of the degenerate ground states a state $\mathrm{w} /$ three point-like excitations

$$
\left|\Psi_{\xi_{1} \xi_{2} \xi_{3}}\right\rangle=|\uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \uparrow \uparrow\rangle
$$ $\xi_{1} \quad \xi_{2} \quad \xi_{3}$ - The point-like excitation at ξ_{1} is a spin flip created by $\sigma_{\xi_{1}}^{x}$ - a local excitation.

- The point-like excitations at ξ_{2}, ξ_{3} are topological excitations that cannot be created by any local operators.
The pair can be created by a string operator $W_{\xi_{2} \xi_{3}}=\prod_{i=\xi_{2}}^{\xi_{3}} \sigma_{i}^{\times}$.

Experimental consequence of topological excitations

- The topological topological excitations are fractionalized local excitations: a spin-flip can be viewed as a bound state of two wall excitations spin-flip $=$ wall \otimes wall.
- Energy cost of spin-flip $\Delta_{\text {flip }}=4 \mathrm{~J}$

Energy cost of domain wall $\Delta_{\text {wall }}=2 \mathrm{~J}$.

- The many-body spectrum gap on a ring $\Delta=\Delta_{\text {flip }}=2 \Delta_{\text {wall }}$. This gap can be measured by neutron scattering.

- The thermal activation gap measured by specific heat $c \sim T^{\alpha} e^{-\frac{\Delta_{\text {therm }}}{k_{B} T}}$ is $\Delta_{\text {therm }}=\Delta_{\text {wall }}$.
The difference of the neutron gap Δ and the thermal activation gap $\Delta_{\text {therm }} \rightarrow$ fractionalization.

Another example: 1D spin-dimmer state

Consider a $\mathrm{SO}(3)$ spin rotation symmetric Hamiltonian H_{0} whose ground states are spin-dimmer state formed by spin-singlets, which break the translation symmetry but not spin rotation symmetry:

$$
\begin{aligned}
& (\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow) \\
& \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow
\end{aligned}
$$

- Local excitation $=$ spin-1 excitation

$$
(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow) \uparrow \uparrow(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow)
$$

- Topo. excitation (domain wall) $=$ spin- $1 / 2$ excitation (spinon)

$$
(\uparrow \downarrow)(\uparrow \downarrow) \uparrow(\uparrow \downarrow)(\uparrow \downarrow)(\uparrow \downarrow) \uparrow(\uparrow \downarrow)(\uparrow \downarrow)
$$

- Neutron scattering only creates the spin-1 excitation $=$ two spinons. It measures the two-spinon gap (spin-1 gap).
Thermal activation sees single spinon gap.

Neutron scattering spectrum

Neutron dump energymomentum into the sample creating a few excitations.

- Without fractionalization, nor trans. symm. breaking $\epsilon_{\text {spin- } 1}(k)=2.6+2 \cos (k)$
- With fractionalization and trans. sym. breaking
$\epsilon_{\text {spin }-1 / 2}(k)=\frac{1}{2} \epsilon(2 k)_{\text {spin }-1}$ one spin-1 + two spin-1

Neutron pulse
 (white beam)

two spin- $1 / 2+$ four sppriol $-1 / 2$

2D Spin liquid without symmetry breaking (topo. order)

The spin-1 fractionalization into spin- $1 / 2$ spinon can happen in 2D spin liquid without translation and $S O(3)$ spin-rotation symmetry breaking:

- On square lattice:
 chiral spin liquid $\sum \Psi(R V B)|R V B\rangle \rightarrow$ topological order
Kalmeyer-Laughlin PRL 592095 (87); Wen-Wilczek-Zee PRB 3911413 (89)
Z_{2} spin liquid $\sum|R V B\rangle$ (emergent low energy Z_{2} gauge theory)
Read-Sachdev PRL 661773 (91); Wen PRB 442664 (91)
Z_{2}-charge $($ spin- $1 / 2)=$ Spinon. Z_{2}-vortex $($ spin- 0$)=$ Vison. Bound state $=$ fermion (spin-1/2).

2D Spin liquid without symmetry breaking (topo. order)

- On Kagome lattice:

Feng etal arXiv:1702.01658 $\mathrm{Cu}_{3} \mathrm{Zn}(\mathrm{OH})_{6} \mathrm{FBr}$

$J_{1}-J_{2}-J_{3}$ model Gong-Zhu-Balents-Sheng arXiv:1412.1571

- Uniform spin susceptibilty comes from spin excitations: $\chi \sim \mathrm{e}^{-\Delta_{\text {spinon }} / k_{B} T}$. In a strong magnetic field, the activation gap $\Delta_{\text {spinon }}$ is reduced to $\Delta_{\text {spinon }}-B g s$.
 Knowing the g-factor, we can measure the spin s of the spinons.

Duality between 1D boson/spin and 1D fermion systems

To obtain the correct critical theory for the transverse Ising model, we need to use the duality between 1D boson/spin systems and 1D fermion systems.
Duality: Two different theories that describe the same thing. Two different looking theories that are equivalent.

- If we view down-spin as vacuum and up-spin as a boson, we can view a hard-core boson system as a spin- $1 / 2$ system. Now we view a system of hard-core bosons hopping on a line/ring of L sites as a spin- $1 / 2$ system. How to write down the spin Hamiltonian to describe such a boson-hopping system?
$\sigma^{ \pm}=\left(\sigma^{x} \pm \mathrm{i} \sigma^{y}\right) / 2: \sigma_{i}^{-}$annihilates (σ_{i}^{+}creates) a boson at site- i, $|\downarrow\rangle=|0\rangle,|\uparrow\rangle=|1\rangle . H_{\text {boson-hc }}=\sum_{i}\left(-t \sigma_{i}^{+} \sigma_{i+1}^{-}+\right.$h.c. $)$describes a hard-core bosons hopping model.
- Similarly, we can also view a system of spin-less fermions on a line/ring of L sites as a spin- $1 / 2$ system. How to write down the spin Hamiltonian for such a fermion-hopping system?

Jordan-Wigner transformation on a 1D line of L sites

- $c_{i}=\sigma_{i}^{+} \prod_{j<i} \sigma_{j}^{z}, \quad \sigma^{ \pm}=\left(\sigma^{x} \pm \mathrm{i} \sigma^{y}\right) / 2$. One can check that

$$
\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=0, \quad\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i j}, \quad\{A, B\} \equiv A B-B A
$$

c_{i}^{\dagger}, c_{i} create/annihilate a fermion at site- $i,|\downarrow\rangle=|0\rangle,|\uparrow\rangle=|1\rangle$

- Mapping between spin/boson chain and fermion chain:
$c_{i}^{\dagger} c_{i}=\sigma_{i}^{-} \sigma_{i}^{+}=\left(-\sigma_{i}^{z}+1\right) / 2=n_{i}$, fermion number operator
$c_{i}^{\dagger} c_{i+1}=\sigma_{i}^{-} \sigma_{i+1}^{+} \sigma_{i}^{z}=\sigma_{i}^{-} \sigma_{i+1}^{+}, \quad c_{i} c_{i+1}=\sigma_{i}^{+} \sigma_{i+1}^{+} \sigma_{i}^{z}=-\sigma_{i}^{+} \sigma_{i+1}^{+}$
- XY model $=$ fermion model on an open chain
$H_{\text {fermion }}=\sum_{i}\left(-t c_{i}^{\dagger} c_{i+1}+\right.$ h.c. $)-\mu n_{i} \quad \leftrightarrow$
$H_{X Y}=\sum_{i}\left(-t \sigma_{i}^{+} \sigma_{i+1}^{-}+h . c.\right)+\mu \frac{\sigma_{i}^{z}}{2}=\sum_{i}-\frac{t}{2}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)+\mu \frac{\sigma_{i}^{z}}{2}$
- A phase transition in XY model: as we tune μ through $\mu_{c}= \pm 2 t$, the ground state energy density ϵ_{μ} has a singularity
\rightarrow a phase transition.
How to solve the model exactly to obtain the above result?
The model $H_{\text {fermion }}$ or $H_{X Y}$ looks not solvable since H^{\prime} s are not a sum of commuting terms.

Make the Hamiltonian into a sum of commuting terms

- The anti-commutation relation

$$
\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=0, \quad\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i j}
$$

is invariant under the unitary transformation of the fermion operators:

$$
\tilde{c}_{i}=U_{i j} c_{j}: \quad\left\{\tilde{c}_{i}, \tilde{c}_{j}\right\}=\left\{\tilde{c}_{i}^{\dagger}, \tilde{c}_{j}^{\dagger}\right\}=0, \quad\left\{\tilde{c}_{i}, \tilde{c}_{j}^{\dagger}\right\}=\delta_{i j}
$$

- Assume the fermions live on a ring.
see the homework

$$
\text { Let } \psi_{k}=\frac{1}{\sqrt{L}} \sum_{i} \mathrm{e}^{i k i} c_{i}\left(k=\frac{2 \pi}{L} \times \text { integer }\right)
$$

$$
\begin{aligned}
H_{\text {fermion }} & =\sum_{i}\left(-t c_{i}^{\dagger} c_{i+1}+\text { h.c. }\right)+g c_{i}^{\dagger} c_{i}=\sum_{k} \epsilon(k) \psi_{k}^{\dagger} \psi_{k} \\
\epsilon(k) & =-2 t \cos k-\mu, \quad\left[\psi_{k}^{\dagger} \psi_{k}, \psi_{k^{\prime}}^{\dagger} \psi_{k^{\prime}}\right]=0, \quad n_{k} \equiv \psi_{k}^{\dagger} \psi_{k}= \pm 1
\end{aligned}
$$

- From the one-body dispersion, we obtain many-body energy spectrum $E=\sum_{k} \epsilon(k) n_{k}, K=\sum_{k} k n_{k} \bmod \frac{2 \pi}{a}, n_{k}=0,1$.

Majorana fermions and critical point of Ising model

- $\lambda_{i}^{x}=\sigma_{i}^{x} \prod_{j<i} \sigma_{j}^{z}, \quad \lambda_{i}^{y}=\sigma_{i}^{y} \prod_{j<i} \sigma_{j}^{z}$. One can check that

$$
\left(\lambda_{i}^{x}\right)^{\dagger}=\lambda_{i}^{x},\left(\lambda_{i}^{y}\right)^{\dagger}=\lambda_{i}^{y} ; \quad\left\{\lambda_{i}^{x}, \lambda_{j}^{x}\right\}=\left\{\lambda_{i}^{y}, \lambda_{j}^{y}\right\}=2 \delta_{i j},\left\{\lambda_{i}^{x}, \lambda_{j}^{y}\right\}=0 .
$$

- Ising model $=$ Majorana-fermion on a open chain of L sites:

$$
\begin{aligned}
& \lambda_{i}^{x} \lambda_{i}^{y}=\mathrm{i} \sigma_{i}^{z}, \quad \lambda_{i}^{y} \lambda_{i+1}^{x}=\sigma_{i}^{y} \sigma_{i+1}^{x} \sigma_{i}^{z}=\mathrm{i} \sigma_{i}^{x} \sigma_{i+1}^{x} \\
& H_{\text {Ising }}=\sum_{i}-\sigma_{i}^{x} \sigma_{i+1}^{x}-h \sigma_{i}^{z} \leftrightarrow \quad H_{\text {fermion }}=\sum_{i} \mathrm{i} \lambda_{i}^{y} \lambda_{i+1}^{x}+\mathrm{i} h \lambda_{i}^{x} \lambda_{i}^{y}
\end{aligned}
$$

Critical point (gapless point) is at $h=1$ (not $h=2$ from meanfield theory): $H_{\text {fermion }}^{\text {critical }}=\sum_{I} \mathrm{i} \eta_{I} \eta_{I+1}, \quad \eta_{2 i+1}=\lambda_{i}^{x}, \quad \eta_{2 i}=\lambda_{i}^{y}$.

- $\ln k$-space, $\psi_{k}=\frac{1}{\sqrt{2}} \sum_{l} \frac{\mathrm{e}^{\mathrm{i} \frac{k}{2}}}{\sqrt{2 L}} \eta_{I}, \frac{k}{2}=\frac{2 \pi}{2 L} n \in[-\pi, \pi]$:

$$
\psi_{k}^{\dagger}=\psi_{-k}, \quad\left\{\psi_{k}^{\dagger}, \psi_{k^{\prime}}\right\}=\delta_{k-k^{\prime}} \quad \text { (assume on a ring) }
$$

$$
H_{\text {fermion }}^{\text {critical }}=\sum_{k \in[-2 \pi, 2 \pi]} 2 \mathrm{i} \mathrm{e}^{\mathrm{i} \frac{1}{2} k} \psi_{-k} \psi_{k}=\sum_{k \in[0,2 \pi]} \epsilon(k) \psi_{k}^{\dagger} \psi_{k}, \quad \epsilon(k)=4\left|\sin \frac{k}{2}\right| .
$$

1D Ising critical point: $1 / 2$ mode of right (left) movers

- The Majorana fermion contain
a right-moving mode $\epsilon=v k$ and
a left-moving modes. $\epsilon=-v k$

- Thermal energy density (for a right moving mode):

$$
\epsilon_{T}=\int_{0}^{+\infty} \frac{\mathrm{d} k}{2 \pi} \frac{v k}{\mathrm{e}^{v k / k} T+1}=\frac{k_{B}^{2} T^{2}}{2 \pi v} \int_{0}^{+\infty} \mathrm{d} x \frac{x}{\mathrm{e}^{x}+1}=\frac{k_{B}^{2} T^{2}}{v} \frac{\pi}{24}
$$

where $\int_{0}^{+\infty} \mathrm{d} x \frac{x}{\mathrm{e}^{x}+1}=\frac{\pi^{2}}{12}$

- Specific heat

$$
c_{T}=\frac{\partial \epsilon_{T}}{\partial T}=\frac{1}{2} k_{B} \frac{k_{B} T}{v} \frac{\pi}{6}
$$

Central charge $c=1 / 2$ for right (left) movers.

- On a ring of size L and at critical point: the ground state energy has a form $E=\epsilon L+\frac{2 \pi v}{L}\left(-\frac{c}{24}\right)$, where c in the "Casimir term" (the $1 / L$ term) is also the central charge.
Do we have a similar result for an open Line?

A story about central charge c (conformal field theory)

- Central charge is a property of 1D gapless system with a finite and unique velocity. $c=c_{L}+c_{R}=0$ for gapped systems.
- It has an additive property: $A \boxtimes_{\text {stacking }} B=C \rightarrow c_{A}+c_{B}=c_{C}$
- It measures how many low energy excitation are there.

Specific heat (heat capacity per unit length) $C=C \frac{\pi}{6} \frac{T}{\mathrm{~V}}$

A story about central charge c (conformal field theory)

- Central charge is a property of 1D gapless system with a finite and unique velocity. $c=c_{L}+c_{R}=0$ for gapped systems.
- It has an additive property: $A \boxtimes_{\text {stacking }} B=C \rightarrow c_{A}+c_{B}=c_{C}$
- It measures how many low energy excitation are there.

Specific heat (heat capacity per unit length) $C=C \frac{\pi}{6} \frac{T}{\mathrm{~V}}$

- Why ground state energy $E=\rho_{\epsilon} L-\frac{c}{24} \frac{2 \pi}{L}$ sees central charge $(v=1)$?

Partition function: $Z(\beta, L)=\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)=\left.\mathrm{e}^{-\beta L \rho_{\epsilon}-\frac{2 \pi \beta}{L} \frac{c}{24}}\right|_{\beta \rightarrow \infty}$

- A magic: emergence of $O(2)$ symmetry in space-(imaginary-)time

$$
Z(\beta, L)=Z(L, \beta), \quad \text { have used } v=1
$$

This allows us to find $Z(\beta, L)=\left.\mathrm{e}^{-\beta L \rho_{\epsilon}-\frac{2 \pi L}{\beta} \frac{c}{24}}\right|_{L \rightarrow \infty}$
Free energy density $f=\rho_{\epsilon}-\frac{2 \pi}{(\beta)^{2}} \frac{c}{24}$

$$
=\rho_{\epsilon}-2 \pi T^{2} \frac{c}{24}
$$

Specific heat $C=-T \frac{\partial^{2} F}{\partial T^{2}}=T \frac{\pi}{6} C$

Belavin-Polyakov-Zamolodchikov NPB 241,333(84); Ginsparg hep-th/9108028

The neutron scattering and spectral function (Ising model)

Assume the neutron spin couples to Ising spin via $S_{i}^{z} \sim \sigma_{i}^{z}$ (no S^{z}-spin flip, but scattering flips $S^{x, y}$). After scattering, the neutron dump something to the system $|\Psi\rangle \rightarrow \sigma_{i}^{z}|\Psi\rangle$. What is the scattering spectrum? The spectra function of σ_{i}^{z} :

$$
\begin{aligned}
I(E, K)= & \langle\Psi| \sigma_{i}^{z} \delta(\hat{H}-E) \delta(\hat{K}-K) \sigma_{i}^{z}|\Psi\rangle \\
\sigma_{i}^{z}= & \mathrm{i} \eta_{2 i} \eta_{2 i+1}=\frac{2 \mathrm{i}}{L} \sum_{k_{1}, k_{2}} \mathrm{e}^{\mathrm{i} k_{1} i} \mathrm{e}^{\mathrm{i} k_{2}\left(i+\frac{1}{2}\right)} \psi_{k_{1}} \psi_{k_{2}} \\
I(E, K)= & \frac{4}{L^{2}}\langle\Psi| \sum_{k_{1}, k_{2}} \mathrm{e}^{\mathrm{i} k_{1} i} \mathrm{e}^{\mathrm{i} k_{2}\left(i+\frac{1}{2}\right)} \psi_{k_{1}} \psi_{k_{2}} \delta\left(\epsilon_{k_{1}^{\prime}}+\epsilon_{k_{2}^{\prime}}-E\right) \\
& \delta\left(k_{1}^{\prime}+k_{2}^{\prime}-K\right) \sum_{k_{1}^{\prime}, k_{2}^{\prime}} \mathrm{e}^{-\mathrm{i} k_{1}^{\prime} i} \mathrm{e}^{-\mathrm{i} k_{2}^{\prime}\left(i+\frac{1}{2}\right)} \psi_{k_{2}^{\prime}}^{\dagger} \psi_{k_{1}^{\prime}}^{\dagger}|\Psi\rangle \\
= & \frac{4}{L^{2}} \sum_{k_{1}, k_{2} \in[0,2 \pi]} \delta\left(\epsilon_{k_{1}}+\epsilon_{k_{2}}-E\right) \delta\left(k_{1}+k_{2}-K\right)\left(1-\mathrm{e}^{\mathrm{i} \frac{1}{2}\left(k_{1}-k_{2}\right)}\right)
\end{aligned}
$$

The neutron scattering and spectral function (Ising model)

$$
\begin{gathered}
I(E, K)=4 \int_{0}^{2 \pi} \frac{\mathrm{~d} k_{1} \mathrm{~d} k_{2}}{(2 \pi)^{2}} \delta\left(\epsilon_{k_{1}}+\epsilon_{k_{2}}-E\right) \delta\left(k_{1}+k_{2}-K\right)\left(1-\cos \frac{k_{1}-k_{2}}{2}\right) \\
I_{0}(E, K)=4 \int_{0}^{2 \pi} \frac{\mathrm{~d} k_{1} \mathrm{~d} k_{2}}{(2 \pi)^{2}} \delta\left(\epsilon_{k_{1}}+\epsilon_{k_{2}}-E\right) \delta\left(k_{1}+k_{2}-K\right)
\end{gathered}
$$

where $\epsilon_{k}=4\left|\sin \frac{k}{2}\right|$.

$$
I(E, K)
$$

$I_{0}(E, K)$: two-fermion density of states

$-\pi \quad K \quad \pi$

$-\pi \quad K$

- What is the spectral function for σ_{i}^{x} ? for $\sigma_{i}^{x} \sigma_{j}^{x}$? Why σ_{i}^{x} is hard?

A general picture of specture function

We can understand the spectral function of an operator O_{X} by writing it in terms of quasiparticle creating/annihilation operators

$$
\begin{aligned}
O_{i} & =C_{1} a_{i}^{\dagger}+C_{2} a_{i}^{\dagger} a_{i+1}^{\dagger}+\cdots \\
& =C_{1} \int \mathrm{~d} k a_{k}^{\dagger}++C_{2} \int \mathrm{~d} k_{1} \mathrm{~d} k_{2} a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} \mathrm{e}^{-\mathrm{i}\left[k_{1} i+k_{2}(i+1)\right]}+\cdots
\end{aligned}
$$

Assume one-particle spectrum to be $\epsilon(k)=2.6+2 \cos (k) \rightarrow$
Two-particle spectrum will be $E=\epsilon\left(k_{1}\right)+\epsilon\left(k_{2}\right), K=k_{1}+k_{2}$

Specture function and time-ordered correlation functions

- Consider a 0 d system with ground state $|0\rangle$ with energy $E_{0}=0$. An operator O creates excitations, and have a spectral function

$$
I(\omega)=\langle 0| O^{\dagger} \delta(\hat{H}-\omega) O|0\rangle
$$

- Time-ordered correlation function of $O(t)=\mathrm{e}^{\mathrm{i} \hat{H} t} O \mathrm{e}^{-\mathrm{i} \hat{H} t}$:

$$
\begin{aligned}
G(t) & =\mathrm{i}\langle 0| \mathcal{T}[O(t) O(0)]|0\rangle=\mathrm{i} \begin{cases}\langle 0| O(t) O(0)|0\rangle, & t>0 \\
\langle 0| O(0) O(t)|0\rangle, & t<0\end{cases} \\
& =\mathrm{i}\left\{\begin{array}{ll}
\langle 0| O \mathrm{e}^{-\mathrm{i} \hat{H} t} O|0\rangle, & t>0 \\
\langle 0| O \mathrm{e}^{\mathrm{i} \hat{H} t} O|0\rangle, & t<0
\end{array}=\mathrm{i} \begin{cases}\int_{0}^{+\infty} \mathrm{d} \omega \mathrm{e}^{-\mathrm{i} \omega t} l(\omega), & t>0 \\
\int_{0}^{+\infty} \mathrm{d} \omega \mathrm{e}^{\mathrm{i} \omega t} l(\omega), & t<0\end{cases} \right.
\end{aligned}
$$

$$
G(\omega)=\int \mathrm{d} t G(t) \mathrm{e}^{\mathrm{i} \omega t}=\mathrm{i} \int_{0}^{+\infty} \mathrm{d} t \int_{0}^{+\infty} \mathrm{d} \omega^{\prime}\left(\mathrm{e}^{-\mathrm{i}\left(\omega^{\prime}-\omega-\mathrm{i} 0^{+}\right) t} l\left(\omega^{\prime}\right)-\mathrm{e}^{-\mathrm{i}\left(\omega^{\prime}+\omega-\mathrm{i} 0^{+}\right) t} l\left(\omega^{\prime}\right)\right.
$$

$$
=\int_{0}^{+\infty} \mathrm{d} \omega^{\prime}\left(\frac{I\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega-\mathrm{i} 0^{+}}-\frac{I\left(\omega^{\prime}\right)}{\omega^{\prime}+\omega-\mathrm{i} 0^{+}}\right)=\int_{-\infty}^{+\infty} \mathrm{d} \omega^{\prime} \frac{I\left(\left|\omega^{\prime}\right|\right)}{\omega^{\prime}-\omega-\mathrm{i} 0^{+} \operatorname{sgn} \omega^{\prime}}
$$

$$
I(\omega)=\frac{\operatorname{sgn}(\omega)}{\pi} \operatorname{Im} G(\omega) . \quad \text { Adding i } 0^{+} \text {to regulate the integral } \int_{0}^{+\infty} \mathrm{d} t
$$

- In higher dimensions: $G(t, x) \rightarrow G(\omega, k) \rightarrow I(\omega, k)=\frac{\operatorname{sgn}(\omega)}{\pi} \operatorname{Im} G(\omega, k)$

The neutron scattering and spectral function (XY model)

1D XY model (superfuild of bosons) $=1 \mathrm{D}$ non-interacting fermions $H_{X Y}=\sum_{i}-\frac{t}{2}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)-\mu \frac{\sigma_{i}^{z}}{2} \leftrightarrow H_{\mathrm{f}}=\sum_{i}\left(t c_{i}^{\dagger} c_{i+1}+\right.$ h.c. $)-\mu n_{i}$
Let us assume the neutron coupling is $S_{i}^{z} \sim \sigma_{i}^{z}$ (ie neutrons see the boson density) \rightarrow Spectral function of operator $\sigma_{i}^{z}=c_{i}^{\dagger} c_{i}$ (adding a particle-hole pair)

$$
\begin{aligned}
I(E, K)= & \langle\Psi| c_{i}^{\dagger} c_{i} \delta(\hat{H}-E) \delta(\hat{K}-K) c_{i}^{\dagger} c_{i}|\Psi\rangle \\
= & \frac{1}{L^{2}}\langle\Psi| \sum_{k_{1}, k_{2}} \mathrm{e}^{\mathrm{i} k_{1} i} \mathrm{e}^{\mathrm{i} k_{2} i} \psi_{k_{1}}^{\dagger} \psi_{k_{2}} \delta\left(-\epsilon_{k_{1}^{\prime}}+\epsilon_{k_{2}^{\prime}}-E\right) \\
& \delta\left(-k_{1}^{\prime}+k_{2}^{\prime}-K\right) \sum_{k_{1}^{\prime}, k_{2}^{\prime}} \mathrm{e}^{-\mathrm{i} k_{1}^{\prime} i} \mathrm{e}^{-\mathrm{i} k_{2}^{\prime} i} \psi_{k_{2}^{\prime}}^{\dagger} \psi_{k_{1}^{\prime}|\Psi\rangle}|\Psi\rangle \\
= & \int_{\epsilon_{k_{1}}<0, \epsilon_{k_{2}}>0} \frac{\mathrm{~d} k_{1} \mathrm{~d} k_{2}}{(2 \pi)^{2}} \delta\left(-\epsilon_{k_{1}}+\epsilon_{k_{2}}-E\right) \delta\left(-k_{1}+k_{2}-K\right)
\end{aligned}
$$

where $\epsilon_{k}=2 t \cos k-\mu$ and $c_{i}=\frac{1}{\sqrt{L}} \sum_{k} \mathrm{e}^{\mathrm{i} k i} \psi_{k}$

The neutron scattering and spectral function (XY model)

Spectral function of $n_{i} \sim \sigma_{i}^{z}$ for the superfluid/XY-model

$$
\text { For } \mu=0,\left\langle\sigma_{i}^{z}\right\rangle=0
$$

$-\pi$

$$
\text { For } \mu=-1, \quad\left\langle\sigma_{i}^{z}\right\rangle \neq 0
$$

$-\pi$
π
Particle-hole spactral function. In additional to the low energy excitations near $k=0$, why are there low energy excitations at large $K_{ \pm}= \pm 2 \pi n ? K_{ \pm}$only depend on boson density n ! What is the single particle spectral function of σ_{i}^{+}? $\sigma_{i}^{+}=c_{i}^{\dagger} \prod_{j<i}\left(2 c_{j}^{\dagger} c_{j}-1\right)$

The neutron scattering and spectral function (XY model)

Particle-particle spectral function of $\sigma_{i}^{+} \sigma_{i+1}^{+}$(adding two bosons)

$$
\begin{aligned}
& I(E, K)=\langle\Psi| c_{i+1} c_{i} \delta(\hat{H}-E) \delta(\hat{K}-K) c_{i}^{\dagger} c_{i+1}^{\dagger}|\Psi\rangle \\
& =\frac{1}{L^{2}}\langle\Psi| \sum_{k_{1}, k_{2}} \mathrm{e}^{\mathrm{i} k_{1}(i+1)} \mathrm{e}^{\mathrm{i} k_{2} i} \psi_{k_{1}} \psi_{k_{2}} \delta\left(\epsilon_{k_{1}^{\prime}}+\epsilon_{k_{2}^{\prime}}-E\right) \\
& \quad \delta\left(k_{1}^{\prime}+k_{2}^{\prime}-K\right) \sum_{k_{1}^{\prime}, k_{2}^{\prime}} \mathrm{e}^{-\mathrm{i} k_{1}^{\prime}(i+1)} \mathrm{e}^{-\mathrm{i} k_{2}^{\prime}} \psi_{k_{2}^{\prime}}^{\dagger} \psi_{k_{1}^{\prime}}^{\dagger}|\Psi\rangle \\
& =\int_{\substack{\epsilon_{k_{1}>0}>0 \\
\epsilon_{k_{2}}>0}} \frac{\mathrm{~d} k_{1} \mathrm{~d} k_{2}}{(2 \pi)^{2}} \delta\left(\epsilon_{k_{1}}+\epsilon_{k_{2}}-E\right) \delta\left(k_{1}+k_{2}-K\right)\left[1-\cos \left(k_{1}-k_{2}\right)\right]
\end{aligned}
$$

$\mu=0$ and
$\mu=-1$
2-particle
spectral function

XY model for superfluid: dynamical variational approach

Compute single-particle spectral function using an approximation
We are going to use the approximated variational approach for XY model (not bad for superfluid phase. See also prob. 4.2):
$\left.H=-\sum_{i} J\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)+h \sigma_{i}^{z}\right)$.
Trial wave function $\left|\Psi_{\phi_{i}}\right\rangle=\otimes_{i}\left|\phi_{i}\right\rangle$,
where $\left|\phi_{i}\right\rangle=\frac{|\uparrow\rangle+\phi_{i}|\downarrow\rangle}{\sqrt{1+\left|\phi_{i}\right|^{2}}},\left\langle\sigma_{i}^{+}\right\rangle=\frac{\phi_{i}}{1+\left|\phi_{i}\right|^{2}}$.

- Average energy $\bar{H}=-\sum_{i}\left[2 J \frac{\phi_{i} \phi_{i+1}^{*}+h . c .}{\left(1+\left|\phi_{i}\right|^{2}\right)\left(1+\left|\phi_{i+1}\right|^{2}\right)}+h \frac{1-\left|\phi_{i}\right|^{2}}{1+\left|\phi_{i}\right|^{2}}\right]$

Geometric phase term $\left\langle\phi_{i}\right| \frac{\mathrm{d}}{\mathrm{d} t}\left|\phi_{i}\right\rangle=\frac{\phi_{i}^{*} \dot{\phi}_{i}}{1+\left|\phi_{i}\right|^{2}}+\frac{\mathrm{d}}{\mathrm{d} t} \#$
Phase space Lagrangian in symmetry breaking phase (up to φ_{i}^{2})
($\phi_{i}=\bar{\phi}+\varphi_{i}$ for $J>0$ or $\phi_{i}=\bar{\phi}(-)^{i}+\varphi_{i}$ for $J<0$)
$L=\left\langle\Phi_{\phi_{i}}\right| \mathrm{i} \frac{\mathrm{d}}{\mathrm{d} t}-H\left|\Phi_{\phi_{i}}\right\rangle=\sum_{i} \mathrm{i} \phi_{i}^{*} \dot{\phi}_{i}+2 J\left(\phi_{i} \phi_{i+1}^{*}+\right.$ h.c. $)-2 h\left|\phi_{i}\right|^{2}-g\left|\phi_{i}\right|^{4}$
$=\sum_{i} \mathrm{i} \varphi_{i}^{*} \dot{\varphi}_{i}+2 J\left(\varphi_{i} \varphi_{i+1}^{*}+\right.$ h.c. $)-2 h \varphi_{i} \varphi_{i}^{*}-g \bar{\phi}^{2}[4 \varphi_{i} \varphi_{i}^{*}+\underbrace{\varphi_{i}^{2}+\left(\varphi_{i}^{*}\right)^{2}}]$
with $g \bar{\phi}^{2}=2|J|-h$.

Quantum XY model

Quantization:

$$
\begin{aligned}
& {\left[\varphi_{i}, \varphi_{j}^{\dagger}\right]=\delta_{i j}, \quad \varphi_{i}=\frac{1}{\sqrt{L}} \sum_{k} \mathrm{e}^{i k i} a_{k}, \quad\left[a_{k}, a_{q}^{\dagger}\right]=\delta_{k q} } \\
& H=\sum_{i}-2 J\left(\varphi_{i} \varphi_{i+1}^{\dagger}+h . c .\right)+2 h \varphi_{i}^{\dagger} \varphi_{i}+(2|J|-h)\left(4 \varphi_{i}^{\dagger} \varphi_{i}+\varphi_{i} \varphi_{i}+\varphi_{i}^{\dagger} \varphi_{i}^{\dagger}\right) \\
&=\sum_{k}(-4 J \cos k+8|J|-2 h) a_{k}^{\dagger} a_{k}+(2|J|-h)\left(a_{k} a_{-k}+a_{k}^{\dagger} a_{-k}^{\dagger}\right) \\
&= \sum_{k \in[0, \pi]}\left(\begin{array}{ll}
a_{k}^{\dagger} & a_{-k}
\end{array}\right)\left(\begin{array}{cc}
-4 J \cos k+8|J|-2 h & 2(2|J|-h) \\
2(2|J|-h) & -4 J \cos k+8|J|-2 h
\end{array}\right)\binom{a_{k}}{a_{-k}^{\dagger}} \\
&= \sum_{k \in[0, \pi]}\left(\begin{array}{ll}
a_{k}^{\dagger} & a_{-k}
\end{array}\right)\left(\begin{array}{cc}
\epsilon_{k} & \Delta \\
\Delta & \epsilon_{k}
\end{array}\right)\binom{a_{k}}{a_{-k}^{\dagger}}, \\
& \epsilon_{k}=-4 J \cos k+8|J|-2 h, \\
& \Delta=2(2|J|-h) .
\end{aligned}
$$

To diagonalize the above Hamiltonian, let

$$
\binom{a_{k}}{a_{-k}^{\dagger}}=U\binom{b_{k}}{b_{-k}^{\dagger}}, U=\left(\begin{array}{cc}
u_{k} & -v_{k} \\
-v_{k} & u_{k}
\end{array}\right), U\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) U=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where $u_{k}^{2}-v_{k}^{2}=1$

Quantum XY model

$$
\begin{aligned}
& H=\sum_{k \in[0, \pi]}\left(\begin{array}{ll}
a_{k}^{\dagger} & a_{-k}
\end{array}\right)\left(\begin{array}{cc}
\epsilon_{k} & \Delta \\
\Delta & \epsilon_{k}
\end{array}\right)\binom{a_{k}}{a_{-k}^{\dagger}} \\
& U\left(\begin{array}{cc}
\epsilon_{k} & \Delta \\
\Delta & \epsilon_{k}
\end{array}\right) U=\left(\begin{array}{ll}
\left(u^{2}+v^{2}\right) \epsilon_{k}-2 u v \Delta & \left(u^{2}+v^{2}\right) \Delta-2 u v \epsilon_{k} \\
\left(u^{2}+v^{2}\right) \Delta-2 u v \epsilon_{k} & \left(u^{2}+v^{2}\right) \epsilon_{k}-2 u v \Delta
\end{array}\right) \\
& =\left(\begin{array}{cc}
E_{k} & 0 \\
0 & E_{k}
\end{array}\right), \quad E_{k}=\sqrt{\epsilon_{k}^{2}-\Delta^{2}} \\
& u^{2}+v^{2}=\frac{\epsilon_{k}}{E_{k}}, \\
& 2 u v=\frac{\Delta}{E_{k}}, \\
& u=\sqrt{\frac{\frac{\epsilon_{k}}{E_{k}}+1}{2}}, \quad v=\sqrt{\frac{\frac{\epsilon_{k}}{E_{k}}-1}{2}} \\
& H=\sum_{k} b_{k}^{\dagger} \underbrace{\sqrt{(-4 J \cos k+8|J|-2 h)^{2}-(4|J|-2 h)^{2}}}_{\sqrt{\epsilon_{k}^{2}-\Delta^{2}}=\left.E_{k} \rightarrow 0\right|_{k \rightarrow 0}, \text { spin-wave dispersion }} b_{k}
\end{aligned}
$$

The spectral function - XY model (only for $\left\langle\sigma^{+}\right\rangle=\bar{\phi}$)

- Spectral function for $\sigma^{+} \sim \bar{\phi}+\varphi_{i}^{\dagger}$, and $\left(\sigma^{+}\right)^{2} \sim \bar{\phi}^{2}+2 \bar{\phi} \varphi_{i}^{\dagger}+\left(\varphi_{i}^{\dagger}\right)^{2}$
$\varphi_{i}^{\dagger}=\frac{1}{\sqrt{L}} \sum_{k} \mathrm{e}^{-i k i} a_{k}^{\dagger}$
$=\frac{1}{\sqrt{L}} \sum_{k} \mathrm{e}^{-i k i}\left(u_{k} b_{k}^{\dagger}-v_{k} b_{-k}\right)$

$$
I(E, K) \sim u_{K}^{2} \delta\left(E_{K}-E\right)=\left.\frac{\frac{\epsilon_{k}}{E_{k}}+1}{2} \delta\left(E_{K}-E\right) \rightarrow \infty\right|_{k \rightarrow 0}
$$

- Spectral function for $n_{i}=\frac{\sigma_{i}^{2}-1}{2} \sim \sigma_{i}^{\times} \sim \varphi_{i}+\varphi_{i}^{\dagger}$

$$
\begin{aligned}
& \varphi_{i}+\varphi_{i}^{\dagger}=\frac{1}{\sqrt{L}} \sum_{k} \mathrm{e}^{-\mathrm{i} k i}\left(a_{-k}+a_{k}^{\dagger}\right) \\
& =\frac{1}{\sqrt{L}} \sum_{k} \mathrm{e}^{-\mathrm{i} k i}\left(u_{k} b_{-k}-v_{k} b_{k}^{\dagger}+u_{k} b_{k}^{\dagger}-v_{k} b_{-k}\right) \\
& I(E, K) \sim\left(u_{K}-v_{K}\right)^{2} \delta\left(E_{K}-E\right)=\left.\frac{E_{k}}{\epsilon_{k}+\Delta} \delta\left(E_{K}-E\right) \rightarrow 0\right|_{k \rightarrow 0}
\end{aligned}
$$

The spectral function - XY model (only for $\left\langle\sigma^{+}\right\rangle=\bar{\phi}$)

The following picture work in higher dimension since $\left\langle\sigma_{i}^{+}\right\rangle=\bar{\phi}$ (symmetry breaking) $\left\langle\sigma_{i}^{+} \sigma_{j}^{-}\right\rangle \sim$ const. for large $|i-j|$

But does not quite work in 1 dimension (or $1+1$ dimensions) since $\left\langle\sigma_{i}^{+}\right\rangle=0$ (no symmetry breaking).
We only have a nearly symmetry breaking

$$
\left\langle\sigma_{i}^{+} \sigma_{j}^{-}\right\rangle \sim \frac{1}{|i-j|^{\alpha}} \text { for large }|i-j|
$$

Neutron scattering spectrum for 2-dimensional $\alpha-\mathrm{RuCl}_{3}$

Banerjee etal arXiv:1706.07003

- Spin-1/2 on honeycomb lattice
with strong spin-orbital coupling.
- Spin ordered phase below 8T, spin liquid above 8 T
- Magnetic field: (a-e) $B: 0,2,4,6,8 T$ (a-e) $T=2 K$
(f) $T=2 K, B=0 T$

1d field theory to study no $U(1)$ symmetry breaking in 1D

Phase space Lagrangian in "symmetry breaking phase" of 1D XY model: $\phi_{i}=\left(\bar{\phi}+q_{i}\right) \mathrm{e}^{-\mathrm{i} \theta_{i}}, \bar{\phi}^{2}=\frac{2 J-h}{g}$, near the transition $\bar{\phi} \sim 0$

$$
\begin{aligned}
L= & \sum_{i} \mathrm{i} \phi_{i}^{*} \dot{\phi}_{i}+2 J\left(\phi_{i} \phi_{i+1}^{*}+\text { h.c. }\right)-2 h\left|\phi_{i}\right|^{2}-g\left|\phi_{i}\right|^{4} \\
\approx & \sum_{i}\left(\bar{\phi}+q_{i}\right)^{2} \dot{\theta}_{i}+\frac{1}{2} \partial_{t}\left(\bar{\phi}+q_{i}\right)^{2} \\
& +2 J|\bar{\phi}|^{2}\left(\mathrm{e}^{\mathrm{i}\left(\theta_{i}-\theta_{i+1}\right)}+\text { h.c. }\right)-4(2 J-h) q_{i}^{2},
\end{aligned}
$$

where we kept up to q_{i}^{2} terms. The total derivative term $\frac{1}{2} \partial_{t}\left(\bar{\phi}+q_{i}\right)^{2}$ can be dropped. The total "derivative" term $\bar{\phi}^{2} \dot{\theta}_{i}$ cannot be dropped since it is not a total derivative $\bar{\phi}^{2} \dot{\theta}_{i}=\mathrm{i} \bar{\phi}^{2} \mathrm{e}^{\mathrm{i} \theta} \partial_{t} \mathrm{e}^{-\mathrm{i} \theta}$.

1d field theory to study no $U(1)$ symmetry breaking in 1D

After dropping $q_{i}^{2} \dot{\theta}_{i}$ term, we obtain

$$
\begin{aligned}
L & =\sum_{i}\left(\bar{\phi}^{2}+2 \bar{\phi} q_{i}\right) \dot{\theta}_{i}-2 J|\bar{\phi}|^{2}\left(\theta_{i}-\theta_{i+1}\right)^{2}-4(2 J-h) q_{i}^{2} \\
& =\int \mathrm{d} x[\bar{\phi}^{2}+\underbrace{\frac{2 \bar{\phi}}{a} q(x)}_{\partial_{x} \varphi / 2 \pi} \dot{\theta}(x)-2 J|\bar{\phi}|^{2} a\left[\partial_{x} \theta(x)\right]^{2}-\frac{4(2 J-h)}{a} q^{2}(x) \\
& =\int \mathrm{d} x \frac{1}{2 \pi} \partial_{x} \varphi \partial_{t} \theta-\frac{1}{4 \pi} V_{1}\left(\partial_{x} \theta\right)^{2}-\frac{1}{4 \pi} V_{2}\left(\partial_{x} \varphi\right)^{2}+\frac{\bar{\phi}^{2}}{a} \partial_{t} \theta
\end{aligned}
$$

where $V_{1}=\frac{8 \pi J(2 J-h) a}{g}, \quad V_{2}=\frac{g a}{\pi}$.

- Momentum of uniform $\theta(x): \int \mathrm{d} x \frac{\partial_{x} \varphi}{2 \pi}=\frac{\Delta \varphi}{2 \pi}=i n t . \rightarrow \varphi$ also live on S^{1} : $\varphi \sim \varphi+2 \pi$
Both θ and φ are compact angular fields living on S^{1}.

1d field theory with two angular fields

- Let $\varphi_{1}=\theta$ and $\varphi_{2}=\varphi$, we can rewrite that above as phase space Lagrangian as

$$
L=\int \mathrm{d} \times \frac{2}{4 \pi} \partial_{x} \varphi_{2} \partial_{t} \varphi_{1}-\frac{1}{4 \pi} V_{1}\left(\partial_{x} \varphi_{1}\right)^{2}-\frac{1}{4 \pi} V_{2}\left(\partial_{x} \varphi_{2}\right)^{2}+\frac{\bar{\varphi}^{2}}{a} \partial_{t} \varphi_{1},
$$

which has the following general form

$$
L=\int \mathrm{d} x \frac{K_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{t} \varphi_{J}-\frac{V_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{x} \varphi_{J}, \varphi_{I} \sim \varphi_{I}+2 \pi, K=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- A very generic 1+1D bosonic model: Compact fields $\phi_{I} \sim \phi_{I}+2 \pi$. V is symmetric and positive definite. K is a symmetric integer matrix.
- Positive eigenvalues of $K \rightarrow$ left movers. Negative eigenvalues of $K \rightarrow$ right movers. (See next page)
- The model is chiral if the right and left movers are not symmetric.
- For bosonic system, the diagonal of K are all even. For fermionic system, some diagonal of K are odd even.
- The field theory is not realizable by lattice model if $K \neq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, ie has gravitational anomalies.

1d field theory: right movers and left movers

- Introduce $\binom{\theta}{\varphi}=U\binom{\phi_{1}}{\phi_{2}}$, we can diagonaliz K, V simultaneously: $K \rightarrow U^{\top} K U, V \rightarrow U^{\top} V U$. Let $U=U_{1} U_{2}$.
- We first use U_{1} to transform $V \rightarrow U_{1}^{\top} V U_{1}=$ id. $K \rightarrow U_{1}^{\top} K U_{1}$.
- We then use orthorgonal U_{2} to transform
$U_{1}^{\top} K U_{1} \rightarrow U_{2}^{\top} U_{1}^{\top} K U_{1} U_{2}=$ Diagonal $\left(\kappa_{1},-\kappa_{2}, \cdots\right)$ and
$U_{1}^{\top} V U_{1}=\mathrm{id} \rightarrow U_{2}^{\top} U_{1}^{\top} V U_{1} U_{2}=\mathrm{id}$.
- For our case of $K=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we find $U=\left(\begin{array}{cc}\left(2 V_{1}\right)^{-1 / 2} & \left(2 V_{1}\right)^{-1 / 2} \\ \left(2 V_{2}\right)^{-1 / 2} & -\left(2 V_{2}\right)^{-1 / 2}\end{array}\right)$.

$$
\begin{aligned}
K & \rightarrow\left(\begin{array}{cc}
\kappa & 0 \\
0 & -\kappa
\end{array}\right), \kappa=\left(V_{1} V_{2}\right)^{-1 / 2}, V \rightarrow \text { id, and } \\
L & =\int \mathrm{d} x \frac{1}{2 \pi} \partial_{x} \varphi \partial_{t} \theta-\frac{1}{4 \pi} V_{1}\left(\partial_{x} \theta\right)^{2}-\frac{1}{4 \pi} V_{2}\left(\partial_{x} \varphi\right)^{2}+\underbrace{\frac{\bar{\phi}^{2}}{a} \partial_{t} \theta}_{\text {dropped }} \\
& =\int \mathrm{d} \times \frac{1}{4 \pi}\left(\kappa \partial_{x} \phi_{1} \partial_{t} \phi_{1}-\partial_{x} \phi_{1} \partial_{x} \phi_{1}\right)+\frac{1}{4 \pi}\left(-\kappa \partial_{x} \phi_{2} \partial_{t} \phi_{2}-\partial_{x} \phi_{2} \partial_{x} \phi_{2}\right)
\end{aligned}
$$

- ϕ_{1} and ϕ_{2} are not really decoupled, since their compactness are mixed.

1d field theory - chiral boson model

$$
L=\int \mathrm{d} x \frac{\kappa}{4 \pi} \partial_{x} \phi_{1}\left(\partial_{t} \phi_{1}-v \partial_{x} \phi_{1}\right)-\frac{\kappa}{4 \pi} \partial_{x} \phi_{2}\left(\partial_{t} \phi_{2}+v \partial_{x} \phi_{2}\right)
$$

EOM: $\partial_{t} \phi_{1}-v \partial_{x} \phi_{1}=0$ and $\partial_{t} \phi_{2}+v \partial_{x} \phi_{2}=0(v=1 / \kappa)$
$\rightarrow \phi_{1}(x+v t)$ is left-mover. $\phi_{2}(x-v t)$ is right-mover.

- Consider only right-movers $\left(\phi(x)=\sum_{n} \mathrm{e}^{-i k x} \phi_{n}, k=k_{0} n, k_{0}=\frac{2 \pi}{L}\right)$

$$
\begin{aligned}
L & =-\int \mathrm{d} x \frac{\kappa}{4 \pi} \partial_{x} \phi\left(\partial_{t} \phi+v \partial_{x} \phi\right) \quad \text { (consider only } n \neq 0 \text { terms) } \\
& =\sum_{n \neq 0}-\frac{\kappa L}{4 \pi}(-\mathrm{i} k) \phi_{n}\left(\dot{\phi}_{-n}+\mathrm{i} v k \phi_{-n}\right)=\sum_{n>0} \mathrm{i} n \kappa \phi_{n}\left(\dot{\phi}_{-n}+\mathrm{i} v k \phi_{-n}\right)
\end{aligned}
$$

Quantize $[x, p]=\mathrm{i}:\left[\phi_{-n}, \mathrm{i} n \kappa \phi_{n}\right]=\mathrm{i}, H=\sum_{n>0} v k n \kappa \phi_{n} \phi_{-n}$ Let $a_{n}^{\dagger}=\sqrt{n \kappa} \phi_{n} \rightarrow a_{n}=\sqrt{n \kappa} \phi_{-n}$

$$
\left[a_{n}, a_{n}^{\dagger}\right]=1, \quad H=\sum_{n>0} v k \frac{a_{n}^{\dagger} a_{n}+a_{n} a_{n}^{\dagger}}{2}=\sum_{n>0} v k\left(a_{n}^{\dagger} a_{n}+\frac{1}{2}\right)
$$

Time-ordered correlation function

- Equal time correlation $\langle 0| O(x) O(y)|0\rangle \equiv\langle O(x) O(y)\rangle$
- Time dependent operator $O(t)=\mathrm{e}^{\mathrm{i} H t} O \mathrm{e}^{-\mathrm{i} H t}$ so that

$$
\left\langle\Phi^{\prime}\right| O(t)|\Phi\rangle=\left\langle\Phi^{\prime}(t)\right| O|\Phi(t)\rangle,
$$

where $|\Phi(t)\rangle=\mathrm{e}^{-\mathrm{i} H t}|\Phi\rangle,\left|\Phi^{\prime}(t)\right\rangle=\mathrm{e}^{-\mathrm{i} H t}\left|\Phi^{\prime}\right\rangle$. We find

$$
\begin{aligned}
a_{n}^{\dagger}(t) & =\mathrm{e}^{\mathrm{i} v k t} a_{n}^{\dagger}, & \phi_{n}(t) & =\mathrm{e}^{\mathrm{i} v k t} \\
\phi(x, t) & =\sum_{n} \mathrm{e}^{-\mathrm{i} k(x-v t)} \phi_{n}, & k & =\frac{2 \pi}{L} n .
\end{aligned}
$$

- Time-ordered correlation

$$
\begin{aligned}
& \text { me-ordered correlatıon } \\
& \qquad-\mathrm{i} G(x-y, t)=\langle\mathcal{T}[\phi(x, t) \phi(y, 0)]\rangle= \begin{cases}\langle\phi(x, t) \phi(y, 0)\rangle, & t>0 \\
\langle\phi(y, 0) \phi(x, t)\rangle, & t<0\end{cases}
\end{aligned}
$$

For anti-commuting operators (to make $G(x, t)$ a continuous function of x, t away from $(x, t)=(0,0))$

$$
-\mathrm{i} G(x-y, t)=\langle\mathcal{T}[\psi(x, t) \tilde{\psi}(y, 0)]\rangle= \begin{cases}\langle\psi(x, t) \tilde{\psi}(y, 0)\rangle, & t>0 \\ -\langle\tilde{\psi}(y, 0) \psi(x, t)\rangle, & t<0\end{cases}
$$

Time ordered correlation function of chiral field $\phi(x, t)$

- For $t>0\left(k=n k_{0}, k_{0}=\frac{2 \pi}{L}\right)$

$$
\begin{aligned}
& \begin{aligned}
&\langle\phi(x, t) \phi(0,0)\rangle=\sum_{n_{1}, n_{2}} \mathrm{e}^{-\mathrm{i} k_{1}(x-v t)}\left\langle\phi_{n_{1}} \phi_{n_{2}}\right\rangle=\sum_{n_{2}>0} \mathrm{e}^{\mathrm{i} k_{2}(x-v t)} \underbrace{\left\langle\phi_{-n_{2}} \phi_{n_{2}}\right\rangle}_{\substack{\frac{a_{n}}{\sqrt{n_{2} \kappa}} \frac{a_{n_{2}}^{\dagger}}{\sqrt{n_{2} \kappa}}}} \\
&=\sum_{n=1}^{\infty} \mathrm{e}^{\mathrm{i} 2 \pi \frac{x-v t}{L} n} \frac{1}{n \kappa}=-\frac{1}{\kappa} \log \left(1-\mathrm{e}^{\mathrm{i} 2 \pi \frac{x-v t}{L}}\right) \\
& \text { since } \sum_{n=1}^{\infty} \mathrm{e}^{\alpha n} \frac{1}{n}=-\log \left(1-\mathrm{e}^{\alpha}\right), \operatorname{Re}(\alpha)<0 .
\end{aligned}
\end{aligned}
$$

- For $t<0$

$$
\begin{aligned}
\langle\phi(0,0) \phi(x, t)\rangle & =\sum_{n_{1}, n_{2}} \mathrm{e}^{-\mathrm{i} k_{1}(x-v t)}\left\langle\phi_{n_{2}} \phi_{n_{1}}\right\rangle=\sum_{n_{1}>0} \mathrm{e}^{-\mathrm{i} k_{1}(x-v t)}\left\langle\phi_{-n_{1}} \phi_{n_{1}}\right\rangle \\
& =\sum_{n=1}^{\infty} \mathrm{e}^{-\mathrm{i} 2 \pi \frac{x-v t}{L} n} \frac{1}{n \kappa}=-\frac{1}{\kappa} \log \left(1-\mathrm{e}^{-\mathrm{i} 2 \pi \frac{x-v t}{L}}\right)
\end{aligned}
$$

Correlation function of vertex operator $\mathrm{e}^{\mathrm{i} \alpha \phi}$

- Normal ordering $\left(\mathrm{e}^{A} \mathrm{e}^{B}=\mathrm{e}^{\frac{1}{2}[A, B]} \mathrm{e}^{A+B}\right) \quad\left[\phi_{n}, \phi_{-n}\right]=\frac{1}{k n}, n>0$

$$
: \mathrm{e}^{\mathrm{i} \alpha \phi(x, t)}:=\underbrace{\mathrm{e}^{\mathrm{i} \alpha \sum_{n>0} \mathrm{e}^{\mathrm{i} k(x-v t)} \phi_{n}}}_{\text {creation }} \underbrace{e^{\mathrm{i} \alpha \sum_{n<0} \mathrm{e}^{\mathrm{i} k(x-v t)} \phi_{n}}}_{\text {annihilation }}
$$

$$
=\mathrm{e}^{-\frac{\alpha^{2}}{2}\left[\sum_{n>0} \mathrm{e}^{\mathrm{i} k(x-v t)} \phi_{n}, \sum_{n<0} \mathrm{e}^{\mathrm{i} k(x-v t)} \phi_{n}\right]} \mathrm{e}^{\mathrm{i} \phi(x, t)}=\underbrace{\mathrm{e}^{\frac{\alpha^{2}}{2 k} \sum_{n} \frac{1}{n}}} \mathrm{e}^{\mathrm{i} \phi(x, t)}
$$

- Correlation function $\left(\mathrm{e}^{A} \mathrm{e}^{B}=\mathrm{e}^{[A, B]} \mathrm{e}^{B} \mathrm{e}^{A}\right)$
$\sim\left(\frac{L}{a}\right)^{\frac{\alpha^{2}}{2 k}}$

$$
\begin{aligned}
& \left\langle: \mathrm{e}^{\mathrm{i} \alpha \phi(x, t)}:: \mathrm{e}^{-\mathrm{i} \alpha \phi(0,0)}:\right\rangle=\left\langle\mathrm{e}^{\mathrm{i} \alpha \phi_{>}(x, t)} \mathrm{e}^{\mathrm{i} \alpha \phi_{<}(x, t)} \mathrm{e}^{-\mathrm{i} \alpha \phi_{>}(0,0)} \mathrm{e}^{-\mathrm{i} \alpha \phi_{<}(0,0)}\right\rangle \\
& =\left\langle\mathrm{e}^{\mathrm{i} \alpha \phi<(x, t)} \mathrm{e}^{-\mathrm{i} \alpha \phi>(0,0)}\right\rangle=\underbrace{\mathrm{e}^{\left[\alpha \phi_{<}(x, t), \alpha \phi>(0,0)\right]}}_{=\mathrm{e}^{\alpha^{2}\langle\phi(x, t) \phi(0,0)\rangle}} \underbrace{\left\langle\mathrm{e}^{-\mathrm{i} \alpha \phi>(0,0)} \mathrm{e}^{\mathrm{i} \alpha \phi<(x, t)}\right\rangle}_{=1} \\
& = \begin{cases}\left(1-\mathrm{e}^{\mathrm{i} 2 \pi \frac{x-v t+\mathrm{i} 0^{+}}{L}}\right)^{-\alpha^{2} / \kappa}, & t>0 \\
\left(1-\mathrm{e}^{-\mathrm{i} 2 \pi \frac{x-v t-\mathrm{i} 0^{+}}{L}}\right)^{-\alpha^{2} / \kappa}, & t<0\end{cases} \\
& \approx \frac{(L / 2 \pi)^{\alpha^{2} / \kappa}}{\left[-\mathrm{i}(x-v t) \operatorname{sgn}(t)+0^{+}\right]^{\alpha^{2} / \kappa}}=\frac{(L / 2 \pi)^{1 / \kappa} \mathrm{e}^{\mathrm{i} \frac{1}{\kappa} \frac{\pi}{2} \operatorname{sgn}((x-v t) t)}}{|x-v t|^{\alpha^{2} / \kappa}}
\end{aligned}
$$

The value of the mutivalued function is in the branch of $0^{+} \rightarrow+\infty$.

Correlation function of $\mathrm{e}^{\mathrm{i} \theta}$ and no symmtery breaking

$$
\begin{aligned}
& \left\langle\mathcal{T}\left[: \mathrm{e}^{\mathrm{i} \theta(x, t)}:: \mathrm{e}^{-\mathrm{i} \theta(0,0)}:\right]\right\rangle \quad \mathrm{e}^{\mathrm{i} \theta}=\mathrm{e}^{\mathrm{i}\left(\alpha \phi_{1}+\alpha \phi_{2}\right)}, \alpha=\left(2 V_{1}\right)^{-1 / 2} \\
= & \left\langle\mathcal{T}\left[: \mathrm{e}^{\frac{\alpha}{2} \mathrm{i} \phi_{1}(x, t)}:: \mathrm{e}^{-\frac{\alpha}{2} \mathrm{i} \phi_{1}(0,0)}:\right]\right\rangle\left\langle\mathcal{T}\left[: \mathrm{e}^{\frac{\alpha}{2} \mathrm{i} \phi_{2}(x, t)}:: \mathrm{e}^{-\frac{\alpha}{2} \mathrm{i} \phi_{2}(0,0)}:\right]\right\rangle \\
= & \left\{\begin{array}{l}
\left(1-\mathrm{e}^{\mathrm{i} 2 \pi \frac{-x-v t+\mathrm{i} 0^{+}}{L}}\right)^{-\alpha^{2} / 4 \kappa}\left(1-\mathrm{e}^{\mathrm{i} 2 \pi \frac{x-v t+\mathrm{i} 0^{+}}{L}}\right)^{-\alpha^{2} / 4 \kappa}, \quad t>0 \\
\left(1-\mathrm{e}^{-\mathrm{i} 2 \pi \frac{-x-v t-\mathrm{i} 0^{+}}{L}}\right)^{-\alpha / 4 \kappa}\left(1-\mathrm{e}^{-\mathrm{i} 2 \pi \frac{x-v t-\mathrm{i} 0^{+}}{L}}\right)^{-\alpha / 4 \kappa}, \quad t<0
\end{array}\right. \\
= & \frac{(L / 2 \pi)^{\alpha^{2} / 2 \kappa}}{\left[-\mathrm{i}(x-v t) \operatorname{sgn}(t)+0^{+}\right]^{\alpha^{2} / 4 \kappa}\left[-\mathrm{i}(-x-v t) \operatorname{sgn}(t)+0^{+}\right]^{\alpha / 4 \kappa}} \\
= & \frac{(L / 2 \pi)^{2 \gamma}}{\left(x^{2}-v^{2} t^{2}+\mathrm{i} 2 v t \operatorname{sgn}(t) 0^{+}+\left(0^{+}\right)^{2}\right)^{\gamma}}=\frac{(L / 2 \pi)^{2 \gamma}}{\left(x^{2}-v^{2} t^{2}+\mathrm{i} 0^{+}\right)^{\gamma}}
\end{aligned}
$$

$$
\gamma=\lambda^{2} / 4 \kappa=\sqrt{V_{1} V_{2}} / 2 V_{1} \text { (choose the positive branch for } x \rightarrow \infty \text {). }
$$

- Imaginary-time ($\tau=\mathrm{i} t$) correlation is simplified $\frac{(L / 2 \pi)^{2 \gamma}}{(z \bar{z} \gamma}, z=x+\mathrm{i} v \tau$
- 1d supperfluid (boson condensation or $U(1)$ symm. breaking) only has an algebraic long range order, not real long range order (since $\left.\left\langle: \mathrm{e}^{\mathrm{i} \theta(x, 0)}:: \mathrm{e}^{-\mathrm{i} \theta(0,0)}:\right\rangle\right|_{x \rightarrow \infty} \nrightarrow$ const.) Conitinous symmetry cannot spontaneously broken in 1D. It can only "nearly broken"

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

$$
\begin{aligned}
& G(x, t)=\mathrm{i}\left\langle T\left[: \mathrm{e}^{\mathrm{i} \theta(x, t)}:: \mathrm{e}^{-\mathrm{i} \theta(0,0)}:\right]\right\rangle \\
& =\mathrm{i}\left(1-\mathrm{e}^{\mathrm{i} 2 \pi \frac{x-v t}{L} \operatorname{sgn}(t)}\right)^{-\gamma}\left(1-\mathrm{e}^{\mathrm{i} 2 \pi \frac{-x-v t}{L}} \operatorname{sgn}(t)\right)^{-\gamma} \\
& =\sum_{n} C_{m, n} \mathrm{i} \mathrm{e}^{\mathrm{i}\left(m \frac{2 \pi}{L} x-n \frac{2 \pi v}{L} t\right) \operatorname{sgn}(t)}=\sum_{n} C_{m, n} \mathrm{i} \mathrm{e}^{\mathrm{i}\left(\kappa_{m} x-E_{n} t\right) \operatorname{sgn}(t)} \\
& I(k, \omega)=\sum_{n} C_{m, n}\left[\delta\left(k-\kappa_{m}\right) \delta\left(\omega-E_{n}\right)+\delta\left(k+\kappa_{m}\right) \delta\left(\omega+E_{n}\right)\right]
\end{aligned}
$$

Fourier transformation of $G(x, t)$:

$$
\begin{aligned}
& \int_{0}^{L} \mathrm{~d} x \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{-\mathrm{i}(k x-\omega t)} \mathrm{ie}^{\mathrm{i}\left(\kappa_{m} x-E_{n} t\right) \operatorname{sgn}(t)} \\
= & \int_{0}^{L} \mathrm{~d} x \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\mathrm{i}\left[k x-\left(\omega+\mathrm{i} 0^{+}\right) t\right]} \mathrm{i} \mathrm{e}^{\mathrm{i}\left(\kappa_{m} x-E_{n} t\right)}+(t<0) \\
= & \underbrace{\delta\left(\mathrm{i}\left(\omega-E_{n}+\mathrm{i} 0^{+}\right)\right.}_{L \delta_{k, \kappa_{m}}^{\delta\left(k-\kappa_{m}\right)}}=\underbrace{\delta\left(k-\kappa_{m}\right)}_{L \delta_{k, \kappa_{m}}}\left[\frac{-1}{\omega-E_{n}}+\mathrm{i} \pi \delta\left(\omega-E_{n}\right)\right] \\
& I(k, \omega)=\operatorname{Im} G(k, \omega) / \pi
\end{aligned}
$$

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

Correlation function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

$$
G(x . t)=\frac{\mathrm{i}(L / 2 \pi)^{2 \gamma}}{\left(x^{2}-v^{2} t^{2}+\mathrm{i} 0^{+}\right)^{\gamma}}=\frac{\mathrm{i}(L / 2 \pi)^{2 \gamma}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}}
$$

where $y_{1}=x+v t, y_{2}=x-v t$. We find

$$
\begin{aligned}
G(k, \omega) & =\int \mathrm{d} x \mathrm{~d} t \mathrm{e}^{-\mathrm{i}(k x-\omega t)} \frac{\mathrm{i}(L / 2 \pi)^{2 \gamma}}{\left(x^{2}-v^{2} t^{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\int \mathrm{d} x \mathrm{~d} t \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left[k\left(y_{1}+y_{2}\right)-v^{-1} \omega\left(y_{1}-y_{2}\right)\right]} \frac{\mathrm{i}(L / 2 \pi)^{2 \gamma}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& \sim \int \mathrm{d} y_{1} \mathrm{~d} y_{2} \frac{\mathrm{i} \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left[\left(k-\frac{\omega}{v}\right) y_{1}+\left(k+\frac{\omega}{v}\right) y_{2}\right]}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}}
\end{aligned}
$$

up to a positive factor.
When taking the fractional power γ, choose the possitive brach for $y_{1} y_{2}>0$. For $y_{1} y_{2}>0$, choose branch that connect to the possitive brach for $y_{1} y_{2}>0$. Now the term i0 0^{+}becomes important.

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

- $y_{1}>0, y_{2}>0$: Using $\int_{0}^{\infty} \mathrm{d} x \frac{\mathrm{e}^{-\alpha x}}{x^{\alpha}}=\Gamma(1-\alpha) a^{\alpha-1}, \operatorname{Re}(a)>0$ and inserting 0^{+}to make sure $\operatorname{Re}(a)>0$, we find

$$
\begin{aligned}
& G_{++}(k, \omega)=\mathrm{i} \int_{0}^{\infty} \mathrm{d} y_{1} \int_{0}^{\infty} \mathrm{d} y_{2} \frac{\mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}-\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}-\mathrm{i} 0^{+}\right) y_{2}}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i}\left(\frac{\mathrm{i}\left(k-\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1} \Gamma(1-\gamma)\left(\frac{\mathrm{i}\left(k+\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1} \Gamma(1-\gamma) \\
& =\mathrm{i} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[\operatorname{sgn}(v k-\omega)+\operatorname{sgn}(v k+\omega)]} \\
& \quad\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma)
\end{aligned}
$$

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

- $y_{1}>0, y_{2}<0$: Using $\int_{0}^{\infty} \mathrm{d} x \frac{\mathrm{e}^{-a x}}{x^{\alpha}}=\Gamma(1-\alpha) a^{\alpha-1}, \operatorname{Re}(a)>0$ and inserting 0^{+}to make sure $\operatorname{Re}(a)>0$, we find

$$
\begin{aligned}
& G_{+-}(k, \omega)=\mathrm{i} \int_{0}^{\infty} \mathrm{d} y_{1} \int_{-\infty}^{0} \mathrm{~d} y_{2} \frac{\mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}-\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{2}}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i} \int_{0}^{\infty} \mathrm{d} y_{1} \int_{0}^{\infty} \mathrm{d} y_{2} \frac{\mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}-\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{2}}}{\left(-y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i}\left(\frac{\mathrm{i}\left(k-\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1}\left(\frac{-\mathrm{i}\left(k+\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1} \mathrm{e}^{-\mathrm{i} \pi \gamma} \Gamma^{2}(1-\gamma) \\
& =\mathrm{i} \mathrm{e}^{-\mathrm{i} \pi \gamma} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[\operatorname{sgn}(v k-\omega)-\operatorname{sgn}(v k+\omega)]} \\
& \quad\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma)
\end{aligned}
$$

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

- $y_{1}<0, y_{2}>0$: Using $\int_{0}^{\infty} \mathrm{d} x \frac{\mathrm{e}^{-a x}}{x^{\alpha}}=\Gamma(1-\alpha) a^{\alpha-1}, \operatorname{Re}(a)>0$ and inserting 0^{+}to make sure $\operatorname{Re}(a)>0$, we find

$$
\begin{aligned}
& G_{-+}(k, \omega)=\mathrm{i} \int_{-\infty}^{0} \mathrm{~d} y_{1} \int_{0}^{\infty} \mathrm{d} y_{2} \frac{\mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}-\mathrm{i} 0^{+}\right) y_{2}}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i} \int_{0}^{\infty} \mathrm{d} y_{1} \int_{0}^{\infty} \mathrm{d} y_{2} \frac{\mathrm{e}^{\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}-\mathrm{i} 0^{+}\right) y_{2}}}{\left(-y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i}\left(\frac{-\mathrm{i}\left(k-\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1}\left(\frac{\mathrm{i}\left(k+\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1} \mathrm{e}^{-\mathrm{i} \pi \gamma} \Gamma^{2}(1-\gamma) \\
& =\mathrm{i} \mathrm{e}^{-\mathrm{i} \pi \gamma} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[-\operatorname{sgn}(v k-\omega)+\operatorname{sgn}(v k+\omega)]} \\
& \quad\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma)
\end{aligned}
$$

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

- $y_{1}<0, y_{2}<0$: Using $\int_{0}^{\infty} \mathrm{d} x \frac{\mathrm{e}^{-a x}}{x^{\alpha}}=\Gamma(1-\alpha) a^{\alpha-1}, \operatorname{Re}(a)>0$ and inserting 0^{+}to make sure $\operatorname{Re}(a)>0$, we find

$$
\begin{aligned}
& G_{--}(k, \omega)=\mathrm{i} \int_{-\infty}^{0} \mathrm{~d} y_{1} \int_{-\infty}^{0} \mathrm{~d} y_{2} \frac{\mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{-\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{2}}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i} \int_{0}^{\infty} \mathrm{d} y_{1} \int_{0}^{\infty} \mathrm{d} y_{2} \frac{\mathrm{e}^{\mathrm{i} \frac{1}{2}\left(k-\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{1}} \mathrm{e}^{\mathrm{i} \frac{1}{2}\left(k+\frac{\omega}{v}+\mathrm{i} 0^{+}\right) y_{2}}}{\left(y_{1} y_{2}+\mathrm{i} 0^{+}\right)^{\gamma}} \\
& =\mathrm{i}\left(\frac{-\mathrm{i}\left(k-\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1}\left(\frac{-\mathrm{i}\left(k+\frac{\omega}{v}\right)+0^{+}}{2}\right)^{\gamma-1} \Gamma^{2}(1-\gamma) \\
& =\mathrm{i} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[-\operatorname{sgn}(v k-\omega)-\operatorname{sgn}(v k+\omega)]} \\
& \quad\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma)
\end{aligned}
$$

Correlation function and spectral function of $\mathrm{e}^{\mathrm{i} \theta} \sim \sigma^{+}$

$$
\begin{aligned}
& G(k, \omega) \sim \mathrm{i}\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma) \times \\
& \left(\mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[\operatorname{sgn}(v k-\omega)+\operatorname{sgn}(v k+\omega)]}+\mathrm{e}^{-\mathrm{i} \pi \gamma} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[\operatorname{sgn}(v k-\omega)-\operatorname{sgn}(v k+\omega)]}\right. \\
& \left.+\mathrm{e}^{-\mathrm{i} \pi \gamma} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[-\operatorname{sgn}(v k-\omega)+\operatorname{sgn}(v k+\omega)]}+\mathrm{e}^{\mathrm{i} \frac{\pi}{2}(\gamma-1)[-\operatorname{sgn}(v k-\omega)-\operatorname{sgn}(v k+\omega)]}\right) \\
& \quad=\mathrm{i}\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma) \times \\
& \begin{cases}-\mathrm{e}^{\mathrm{i} \pi \gamma}+\mathrm{e}^{-\mathrm{i} \pi \gamma}+\mathrm{e}^{-\mathrm{i} \pi \gamma}-\mathrm{e}^{-\mathrm{i} \pi \gamma}=-2 \mathrm{i} \sin (\pi \gamma), & v k-\omega>0, v k+\omega>0 \\
-\mathrm{e}^{-\mathrm{i} \pi \gamma}+\mathrm{e}^{-\mathrm{i} \pi \gamma}+\mathrm{e}^{-\mathrm{i} \pi \gamma}-\mathrm{e}^{\mathrm{i} \pi \gamma}=-2 \mathrm{i} \sin (\pi \gamma), & v k-\omega<0, v k+\omega<0 \\
1-1-\mathrm{e}^{-\mathrm{i} 2 \pi \gamma}+1=1-\mathrm{e}^{-\mathrm{i} 2 \pi \gamma}, & v k-\omega>0, v k+\omega<0 \\
1-\mathrm{e}^{-\mathrm{i} 2 \pi \gamma}-1+1=1-\mathrm{e}^{-\mathrm{i} 2 \pi \gamma}, & v k-\omega<0, v k+\omega>0\end{cases}
\end{aligned}
$$

Spectral function: $\quad I(k, \omega)=\left(\frac{|v k-\omega|}{2 v}\right)^{\gamma-1}\left(\frac{|v k+\omega|}{2 v}\right)^{\gamma-1} \Gamma^{2}(1-\gamma) \times$

$$
\begin{cases}0, & (\omega-v k)(\omega+v k)<0 \\ 1-\cos (2 \pi \gamma), & (\omega-v k)(\omega+v k)>0\end{cases}
$$

$k=0$ modes, and large momentum sectors

- Our theory so far contain only exications desbribed by oscilators $a_{k}, k=\frac{2 \pi}{L} \times i n t$..
- Our theory so far can produce exication near $k=0$, but not near $k=k_{b}=2 \pi \frac{N}{L}$.
- The correlation $\left\langle\mathcal{T}\left[: \mathrm{e}^{\mathrm{i} \theta(x, t)}:: \mathrm{e}^{\mathrm{i} \theta(0,0)}:\right]\right\rangle$
 $\sim\left(x^{2}-v^{2} t^{2}\right)^{-1 / 4 \kappa}+0 \mathrm{e}^{i k_{b} x}$ contains nothing near k_{b}.
- To inlcude the low energy sectors with large momentum, we need to include $k=0$ modes:

Low energy excitations $=(k \neq 0$ modes $) \otimes(k=0$ modes $)$

- Consider θ, φ non-linear σ-model:

$$
L=\int \mathrm{d} x\left(\frac{1}{2 \pi} \partial_{x} \varphi+\frac{\bar{\phi}^{2}}{a}\right) \partial_{t} \theta-\frac{v}{4 \pi}\left(\partial_{x} \theta\right)^{2}-\frac{v}{4 \pi}\left(\partial_{x} \varphi\right)^{2}
$$

- The $k=0$ sectors are labeled by $w_{\theta}, w_{\varphi} \in \mathbb{Z}$ (Only $q=\partial \varphi$ is physical): $\theta(x)=w_{\theta} \frac{2 \pi}{L} x+\theta_{0}+(k \neq 0$ modes $), \quad \varphi(x)=w_{\varphi} \frac{2 \pi}{L} x+(k \neq 0$ modes $)$. $L=\left(w_{\varphi}+\frac{\bar{\phi}^{2} L}{a}\right) \dot{\theta}_{0}-\frac{1}{2} \frac{2 \pi}{L} v\left(w_{\theta}^{2}+w_{\varphi}^{2}\right) \rightarrow E=\frac{1}{2} \frac{2 \pi}{L} v\left(w_{\theta}^{2}+w_{\varphi}^{2}\right)$

The physical meanings of winding numbers w_{θ}, w_{φ} from the connection to the lattice model

- What is the meaning of w_{φ} (angular momentum of θ_{0})?

We note that $2 \bar{\phi} a^{-1} q=\kappa \partial_{x} \varphi / \pi=\partial_{x} \varphi / 2 \pi=w_{\varphi} / L$.
So $w_{\varphi}=\int \mathrm{d} \times 2 \bar{\phi} a^{-1} q=\sum_{i} 2 \bar{\phi} q_{i}$
Spectral function of n_{i}
But what is $\sum_{i} 2 \bar{\phi} q_{i}$? Remember that $\phi_{i}=\bar{\phi}+q_{i}$ and $\left|\phi_{i}\right\rangle=\frac{|\uparrow\rangle+\phi_{i}|\downarrow\rangle}{\sqrt{1+\left|\phi_{i}\right|^{2}}}=\frac{|0\rangle+\phi_{i}|1\rangle}{\sqrt{1+\left|\phi_{i}\right|^{2}}}$.
So $\left\langle n_{i}\right\rangle=\frac{\left|\phi_{i}\right|^{2}}{1+\left|\phi_{i}\right|^{2}} \approx\left|\phi_{i}\right|^{2} \approx \bar{\phi}^{2}+2 \bar{\phi} q_{i}$
Thus the canonical momentum of θ_{0},
 $\frac{\bar{\phi}^{2} L}{a}+w_{\varphi}=\sum_{i}\left(\bar{\phi}^{2}+2 \bar{\phi} q_{i}\right)=\sum_{i} n_{i}=N$, is the total number of the bosons. This should be an exact result, since $\theta_{0} \sim \theta_{0}+2 \pi$ and its anluar momenta are quantized as integers.

- What is the meaning of w_{θ} ?

A non-zero w_{θ} gives rise $\phi_{i}=\bar{\phi} \mathrm{e}^{\mathrm{i} w_{\theta} \times \frac{2 \pi}{L}}$. Each boson carries momentum $w_{\theta} \frac{2 \pi}{L}$. The total momentum is $w_{\theta} \frac{2 \pi N_{0}}{L}=w_{\theta} k_{b}$.

Obtain the meanings of w_{θ}, w_{φ} within the field theory

$$
L=\int \mathrm{d} x\left(\frac{1}{2 \pi} \partial_{x} \varphi+\frac{\bar{\phi}^{2}}{a}\right) \partial_{t} \theta-\frac{v}{4 \pi}\left(\partial_{x} \theta\right)^{2}-\frac{v}{4 \pi}\left(\partial_{x} \varphi\right)^{2}
$$

- The $U(1)$ symmetry transformation is given by $\theta \rightarrow \theta+\theta_{0}$. The angular momentum of θ_{0} is the total number of the $U(1)$ charges (ie the number of bosons). From the corrsponding Lagrangian $L=\left(w_{\phi}+\frac{\bar{\phi}^{2} L}{a}\right) \dot{\theta}_{0}+\cdots$, we see the $U(1)$ charge is $Q=w_{\phi}-\frac{\bar{\phi}^{2} L}{a}$
- The translation symmetry transformation is given by $\theta(x) \rightarrow \theta\left(x-x_{0}\right), \varphi(x) \rightarrow \varphi\left(x-x_{0}\right)$. The cannonical momentum of x_{0} is the total momentum.
- We consider the field of form $\theta\left(x-x_{0}\right), \varphi\left(x-x_{0}\right)$ and only x_{0} is dynamical, ie time denpendent (the $k \neq 0$ mode can be dropped):

$$
\begin{aligned}
\theta(x, t) & =w_{\theta} \frac{2 \pi}{L}\left(x+x_{0}(t)\right)+\theta_{0}+(k \neq 0 \text { modes }) \\
\varphi(x, t) & =w_{\varphi} \frac{2 \pi}{L}\left(x+x_{0}(t)\right)+(k \neq 0 \text { modes })
\end{aligned}
$$

From the corresponding Lagrangian $L=\left(w_{\phi}+\frac{\bar{\phi}^{2} L}{a}\right) \frac{2 \pi}{L} w_{\theta} \dot{x}_{0}+\cdots$, we see the total momentum is $K=N \frac{2 \pi}{L} w_{\theta}=k_{b} w_{\theta}$.

Winding-number changing operators

$$
L=\int \mathrm{d} x\left(\frac{1}{2 \pi} \partial_{x} \varphi+\frac{\bar{\phi}^{2} L}{a}\right) \partial_{t} \theta-\frac{v}{4 \pi}\left(\partial_{x} \theta\right)^{2}-\frac{v}{4 \pi}\left(\partial_{x} \varphi\right)^{2}
$$

- The local operator $\mathrm{e}^{\mathrm{i} \theta}=\mathrm{e}^{\mathrm{i} \alpha\left(\phi_{1}+\phi_{2}\right)}$ changes the particle number N by -1 , ie change the winding number of φ, w_{φ}, by -1 .
- To see this explicitly
$\left[\theta(x), \frac{1}{2 \pi} \partial_{y} \varphi(y)\right]=\mathrm{i} \delta(x-y)$

We find $[\theta(x), \Delta \varphi]=\mathrm{i} 2 \pi$ where $\Delta \varphi=\varphi(+\infty)-\varphi(-\infty)$.
Thus $\theta(x)=\mathrm{i} 2 \pi \frac{\mathrm{~d}}{\mathrm{~d} \Delta \varphi}+$ commutants of $\Delta \varphi$, and $\mathrm{e}^{\mathrm{i} \theta(x)}=\mathrm{e}^{-2 \pi \frac{\mathrm{~d}}{\mathrm{~d} \Delta \varphi}+\cdots}$ is an operator that changes $\Delta \varphi$ by -2π, or w_{φ} by -1 , or particle number by -1

- Similarly, we have $[\theta(x), \varphi(y)]=-i 2 \pi \Theta(x-y)$
$\rightarrow\left[\partial_{x} \theta(x), \varphi(y)\right]=-\mathrm{i} 2 \pi \delta(x-y)$
We find $[\Delta \theta, \varphi(y)]=-\mathrm{i} 2 \pi$ where $\Delta \theta=\theta(+\infty)-\theta(-\infty)$.
Thus $\varphi(y)=\mathrm{i} 2 \pi \frac{\mathrm{~d}}{\mathrm{~d} \Delta \theta}$, and $\mathrm{e}^{\mathrm{i} \varphi(x)}=\mathrm{e}^{-2 \pi \frac{\mathrm{~d}}{\mathrm{~d} \Delta \theta}}$ is an operator that changes $\Delta \theta$ by -2π, or change w_{θ} by -1 (ie total momentum by $-k_{b}$).

Local operators in 1D XY-model (superfluid)

- Lattice operators

$$
\begin{aligned}
\sigma_{i}^{z} & =\left(\# \partial_{x} \theta+\# \partial_{x} \varphi\right)+\# \mathrm{e}^{-\mathrm{i} k_{b} x} \mathrm{e}^{\mathrm{i} \varphi(x)}+\cdots \\
\sigma_{i}^{+} & =\left(\#+\# \partial_{x} \theta+\# \partial_{x} \varphi\right) \mathrm{e}^{-\mathrm{i} \theta(x)}+\# \mathrm{e}^{-\mathrm{i} k_{b} x} \mathrm{e}^{-\mathrm{i} \theta(x)} \mathrm{e}^{\mathrm{i} \varphi(x)}+\cdots
\end{aligned}
$$

- Set of local operators:

$$
\partial_{x} \theta, \partial_{x} \varphi, \underbrace{e^{\mathrm{i}\left(m_{\theta} \theta+m_{\varphi} \varphi\right)}}_{\text {change sectors }}
$$

or $\left(\right.$ from $\left.\theta=\alpha\left(\phi_{1}+\phi_{2}\right), \varphi=\beta\left(\phi_{1}-\phi_{2}\right)\right)$

$$
\partial_{x} \phi_{1}, \partial_{x} \phi_{2}, \underbrace{e^{i\left(m_{1} \phi_{1}+m_{2} \phi_{2}\right)}}_{\text {change sectors }}
$$

where $m_{1}=\alpha m_{\theta}+\beta m_{\varphi}, \quad m_{2}=\alpha m_{\theta}-\beta m_{\varphi}$.

- Fractionalization in XY-model (superfluid)

A boson creation operator $\sigma^{+} \sim \mathrm{e}^{\mathrm{i} \theta}$ (spin flip operator $\Delta S^{z}=1$)

$$
\mathrm{e}^{\mathrm{i} \theta}=\mathrm{e}^{\mathrm{i} \alpha\left(\phi_{1}+\phi_{2}\right)}, \quad \phi_{1} \text { left-mover }, \quad \phi_{2} \text { right-mover }
$$

$\mathrm{e}^{\mathrm{i} \alpha \phi_{2}}$ creats half boson (spin-1/2) in right-moving sector $\mathrm{e}^{\mathrm{i} \alpha \phi_{1}}$ creats half boson (spin-1/2) in left-moving sector

Lattice translation and $U(1)$ symm. are not independent

- For a 1d superfluid of per-site-density n_{b} the ground state is described by a field $\phi(x)=\bar{\phi} \mathrm{e}^{-\mathrm{i} \theta(x)}, \theta(x)=0$. The total momentum of the ground state is $K=0$.
- We do a $U(1)$ symmetry twist: $\theta(L)=\theta(0) \rightarrow \theta(L)=\theta(0)+\Delta \theta$. The twisted state is described by a field $\theta(x)=\frac{\Delta \theta}{L} x$. The total momentum of the twisted state is $K=k_{b} \frac{\Delta \theta}{2 \pi}=N+\Delta k=N \frac{\Delta \theta}{L}$.
- $U(1)$ symmetry twist $=$ momentum bost $k_{i} \rightarrow k_{i}+\frac{\Delta \theta}{L}$.

Doing a symmetry twist operation in a symmetry can change the quantum number of another symmetry \rightarrow mixed anomaly

- A $2 \pi U(1)$ symmetry twist can change the total crystal momentum by $k_{b}=2 \pi n_{b}$. Since 2π-crystal-momentum $=0$-crystal-momentum, our bosonic system have an mixed translation- $U(1)$ anomaly when boson number per site $n_{b} \notin \mathbb{Z}$. \rightarrow There is no translation and $U(1)$ symmetric product state.
- We do a translation symmetry twist operation by adding ΔL sites \rightarrow change the total boson numbers (the $U(1)$ charges) of system by $n_{b} \Delta L$.

1d field theory - non-linear σ-model

- "Coordinate space" Lagrangian (rotor model): subsitute one of the EOM $\frac{1}{2 \pi} \partial_{t} \theta=\frac{1}{2 \pi} V_{2} \partial_{x} \varphi$ into the phase space Lagrangian
$L=\int \mathrm{d} x \frac{V_{2}^{-1}}{4 \pi}\left(\partial_{t} \theta\right)^{2}-\frac{V_{1}}{4 \pi}\left(\partial_{x} \theta\right)^{2} \underbrace{+\frac{\bar{\phi}^{2}}{a} \partial_{t} \theta}_{\text {a topo. term }}$

$$
=\int \mathrm{d} x \frac{V_{2}^{-1}}{4 \pi}\left(\mathrm{i} u^{*} \partial_{t} u\right)^{2}-\frac{V_{1}}{4 \pi}\left(\mathrm{i} u^{*} \partial_{x} u\right)^{2}-\mathrm{i} \frac{\bar{\phi}^{2}}{a} u^{*} \partial_{t} u
$$

- The field is really $u=\mathrm{e}^{\mathrm{i} \theta}$, not θ. The above is the so called non-linear σ-model, where the field is a map from space-time manifold to the target space $S^{1}: M_{\text {space-time }}^{d+1} \rightarrow U(1)$.
- In general, the target space is the symmetric space $G_{\text {symm }} / G_{\text {unbroken }}$ (the minima of the symmetry breaking potential).
- The topological term $\mathrm{i} \frac{\bar{\phi}^{2}}{a} u^{*} \partial_{t} u$ cannot be dropped (since it is not a total derivative). When $\bar{\phi}^{2}=n \notin \mathbb{Z}$, the topological term makes it impossible for the non-linear σ-model to have a gapped phase (an effect of mixed anomaly between $U(1)$ symmetry and tranlation symmetry).
- The above is a low energy effective theory for $U(1)$ symm breaking

Symmetry, gauging, and conservation

- Consider a system described by a complex field u

$$
S=\int \mathrm{d} t \mathrm{~d} x \mathcal{L}(u)
$$

with $U(1)$ symmetry: $\mathcal{L}\left(\mathrm{e}^{\mathrm{i} \lambda} u\right)=\mathcal{L}(u)$. We like to show that the system has an conserved current $j^{\mu}, \mu=t, x: \partial_{t} j^{t}+\partial_{x} j^{x}=\partial_{\mu} j^{\mu}=0$.

- Gauge the $U(1)$ symmetry:
- $u(x) \rightarrow \mathrm{e}^{\mathrm{i} \lambda_{l}(x)} u(x)$ gives rise to $u_{l}^{*} \partial_{\mu} u_{I} \rightarrow u_{l}^{*}\left(\partial_{\mu}+\mathrm{i} \partial_{\mu} \lambda_{I}\right) u_{I}, \mu=t, x$.
- Replacing $\partial_{\mu} \lambda_{I}$ by a vector potential $A_{\mu}^{\prime}: u_{l}^{*}\left(\partial_{\mu}+\mathrm{i} A_{\mu}^{\prime}\right) u_{I}$ gives rise to a gauged theory $\mathcal{L} \rightarrow \mathcal{L}\left(u, A_{\mu}\right)$. Here A_{μ} is viewed as non-dynamical background field. We have

$$
\mathcal{L}\left(u, A_{\mu}\right)=\mathcal{L}\left(\mathrm{e}^{\mathrm{i} \lambda} u, A_{\mu}-\partial_{\mu} \lambda\right)
$$

- The $U(1)$ current of the gauged theory (setting $A_{\mu}=0$ gives rise to the $U(1)$ current of the original theory)

$$
\delta S=\int \mathrm{d} t \mathrm{~d} x j^{\mu} \delta A_{\mu}, \quad j^{\mu}=\frac{\delta \mathcal{L}\left(u, A_{\mu}\right)}{\delta A_{\mu}} .
$$

Symmetry, gauging, and conservation

- The current conservation:

$$
\begin{aligned}
& \delta S=\int \mathrm{d}^{2} x^{\mu} \mathcal{L}\left(\mathrm{e}^{\mathrm{i} \lambda} u, A_{\mu}\right)-\mathcal{L}\left(u, A_{\mu}\right) \\
& =\int \mathrm{d}^{2} x^{\mu} \mathcal{L}\left(u, A_{\mu}+\partial_{\mu} \lambda\right)-\mathcal{L}\left(u, A_{\mu}\right)=\int \mathrm{d}^{2} x^{\mu} j^{\mu} \partial_{\mu} \lambda=-\int \mathrm{d}^{2} x^{\mu} \lambda \partial_{\mu} j^{\mu}
\end{aligned}
$$

If $u(x, t)$ satisfies the equation of motion, then the cooresponding $\delta S=0$. This allows us to show the existance of a conserved current

$$
\partial_{\mu} j^{\mu}(u)=0 .
$$

- Example: $\partial_{\mu} \theta=-\mathrm{i} u^{*} \partial_{\mu} u \rightarrow \partial_{\mu} \theta+A_{\mu}=-\mathrm{i} u^{*}\left(\partial_{\mu}+\mathrm{i} A_{\mu}\right) u$

$$
\begin{aligned}
\mathcal{L} & =\frac{V_{2}^{-1}}{4 \pi}\left(\partial_{t} \theta\right)^{2}-\frac{V_{1}}{4 \pi}\left(\partial_{x} \theta\right)^{2}+\frac{\bar{\phi}^{2}}{a} \partial_{t} \theta \\
\rightarrow \mathcal{L} & =\frac{V_{2}^{-1}}{4 \pi}\left(\partial_{t} \theta+A_{t}\right)^{2}-\frac{V_{1}}{4 \pi}\left(\partial_{x} \theta+A_{x}\right)^{2}+\frac{\bar{\phi}^{2}}{a}\left(\partial_{t} \theta+A_{t}\right) \\
\rightarrow j^{\mu} & =\frac{\delta \mathcal{L}}{\delta A_{\mu}}, \quad j^{t}=\frac{V_{2}^{-1}}{2 \pi}\left(\partial_{t} \theta+A_{t}\right), j^{x}=-\frac{V_{1}}{2 \pi}\left(\partial_{x} \theta+A_{x}\right) .
\end{aligned}
$$

Another example of gauging symmetry

Consider the following effective theory for 1d bosonic superfluid

$$
\begin{aligned}
L & =\int \mathrm{d} x \frac{K_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{t} \varphi_{J}-\frac{V_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{x} \varphi_{J}+q_{I} \partial \phi_{I} \\
& =\int \mathrm{d} x \frac{K_{I J}}{4 \pi} \partial_{x} u_{I}^{*} \partial_{t} u_{J}-\frac{V_{I J}}{4 \pi} \partial_{x} u_{I}^{*} \partial_{x} u_{J}-\mathrm{i} q_{I} u_{I}^{*} \partial_{t} u_{I} \\
& I, J=1,2, \quad \varphi_{I} \sim \varphi_{I}+2 \pi, \quad u_{I}=\mathrm{e}^{\mathrm{i} \varphi_{I}}, \quad K=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad q=\binom{\frac{\bar{\phi}^{2}}{a}}{0} .
\end{aligned}
$$

- The effective field theory has two $U(1)$ symmetries:
- $\varphi_{1} \rightarrow \varphi_{1}+\lambda_{1}$ for boson number conservation

Conjuate of λ_{1} is $\int \mathrm{d} x \frac{1}{2 \pi} \partial_{x} \varphi_{2}=w_{\varphi}=N$.
$-\varphi_{2} \rightarrow \varphi_{2}+\lambda_{2}$ for momentum conservation.
Conjuate of λ_{2} is $\int d x \frac{1}{2 \pi} \partial_{x} \varphi_{1}=w_{\theta}=K / k_{b}$.

Another example of gauging symmetry

- Gauging the two $U(1)$ symmetries:
- $u_{I}(x) \rightarrow \mathrm{e}^{\mathrm{i} \lambda_{l}(x)} u_{I}(x)$ gives rise to $u_{l}^{*} \partial_{\mu} u_{I} \rightarrow u_{I}^{*}\left(\partial_{\mu}+\mathrm{i} \partial_{\mu} \lambda_{I}\right) u_{I}, \mu=t, x$.
- Replacing $\partial_{\mu} \lambda_{l}$ by a vector potential A_{μ}^{\prime} gives rise to a gauged theory

$$
\begin{aligned}
\mathcal{L}= & \frac{K_{I J}}{4 \pi}\left(\partial_{x}-\mathrm{i} A_{x}^{\prime}\right) u_{l}^{*}\left(\partial_{t}+\mathrm{i} A_{t}^{J}\right) u_{J}-\frac{V_{I J}}{4 \pi}\left(\partial_{x}-\mathrm{i} A_{x}^{\prime}\right) u_{l}^{*}\left(\partial_{x}+\mathrm{i} A_{x}^{J}\right) u_{J} \\
& -\mathrm{i} q_{I} u_{l}^{*}\left(\partial_{t}+\mathrm{i} A_{t}^{\prime}\right) u_{I} \\
= & \frac{K_{I J}}{4 \pi}\left(\partial_{x} \varphi_{I}+A_{x}^{\prime}\right)\left(\partial_{t} \varphi_{J}+A_{t}^{J}\right)-\frac{V_{I J}}{4 \pi}\left(\partial_{x} \varphi_{I}+A_{x}^{\prime}\right)\left(\partial_{x} \varphi_{J}+A_{x}^{J}\right)+q_{I}\left(\partial_{t} \varphi_{I}+A_{t}^{J}\right)
\end{aligned}
$$

- Conserved current

$$
j_{I}^{t}=\frac{K_{I J}}{4 \pi}\left(\partial_{x} \varphi_{J}+A_{x}^{J}\right)+q_{I}, \quad j_{I}^{x}=\frac{K_{I J}}{4 \pi}\left(\partial_{t} \varphi_{J}+A_{t}^{J}\right)-\frac{V_{I J}}{2 \pi}\left(\partial_{x} \varphi_{J}+A_{x}^{J}\right)
$$

- Equaton of motion \rightarrow conservation

$$
\begin{aligned}
& -\frac{K_{I J}}{4 \pi} \partial_{x}\left(\partial_{t} \varphi_{J}+A_{t}^{J}\right)-\frac{K_{I J}}{4 \pi} \partial_{t}\left(\partial_{x} \varphi_{J}+A_{x}^{J}\right)+\frac{V_{I J}}{2 \pi} \partial_{x}\left(\partial_{x} \varphi_{J}+A_{x}^{J}\right)=0 \\
\rightarrow & -\partial_{t} j_{l}^{t}-\partial_{x} j_{l}^{x}=0
\end{aligned}
$$

Symmetry twist, pumping, and anomaly

- But for certain background field $A_{\mu}^{\prime}(x, t)$, the equation of motion cannot be satisfied \rightarrow non-conservation. Symmetry twist \rightarrow Pumping Background field $A_{\mu}^{\prime}(x, t)=$ symmetry twist. Non-conservation $=$ pumping
- Consider $A_{t}^{\prime}=0, A_{x}^{\prime}$ independent of x, but dependent on t. Equation of motion becomes

$$
-\frac{K_{I J}}{2 \pi} \partial_{x} \partial_{t} \varphi_{J}+\frac{V_{I J}}{2 \pi} \partial_{x}^{2} \varphi_{J}=\frac{K_{I J}}{4 \pi} \partial_{t} A_{x}^{J}
$$

It has no solution since, on a ring of size L,

$$
0=\int_{0}^{L} \mathrm{~d} x\left[-\frac{K_{I J}}{2 \pi} \partial_{x} \partial_{t} \varphi_{J}+\frac{V_{I J}}{2 \pi} \partial_{x}^{2} \varphi_{J}\right]=\int_{0}^{L} \mathrm{~d} x \frac{K_{I J}}{4 \pi} \partial_{t} A_{x}^{J} \neq 0
$$

- The non-zero pumped $U(1)$ charge $\rightarrow U(1)$ anomaly

$$
\dot{Q}_{I}=\int_{0}^{L} \mathrm{~d} x \partial_{t} j_{l}^{t}=\int_{0}^{L} \mathrm{~d} x \partial_{t}\left[\frac{K_{I J}}{4 \pi}\left(\partial_{x} \varphi_{J}+A_{x}^{J}\right)+q_{I}\right]=\int_{0}^{L} \mathrm{~d} x \partial_{t} \frac{K_{I J}}{4 \pi} A_{x}^{J}
$$

Anomaly and mixed anomaly

Consider chiral boson theory

$$
\begin{aligned}
L & =\int \mathrm{d} x \frac{K_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{t} \varphi_{J}-\frac{V_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{x} \varphi_{J}+q_{I} \partial \phi_{I} \\
\dot{Q}_{I} & =\int_{0}^{L} \mathrm{~d} x \partial_{t} J_{l}^{t}=\int_{0}^{L} \mathrm{~d} x \partial_{t} \frac{K_{I J}}{4 \pi} A_{x}^{J}
\end{aligned}
$$

- $K=(1)$, the theory is actually fermionic and describes a chiral fermion.
- The $U(1)$ symmetry twist pumps the $U(1)$ charge $\rightarrow U(1)$ amonaly
- $K=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, the theory is non-chiral describing 1d bosonic superfluid.
- The first $U(1)$ symmetry twist does not pump the first $U(1)$ charge. The first $U(1)$ is not anomalous.
- The second $U(1)$ symmetry twist does not pump the second $U(1)$ charge. The second $U(1)$ is not anomalous.
- The first $U(1)$ symmetry twist pumps the second $U(1)$ charge. The $U(1) \times U(1)$ symmetry has a mixed anomaly.

Anomaly and mixed anomaly

- $K=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, the theory is non-chiral describing 1d Fermi liquid.
- The first $U(1)$ symmetry twist pumps the first $U(1)$ charge. The first $U(1)$ is anomalous.
- The second $U(1)$ symmetry twist pumps the second $U(1)$ charge. The second $U(1)$ is anomalous.
The " + " $U(1): \varphi_{1} \rightarrow \varphi_{1}+\lambda_{+}, \varphi_{2} \rightarrow \varphi_{2}+\lambda_{+} \rightarrow$ the fermion number The "-" $U(1): \varphi_{1} \rightarrow \varphi_{1}+\lambda_{-}, \varphi_{2} \rightarrow \varphi_{2}-\lambda_{-} \rightarrow$ the total momentum provided that the fermion density is not zero.
- The " + " $U(1)$ symmetry twist does not pump the " + " $U(1)$ charge. The " + " $U(1)$ is not anomalous.
- The "-" $U(1)$ symmetry twist does not pump the "-" $U(1)$ charge. The " - " $U(1)$ is not anomalous.
- The " + " $U(1)$ symmetry twist does not pump the "-" $U(1)$ charge. There is a mixed anomaly between " + " $U(1)$ and " - " $U(1)$ symmetries. The $U^{2}(1)$ symmetric state must be gapless.

Why $K=(1)$ chiral boson theory describes chiral fermions

$K=(1)$ chiral boson field theory:

$$
\begin{aligned}
L & =\int \mathrm{d} x \frac{1}{4 \pi} \partial_{x} \varphi \partial_{t} \varphi-\frac{V}{4 \pi} \partial_{x} \varphi \partial_{x} \varphi \\
& =\sum_{k=-\infty}^{+\infty} \frac{-\mathrm{i}}{4 \pi} k \varphi_{-k} \dot{\varphi}_{k}-\frac{V}{4 \pi} k^{2} \varphi_{-k} \varphi_{k}, \quad \varphi(x)=\sum_{k=-\infty}^{+\infty} \frac{\mathrm{e}^{\mathrm{i} k x}}{\sqrt{L}} \varphi_{k} \\
& =\sum_{k>0} \frac{-\mathrm{i}}{2 \pi} k \varphi_{-k} \dot{\varphi}_{k}-\frac{V}{2 \pi} k^{2} \varphi_{-k} \varphi_{k}
\end{aligned}
$$

The canonical conjugate of φ is $\frac{1}{4 \pi} \partial_{y} \varphi(y)$ or $\frac{1}{2 \pi} \partial_{y} \varphi(y)$

$$
\begin{aligned}
& {\left[\varphi_{k}, \frac{-\mathrm{i} k^{\prime}}{2 \pi} \varphi_{-k^{\prime}}\right]=\mathrm{i} \delta_{k-k^{\prime}},} \\
& {\left[\varphi(x), \frac{1}{2 \pi} \partial_{y} \varphi(y)\right]=\mathrm{i} \sum_{k} L^{-1} \mathrm{e}^{\mathrm{i} k(x-y)}=\mathrm{i} \int \frac{\mathrm{~d} k}{2 \pi} \mathrm{e}^{\mathrm{i} k(x-y)}} \\
& {\left[\varphi(x), \frac{1}{2 \pi} \partial_{y} \varphi(y)\right]=\mathrm{i} \delta(x-y), \quad[\varphi(x), \varphi(y)]=\mathrm{i} \pi \operatorname{sgn}(x-y) .}
\end{aligned}
$$

Why $K=(1)$ chiral boson theory describes chiral fermions

- $\varphi(x)$ is a compcat field $\varphi(x) \sim \varphi(x)+2 \pi$. Thus $\varphi(x)$ is not an allowed operator. $\mathrm{e}^{ \pm \mathrm{i} \varphi(x)}$ are allowed operators, all other allowed operators are generated by $\mathrm{e}^{ \pm \mathrm{i} \varphi(x)}$.
- The allowed operators are non-local and should be forbiden:

$$
\begin{gathered}
\mathrm{e}^{\mathrm{i} \varphi(x)} \mathrm{e}^{\mathrm{i} \varphi(y)}=\mathrm{e}^{[\mathrm{i} \varphi(x), \mathrm{i} \varphi(y)]} \mathrm{e}^{\mathrm{i} \varphi(y)} \mathrm{e}^{\mathrm{i} \varphi(x)} \\
=\mathrm{e}^{\mathrm{i} \pi \operatorname{sgn}(x-y)} \mathrm{e}^{\mathrm{i} \varphi(y)} \mathrm{e}^{\mathrm{i} \varphi(x)}=-\mathrm{e}^{\mathrm{i} \varphi(y)} \mathrm{e}^{\mathrm{i} \varphi(x)}
\end{gathered}
$$

- Or we regard the non-local operators $\mathrm{e}^{ \pm i \varphi(x)}$ as local fermion operator, and regard the chiral boson theory as a theroy for fermions.
- The imaginary-time (time-ordered) correlation function for $\mathrm{e}^{ \pm i \varphi(x)}$:

$$
\left\langle\mathrm{e}^{-\mathrm{i} \varphi(x, \tau)} \mathrm{e}^{\mathrm{i} \varphi(0)}\right\rangle \sim \frac{1}{x+\mathrm{i} v \tau}=\frac{1}{z}
$$

which is identical to the correlation function of free chiral fermion $c(x, t)$, and allows us to identify $c(x, t) \sim \mathrm{e}^{\mathrm{i} \varphi(x, t)}$.

$K=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ boson theory describes 1d Fermi liquid

- Bosonization:

$$
\begin{aligned}
L= & \int \mathrm{d} x \frac{1}{4 \pi} \partial_{x} \varphi_{R} \partial_{t} \varphi_{R}-\frac{v_{F}}{4 \pi} \partial_{x} \varphi_{R} \partial_{\times} \varphi_{R}-\frac{1}{4 \pi} \partial_{x} \varphi_{L} \partial_{t} \varphi_{L}-\frac{v_{F}}{4 \pi} \partial_{x} \varphi_{L} \partial_{x} \varphi_{L} \\
& +q \partial_{t}\left(\varphi_{R}+\varphi_{L}\right)
\end{aligned}
$$

describes $1 d$ non-interacting fermions with Fermi velocity k_{F}.

- The fermion number $U(1)$ symmetry: $\varphi_{R} \rightarrow \varphi_{R}+\theta, \varphi_{L} \rightarrow \varphi_{L}+\theta$. The canonical conjugate of θ is the fermion number \rightarrow Fermion number density is given by $n_{F}=\frac{1}{2 \pi}\left(\partial_{x} \varphi_{R}-\partial_{x} \varphi_{L}\right)$.
- Interacting 1d fermions via bosonization:
$L=\int \mathrm{d} \times \frac{1}{4 \pi} \partial_{x} \varphi_{R} \partial_{t} \varphi_{R}-\frac{v_{F}}{4 \pi} \partial_{x} \varphi_{R} \partial_{x} \varphi_{R}-\frac{1}{4 \pi} \partial_{x} \varphi_{L} \partial_{t} \varphi_{L}-\frac{v_{F}}{4 \pi} \partial_{x} \varphi_{L} \partial_{x} \varphi_{L}$

$$
+\frac{V}{(2 \pi)^{2}}\left(\partial_{x} \varphi_{R}-\partial_{x} \varphi_{L}\right)^{2}+q \partial_{t}\left(\varphi_{R}+\varphi_{L}\right)
$$

describes 1 d interacting fermions, which allow us to compute fermion correlation $\left\langle c(x, t) c^{\dagger}(0)\right\rangle$, etc .

Fractionalization in general 1d chiral boson theory

$$
L=\int \mathrm{d} x \frac{K_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{t} \varphi_{J}-\frac{V_{I J}}{4 \pi} \partial_{x} \varphi_{I} \partial_{x} \varphi_{J}, \varphi_{I} \sim \varphi_{I}+2 \pi
$$

with $K_{/ I}$ even. The canonical conjugate of φ_{I} is $\frac{K_{I J}}{2 \pi} \partial_{x} \varphi_{J} \rightarrow$

$$
\left[\varphi_{I}(x), \varphi_{J}(y)\right]=\mathrm{i} \pi\left(K^{-1}\right)_{I J} \operatorname{sgn}(x-y)
$$

- All the allowed operators have the form $\mathrm{e}^{\mathrm{i} / \iota \varphi /(x)}$ where $l_{I} \in \mathbb{Z}$. The commutation of allowed operators

$$
\mathrm{e}^{\mathrm{i} / \varphi_{l}(x)} \mathrm{e}^{\mathrm{i}{\tilde{I} \varphi \varphi_{J}(y)}^{2}}=\mathrm{e}^{\mathrm{i} \pi \tilde{I} K^{-1} /} \mathrm{e}^{\mathrm{i} \tilde{J}_{\boldsymbol{\prime}} \varphi_{J}(y)} \mathrm{e}^{\mathrm{i} / \varphi_{l}(x)}
$$

- Moving operator $\mathrm{e}^{\mathrm{i} / \iota_{l}(x)}$ around $\mathrm{e}^{\mathrm{i} \tilde{I}_{\rho_{\varphi}}(y)}$ induce a phase $\mathrm{e}^{\mathrm{i} 2 \pi \tilde{I} K^{-1} /} \rightarrow$ mutual statistics. The imaginary-time correlation between $\mathrm{e}^{\mathrm{i} / \varphi_{l}(x)}$ and $\mathrm{e}^{\mathrm{i} \tilde{J}_{\lrcorner \varphi J}(y)}$ has a form

$$
\left\langle\cdots \mathrm{e}^{\mathrm{i} / \iota \mid\left(z_{1}\right)} \mathrm{e}^{\mathrm{i} \tilde{\jmath} \jmath_{\jmath} \varphi_{J}\left(z_{2}\right)} \cdots\right\rangle \sim \frac{1}{\left(z_{1}-z_{2}\right)^{\gamma}\left(\bar{z}_{1}-\bar{z}_{2}\right)^{\bar{\gamma}}}, \quad \gamma-\bar{\gamma}=\tilde{I} K^{-1} /
$$

Fractionalization in general 1d chiral boson theory

Most of the allowed operators $\mathrm{e}^{\mathrm{i} / \varphi_{l}(x)}$ are not local (ie far away operators do not commute)

- Local operators: the operators $\mathrm{e}^{\mathrm{i} / \rho \rho^{l o c} \varphi(x)}$ that commute with all allowed operator that are far way:

$$
l^{l o c} K^{-1} I=\text { even int. } \quad \forall I \in \mathbb{Z} \quad \rightarrow \quad I_{l}^{\text {loc }}=K_{I J} n_{J}
$$

$\mathrm{e}^{\mathrm{i} / l^{\text {loc }} \varphi_{l}(x)}$ corresponds to lattice boson operators.

- The allowed non-local operator $\mathrm{e}^{\mathrm{i} / \varphi_{1}(x)}$ create quasi particle with fractional statistics given by $\mathrm{e}^{\mathrm{i} \pi / K^{-1} l}$.
- In fact, the chiral boson model for most K is anomalous, ie can not be realized by 1d lattice boson model. But it can be realized by the boundary of 2d FQH Hall state. So the chiral boson model is a edge theory of 2d 2d FQH Hall state.

