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Our world is very rich with all kinds of materials
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In middle school, we learned ...

there are four states of matter:

Solid Liquid

Gas Plasma
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In university, we learned ... ...

• Rich forms of matter ← rich types of order

• A deep insight from Landau: different orders
come from different symmetry breaking.

• A corner stone of condensed matter physics
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Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry
breaking classify all phases of matter

• Symm. breaking phases are classified by a pair GΨ ⊂ GH

GH = symmetry group of the Hamiltonian H.
GΨ = symmetry group of the ground states Ψ.

• 230 crystals from group theory
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Can symmetry breaking describes all phases of matter?

A spin-liquid theory of high Tc superconductors:
• It was proposed that a 2d spin liquid can have spin-charge separation:

An electron can change into two topological quasi particles:
electron = holon ⊗ spinon,
holon: charge-1 spin-0 boson,
spinon: charge-0 spin-1/2 fermion.

Holon condensation → high Tc superconductivity.

• Does such a strnge spin liquid exist? How to characterize it?
A spin liquid was explicitly constructed Kalmeyer-Laughlin, PRL 59 2095 (87),
and we found that it is a state that break time reversal and parity
symmetry, but not spin rotation symmetry, with order parameter
S1 · (S2 × S3) 6= 0 → Chiral spin liquid Wen, Wilczek, Zee, PRB 39 11413 (89)

• However, we also discovered several different chiral spin states with
identical symmetry breaking pattern.
How distinguish those chiral spin states with the same symmetry
breaking?
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Topological orders in quantum Hall effect

0 2 31 ... ...

bulk excitation edge excitation

E

µ

l = kR

ωc

• Quantum Hall (QH) states Rxy = Vy/Ix = m
n

2π~
e2

vonKlitzing Dorda Pepper, PRL 45 494 (1980)

Tsui Stormer Gossard, PRL 48 1559 (1982)

• Fractional quantum Hall (FQH)
states have different phases even
when the only U(1) symmetry is
not broken for those states.

• Chiral spin and FQH liquids must
contain a new kind of order, which
was named as topological order
Wen, PRB 40 7387 (89); IJMP 4 239 (90)

Xiao-Gang Wen Highly entangled quantum many-body systems – Topological order 7 / 69



Topological orders in quantum Hall effect

0 2 31 ... ...

bulk excitation edge excitation

E

µ

l = kR

ωc

• Quantum Hall (QH) states Rxy = Vy/Ix = m
n

2π~
e2

vonKlitzing Dorda Pepper, PRL 45 494 (1980)

Tsui Stormer Gossard, PRL 48 1559 (1982)

• Fractional quantum Hall (FQH)
states have different phases even
when the only U(1) symmetry is
not broken for those states.

• Chiral spin and FQH liquids must
contain a new kind of order, which
was named as topological order
Wen, PRB 40 7387 (89); IJMP 4 239 (90)

Xiao-Gang Wen Highly entangled quantum many-body systems – Topological order 7 / 69



What is topological order?

• Three kinds of quantum matter:

(1) no low energy excitations (Insulator) → trivial
(2) some low energy excitations (Superfluid) → interesting
(3) a lot of low energy excitations (Metal) → messy

Topological orders belong to the “trivial” class
(ie have an energy gap and no low energy excitations)

Topological orders are trivial state of matter?!
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Every physical concept is defined by experiment

• The concept of crystal order is defined via X-ray scattering

• The concept of superfuild order
no low energy excitations is defined via zero-viscosity and
quantization of vorticity
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What is topological order? How to characterize it?

• How to extract universal information (topological invariants) from
complicated many-body wave function Ψ(x1, · · · , x1020)
Put the gapped system on space with various topologies, and
measure the ground state degeneracy.
(The dynamics of a quantum many-body system is controlled by a
hermitian operator, Hamiltonian H, acting on the many-body wave
functions. The spectrum of the Hamiltonian has a gap)
→ The notion of topological order Wen PRB 40 7387 (89)
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• The name topological order was motivated by Witten’s
topological quantum field theory (field theories that do
not depend on spacetime metrics), such as Chern-Simons
theories which happen to be the low energy effective theories
for both chiral spin states and QH states. Witten CMP 121 351 (1989)
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The ground state degeneracy is a topological invariant

• At first, some people objected that the ground state
degeneracies are finite-size effects or symmetry effect,
not reflecting the intrinsic order of a phase of matter.
• The ground state degeneracies are robust against

any local perturbations that can break any symmetries.
→ topological degeneracy (another motivation for the name
topological) Wen Int. J. Mod. Phys. B 04 239 (90); Wen Niu PRB 41 9377 (90)
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• The ground state degeneracies can only
vary by some large changes of Hamiltonian
→ gap-closing phase transition.
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How to fully characterize topological order?

Deform the space and measure the non-Abelian geometric phase of
the deg. ground states. Wilczek & Zee PRL 52 2111 (84)

• For 2d torus Σ2 = S1 × S1:
Dehn twist: |Ψi 〉 → |Ψ′i 〉 = Tij |Ψj〉
90◦ rotation |Ψi 〉 → |Ψ′i 〉 = Sij |Ψj〉
S ,T generate a representation of
modular group: S2 = (ST )3 = C , C 2 = 1
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How to fully characterize topological order?

Conjecture: The non-Abelian geometric phases of the degenerate
ground states for closed spaces with all kinds of topologies can
fully characterize topological orders. Wen, IJMPB 4 239 (1990);

KeskiVakkuri & Wen, IJMPB 7 4227 (1993)

• Non-Abelian geometric phases = Projective representations of the
mapping class group of closed spaces with all kinds of topologies
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An modern understanding of topological degeneracy

• In 2005, we discovered that topological
order has topological entanglement
entropy Kitaev-Preskill hep-th/0510092

Levin-Wen cond-mat/0510613

and long range quantum entanglement
Chen-Gu-Wen arXiv:1004.3835

• For a long-range entangled many-body quantum
system, knowing every overlapping local parts

still cannot determine the whole.
- In other words, there are different “wholes”,

that their every local parts are identical (Like fiber bundle in math).
- Local interactions/impurities can only see the local parts → those

different “wholes” (the whole quantum states) have the same energy.

Topological degeneracy comes from long range entanglement.

The pseudo-gauge transformations → different “wholes” with identical
local “parts”. Long-range entanglement → Chern-Simons theory
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Why knowing every part does not imply knowing whole?

• What is a “whole”?, what is “part”?
whole = many-body wave function |Ψ〉 = Ψ(m1,m2, · · · ,mN)
where mi label states on site-i
part = local entanglement density matrix:

ρsite-1,2,3 = Trsite-3,··· ,N |Ψ〉〈Ψ|,
ρm1,m2,m3;m′1,m

′
2,m
′
3

=
∑

m4,··· ,mN

Ψ∗(m1,m2,m3,m4, · · · ,mN)Ψ(m′1,m
′
2,m

′
3,m4, · · · ,mN)

• The energy only depends on the local parts ρsite-1,2,3 due to the local
interaction H1,2,3

〈H1,2,3〉 = Tr(H1,2,3ρsite-1,2,3)
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Entanglement through examples

• | ↑〉 ⊗ | ↓〉 = direct-product state → unentangled (classical)

• | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉 → entangled (quantum)
• | ↑〉 ⊗ | ↑〉+ | ↓〉 ⊗ | ↓〉+ | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉

→ more entangled

= (| ↑〉+ | ↓〉)⊗ (| ↑〉+ | ↓〉) = |x〉 ⊗ |x〉 → unentangled

• = | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉... → unentangled

• = (| ↓↑〉 − | ↑↓〉)⊗ (| ↓↑〉 − | ↑↓〉)⊗ ... → short-range
entangled (SRE) entangled

• Crystal order: |Φcrystal〉 =

∣∣∣∣ 〉
= |0〉x1 ⊗ |1〉x2 ⊗ |0〉x3 ...

= direct-product state → unentangled state (classical)

• Particle condensation (superfluid)

|ΦSF〉 =
∑

all conf.

∣∣∣∣ 〉
= (|0〉x1 + |1〉x1 + ..)⊗ (|0〉x2 + |1〉x2 + ..)...

= direct-product state → unentangled state (classical)
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What is long-range entanglement?

• The above example are all unentangled
or short-range entangled.

• Define long range entanglement
via local unitary (LU) transformations
(ie local quantum circuit) Chen-Gu-Wen arXiv:1004.3835

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases
= different patterns of long-range entanglements
= different topological orders Wen PRB 40 7387 (89)
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Macroscopic characterization → microscopic origin

• From macroscopic characterization of topological order (1989)
(topological ground state degeneracies, mapping class group
representations)
→ microscopic origin (long range entanglement 2010)
took 20+ years

• From macroscopic characterization of superconductivity (1911)
(zero-resistivity, quantized vorticity)
→ microscopic origin (BSC electron-pairing 1957)
took 46 years
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This topology is not that topology

Topology in topological insulator/superconductor (2005) corresponds to
the twist in the band structure of orbitals, which is similar to the
topological structure that distinguishes a sphere from a torus. This kind
of topology is classical topology.

Kane-Mele cond-mat/0506581
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This topology is not that topology

Topology in topological order (1989) corresponds to pattern of
many-body entanglement in many-body wave function
Ψ(m1,m2, · · · ,mN), that is robust against any local perturbations that
can break any symmetry. Such robustness is the meaning of topological
in topological order. This kind of topology is quantum topology.

Wen PRB 40 7387 (1989)
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How to make long range entanglement?
(Mechanism of topological order)

A mechanism of superconductivity: electron pairing
→ boson condensation → superconductivity

To make topological order, we need to sum over many different product
states, but we should not sum over everything.∑

all spin config. | ↑↓ ..〉 = | →→ ..〉

• A mechanism:
Sum over a subset of spin configurations:

|ΦZ2
loops〉 =

∑∣∣∣ 〉
|ΦDS

loops〉 =
∑

(−)# of loops
∣∣∣ 〉

|Φθ
loops〉 =

∑
(e iθ)# of loops

∣∣∣ 〉
• Can the above wavefunctions be the

ground states of local Hamiltonians?
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→ boson condensation → superconductivity

To make topological order, we need to sum over many different product
states, but we should not sum over everything.∑

all spin config. | ↑↓ ..〉 = | →→ ..〉
• A mechanism:

Sum over a subset of spin configurations:

|ΦZ2
loops〉 =

∑∣∣∣ 〉
|ΦDS

loops〉 =
∑

(−)# of loops
∣∣∣ 〉

|Φθ
loops〉 =

∑
(e iθ)# of loops

∣∣∣ 〉
• Can the above wavefunctions be the

ground states of local Hamiltonians?
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Local dance rule (Hamiltonian) → global dance pattern

2D

• Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global wave function of loops Φstr

( )
= 1

• There is a local Hamiltonian H:
(1) Open ends cost energy
(2) string can hop and reconnect freely. ie H contains terms causing

→ , → with negative coefficient.

The ground state of H gives rise to the above string lqiuid wave
function. (For the explicite H, see page 33).
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Local dance rule → global dance pattern

2D 3D

• Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
,Φstr

( )
= −Φstr

( )
→ Global wave function of loops Φstr

( )
= (−)# of loops

- The second string liquid Φstr

( )
= (−)# of loops can exist only in

2-dimensions.

- The first string liquid Φstr

( )
= 1 can exist in both 2- and

3-dimensions.

- The thirsd string liquid Φstr

( )
= (e iθ)# of loops can exist in neither

2- nor 3-dimensions.
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Knowing all the parts 6= knowing the whole

• Do those two string liquids
really have topological order?
Do they have topological
ground state degenercy?

- 4 locally indistinguishable states
on torus for both liquids →
topological order

- Ground state degeneracy cannot
distinguish them.

e o

e e

e

o o

o

D
tor

=4
.
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Topological excitations

• Ends of strings behave
like point objects.

• They cannot be created
alone → topological

• Let us fix 4 ends of string on
a sphere S2. How many locally
indistinguishable states are there?

- There are 2 sectors → 2 states.

- In fact, there is only 1 sector → 1 state, due to the string reconnection

fluctuations Φstr

( )
= ±Φstr

( )
.

• For our string liquids, in general, fixing 2N ends of string → 1 state.
Each end of string has no degeneracy → no internal degrees of freedom.

• Another type of topological excitation vortex at × (by modifying the

string wave function): |m〉 =
∑

(−)# of loops around ×
∣∣∣ 〉
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Emergence of fractional spin

.
• Ends of strings are point-like. Are they bosons or fermions?

Two ends = a small string = a boson, but each end can still be a
fermion. Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

• Φstr

( )
= 1 string liquid Φstr

( )
= Φstr

( )
• End of string wave function: |end〉 = + c + c + · · ·

The string near the end is totally fixed, since the end is determined by a
trapping Hamiltonian δH which can be chosen to fix the string. The
string alway from the end is not fixed, since they are determined by the
bluk Hamiltonian H which gives rise to a string liquid.

• 360◦ rotation: → and = → : R360◦ =

(
0 1
1 0

)
• We find four types of topological exitations

(1) |e〉 = + spin 0. (2) |f 〉 = − spin 1/2.
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Spin-statistics theorem:
Emergence of Fermi statistics

(a) (b) (c) (d) (e)

• (a) → (b) = exchange two string-ends.

• (d) → (e) = 360◦ rotation of a string-end.

• Amplitude (a) = Amplitude (e)

• Exchange two string-ends plus a 360◦ rotation of one of the string-end
generate no phase.

→ Spin-statistics theorem
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Z2 topological order and its physical properties

Φstr

( )
= 1 string liquid has Z2-topological order.

• 4 types of topological excitations: (f is a fermion)

(1) |e〉 = + spin 0. (2) |f = e ⊗m〉 = − spin 1/2.

(3) |m = e ⊗ f 〉 = − spin 0. (4) |1〉 = + spin 0.

• The type-1 excitation is the tirivial excitation, that can be created by
local operators.
The type-e, type-m, and type-f excitations are non-tirivial excitation,
that cannot be created by local operators.

• 1, e, m are bosons and f is a fermion. e,m, and f have π mutual
statistics between them.

• Fusion rule:
e ⊗ e = 1; f ⊗ f = 1; m ⊗m = 1;
e ⊗m = f ; f ⊗ e = m; m ⊗ f = e;
1⊗ e = e; 1⊗m = m; 1⊗ f = f ;
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Z2 topological order is described by Z2 gauge theory

Physical properties of Z2 gauge theory
= Physical properties of Z2 topological order

• Z2-charge (a representatiosn of Z2) and Z2-vortex (π-flux) as two
bosonic point-like excitations.

• Z2-charge and Z2-vortex bound state → a fermion (f ),
since Z2-charge and Z2-vortex has a π mutual statistics between them
(charge-1 around flux-π).

• Z2-charge, Z2-vortex, and their bound state has a π mutual statistics
between them.

• Z2-charge → e, Z2-vortex → m, bound state → f .

• Z2 gauge theory on torus also has 4 degenerate ground states
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Emergence of fractional spin and semion statistics

Consider another string wave function:

Φstr

( )
= (−)# of loops string liquid. Φstr

( )
= −Φstr

( )
• End of string wave function: |end〉 = + c − c + · · ·

• 360◦ rotation: → and = − → − : R360◦ =

(
0 −1
1 0

)
• Types of topological excitations: (s± are semions)

(1) |s+〉 = + i spin 1
4 . (2) |s−〉 = − i spin −1

4

(3) |m = s− ⊗ s+〉 = − spin 0. (4) |1〉 = + spin 0.

• double-semion topological order = U2(1) Chern-Simon gauge theory
L(aµ) = 2

4πaµ∂νaλε
µνλ − 2

4π ãµ∂ν ãλε
µνλ

• Two string lqiuids → Two topological orders:
Z2 topological order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91),

Moessner-Sondhi PRL 86 1881 (01) and double-semion topo. order Freedman

etal cond-mat/0307511, Levin-Wen cond-mat/0404617
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Lattice Hamiltonians to realize Z2 topological order

• Frustrated spin-1/2 model on square lattice (slave-particle meanfield
theory) Read Sachdev, PRL 66 1773 (91); Wen, PRB 44 2664 (91).

H = J
∑
nn

σi · σj + J ′
∑
nnn

σi · σj

• Dimer model on triangular lattice (Mont Carlo numerics)
Moessner Sondhi, PRL 86 1881 (01)
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Why dimmer liquid has topological order

• Dimmer liquid ∼ string liquid:

- Non-bipartite lattice: unoritaded string → Z2 topological order
=Z2 gauge theory

- Bipartite lattice: oriented string → U(1) gauge theory

.

• Which local Hamiltonians can realize
the following string wavefunctions:

|ΦZ2
loops〉 =

∑∣∣∣ 〉
|ΦDS

loops〉 =
∑

(−)# of loops
∣∣∣ 〉
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Toric-code model: Z2 topological order, Z2 gauge theory

Local Hamiltonian enforces local rules on any lattice: P̂Φstr = 0
Φstr

( )
− Φstr

( )
= Φstr

( )
− Φstr

( )
= 0

• The Hamiltonian to enforce the local rules: Kitaev quant-ph/9707021

edge

leg

I

i

p

X

X

X

X

X

X

Z

Z

Z

H = −U
∑
I

Q̂I − g
∑
p

F̂p, Q̂I =
∏

legs of I

σzi , F̂p =
∏

edges of p

σxi

• The Hamiltonian is a sum of commuting operators
[F̂p, F̂p′ ] = 0, [Q̂I , Q̂I ′ ] = 0, [F̂p, Q̂I ] = 0. F̂ 2

p = Q̂2
I = 1

• Ground state |Ψgrnd〉: F̂p|Ψgrnd〉 = Q̂I |Ψgrnd〉 = |Ψgrnd〉
→ (1− Q̂I )Φgrnd = (1− F̂p)Φgrnd = 0.
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Physical properties of exactly soluble model

A string picture

• The −U
∑

I Q̂I term enforces
closed-string ground state.
• F̂p adds a small loop and deform

the strings →
permutes among the loop states

∣∣∣ 〉
→ Ground states

|Ψgrnd〉 =
∑

loops

∣∣∣ 〉
→ highly entangled

• There are four degenerate ground states α = ee, eo, oe, oo

e o

e e

e

o o

o

D
tor

=4

• On genus g surface, ground state degeneracy Dg = 4g
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Exactly soluble model on any graph

f
v

e

• On every link i , we degrees of freedom ↑, ↓.

H = −U
∑
v

Q̂v − g
∑
f

F̂f ,

Q̂v =
∏

legs of v

σze , F̂f =
∏

edges of f

σxe

The Hamiltonian is a sum of commuting operators
[F̂f , F̂p′ ] = 0, [Q̂v , Q̂v ′ ] = 0, [F̂f , Q̂v ] = 0. F̂ 2

f = Q̂2
v = 1

• Identities ⊗v Q̂v = 1, ⊗f F̂f = 1.

• Ground state degeneracy (GSD)
Number of degrees of freedom = E .
Number of constraints = V + F − 2.
GSD = 2E/2V+F−2 = 22−χ, χ = V − E + F – Euler characteristic.

• GSD on genus g Riemann surface Σg : from χ(Σg ) = 2− 2g we obtain
GSD = 22g . In fact, the degeneracy of any eigenstates is 2g .
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The string operators and topological excitations

• Topological excitations:
e-type: Q̂I = 1→ Q̂I = −1
m-type: F̂p = 1→ F̂p = −1

• e-type and m-type excitations
cannot be created alone due to
identiy:

∏
I Q̂I =

∏
p F̂p = 1

σ

σ
σ

σ
x

x

xσ
z

z

z
σ i

p

I

• Type-e string operator: We =
∏

string σ
x
i

• Type-m string operator: Wm =
∏

string* σ
z
i

• Type-f string operator: Wf =
∏

string σ
x
i

∏
legs σ

z
i

• [H,W close
e ] = [H,W close

m ] = [H,W closed
f ] = 0.

→ Closed strings cost no energy (→ higher symmetry)

• [Q̂I ,W
open
e ] 6= 0 → W open

e flip Q̂I → −Q̂I ,
[F̂p,W

open
m ] 6= 0 → W open

m flip F̂p → −F̂p

An open-string creates a pair of topo. excitations at its ends
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Three types of topological excitations and their fusion

• Type-e string operator We =
∏

string σ
x
i

• Type-m string operator Wm =
∏

string* σ
z
i

• Type-f string operator Wf =
∏

string σ
x
i

∏
legs σ

z
i

• Fusion algebra of string operators W 2
e = W 2

m = W 2
ε = WeWmWε = 1

when strings are parallel

• Fusion of topo. excitations:
e-type. e × e = 1
m-type. m ×m = 1
f -type = e ×m

• 4 types of excitations:
1, e,m, f

σ

σ
σ

σ
x

x

xσ
z

z

z
σ i

p

I
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What are bosons? What are fermions?

• Statistical distribution
Boson: nb = 1

eε/kBT−1
Fermion: nf = 1

eε/kBT +1
They are just properties of non-interacting bosons or fermions

• Pauli exclusion principle
Only works for non-interacting bosons or fermions

• Symmtric/anti-symmetric wave function.
For identical particles |x , y〉 and |y , x〉 are just differnt names of same
state. A generic state

∑
x ,y ψ(x , y)|x , y〉 is always described symmetric

wave function ψ(x , y) = ψ(y , x) regardless the statistics of the identical
particles.

• Commuting/anti-commuting operators
Boson: [ax , ay ] = 0 Fermiion: {cx , cy} = 0

• C-number-field/Grassmann-field
Boson: φ(x) Fermion: ψ(x)
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“Exchange” statistics and Braid group

• Quantum statistics is defined via phases induced by exchanging
identical particles.

.

• Quantum statistics is

.

not defined via exchange,
but via braiding.
Yong-Shi Wu, PRL 52 2103 (84)

• Braid group:

• Representations of braid group

.

(not permutation group)
define quantum statistics:

- Trivial representation of
braid group → Bose statistics.

- 1-dimensional representation of Leinaas-Myrheim 77; Wilczek 82

braid group → Fermi/fractional statistics → anyon.

- higher dimensional representation of braid group →
non-Abelian statistics → non-Abelian anyon. Wen 91; More-Read 91
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Statistics of ends of strings

• The statistics is determined by particle hopping operators
Levin-Wen cond-mat/0302460:

1
2

3

4
c

d

a
b

b

c

a d

a d

b

a d

c

b

c

tbd tcb tba

tcbtba tbd

tcb

tba

tbd

• An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string op. determines the statistics.
• For type-e string: tba = σx1 , tcb = σx3 , tbd = σx2

We find tbd tcbtba = tbatcbtbd
The ends of type-e string are bosons
• For type-f strings: tba = σx1 , tcb = σx3σ

z
4 , tbd = σx2σ

z
3

We find tbd tcbtba = −tbatcbtbd
The ends of type-f strings are fermions
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Topological ground state degeneracy and code distance

e

e

m

m

−1

−1

• When strings cross, WeWm = (−)# of crossWmWe

→ 4g degeneracy on genus g surface
→ Topological degneracy
Degeneracy remain exact for any perturbations
localized in a finite region.

• The above degenerate ground states form a “code”, which has a large
code distance of order L (the size of the system).

• Two states |ψ〉 and |ψ′〉 that can be connected by first-order local
perturbation δH: 〈ψ′|δH|ψ〉 > O(|δH|), L→∞
→ code distance = 1.

Two states |ψ〉 and |ψ′〉 that can be connected by nth-order local
perturbation → code distance = n.

• Symmetry breaking ground states in d-dim have code distance ∼ Ld

respected to symmetry preserving perturbation. code distance ∼ 1
respected to symmetry breaking perturbation.
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Higher symmetry

• The toric code model has higher symmetry (1-symmetry), whose

symmetry transformation is generated the loop operators W loop
e and

W loop
m :

HWe(S1) = We(S1)H, HWm(S1) = Wm(S1)H.

for any loops S1. If the transformation is n-dimensional, the symmetry
is (d − n)-symmetry, in d-dimensional space. The transformation is
d-dimensional for the usual global symmetry, which is a 0-symmetry.

• Charged operator (for Abelian symmetry):
WOcharged = e iϕOchargedW

For U(1) symmetry, ϕ = qθ if W generate θ-rotation. For Z2

symmetry, ϕ = π if W is the generator.

.
- Wm(open-string) is the charged operators

for the We(S1) 1-symmetry:

We(S1)Wm(open-string) = ±Wm(open-string)We(S1).
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Spontaneous breaking of higher symmetry

ε −> 0

∆

subspace
ground−state −>finite gap  

.

• Defintion: A (higher) symmetry is spontaneously
broken if the symmetry transformations have
non-trivial actions on the ground states, ie is
not proportional to an identity operator
W 6= e iϕ id in the ground state subspace, for any closed space.

• The toric code model has a We 1-symmetry (Z e
2 1-symmetry). Its

ground states spontaneously breaks the Z e
2 1-symmetry.

• The toric code model has a Wm 1-symmetry (Zm
2 1-symmetry). Its

ground states spontaneously breaks the Zm
2 1-symmetry.

• Spondtaneous breaking of higher symmetry → topological order
But, topological order 6= Spondtaneous breaking of higher symmetry

.

• The toric code model has a Z e
2 ∨ Zm

2 1-symmetry. Its
ground states must spontaneously break the Z e

2 ∨ Zm
2

1-symmetry → Enforaced spontaneous symmetry
breaking when ends of the symmetry transformation
operators (ie the strings We , Wm) have non-trivial (mutual) statistics.
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Toric-code model in terms of closed string operators

edge

leg

I

i

p

X

X

X

X

X

X

Z

Z

Z

edge

leg

leg

I

i

p

Z Z

Z

ZZ

Z
X

X

X
X

X X

Z

Z

Z

• Toric-code Hmailtonian

H = −U
∑
I

W closed
m − g

∑
p

W closed
e

• A new Hamitonian

H = −U
∑
I

W closed
m − g

∑
p

W closed
f

which realizes the same Z2 topological order.
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Double-semion model: taking square root of fermion string

Local rules: Levin-Wen cond-mat/0404617

Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
• The Hamiltonian to enforce the local rules:

edge

leg

leg

I

i

p
X

X

X
X

X X

Z

Z

Z

w

w w

w

ww

H = −U
∑
I

Q̂I −
g

2

∑
p

(F̂p + h.c.), i
1−σz

i
2 =

(
1 0
0 i

)
= wi ∼

√
σzi

Q̂I =
∏

legs of I

σzi , F̂p = (
∏

edges of p

σxj )(−
∏

legs of p

i
1−σz

i
2 )
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Double-semion model

• The action of operator F̂p = (
∏

edges of p σ
x
j )(−

∏
legs of p i

1−σz
i

2 ):
(1) flip string around the loop;
(2) add a phase −( i# of strings attatched to the loop),
which is ±1 in the closed-string subspace.

Combine the above two in the closed-string subspace:
F̂p adds a loop and a sign (−)change in # of loops

edge

leg

leg

I

i

p
X

X

X
X

X X

Z

Z

Z

w

w w

w

ww

.

This allows us to conclude:
• F̂p is hermitian in the closed-string subspace.

• F̂pF̂p′ = F̂p′ F̂p in the closed-string subspace.

• Ground state wave function Φ(X ) = (−)# of loops.
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Dressed string operators and topological excitations

j

i

I

R−leg

L−vertex

• To create a pair of topological
excitations, we need find closed
string operators that commute
with Q̂I and F̂p terms in the
Hamiltonian.

• We find 4 types of string
operators

W1 = id,

Ws1 =
∏
i∈str

σxi
∏

R-legs of str

i
1−σz

j
2

∏
L-vertices of str

(−)sI

Ws2 =
∏
i∈str

σxi
∏

R-legs of str

(− i)
1−σz

j
2

∏
L-vertices of str

(−)sI = Ws1Wb

Wb =
∏

R-legs of str

σzj = Wm, where sI =
1

4
(1− σzI−)(1 + σzI+)

Levin-Wen cond-mat/0404617
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Commutators of dressed string operators Ws1

L−vertex
R−leg

1 1

3 32 2Overlapped strings are in the same direction:[
σx1σ

x
2 i

1−σz3
2

][
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

]
=
[
σx1σ

x
2 i

1+σz3
2 i−σ

z
3

][
σx1σ

x
3 (−)

(1+σz1 )(1+σz3 )

4 (−)−
σz1 (1+σz3 )

2

]
=
[
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

][
σx1σ

x
2 i

1−σz3
2

]
iσ

z
3 (−)−

(1+σz3 )

2

=
[
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

][
σx1σ

x
2 i

1−σz3
2

]
i

R−leg
L−vertex

1 1

3 32 2[
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

][
σx3σ

x
1 i

1−σz2
2

]
=
[
σx2σ

x
1 (−)

(1−σz2 )(1−σz1 )

4 (−)
σz1 (1−σz2 )

2

][
σx3σ

x
1 i

1+σz2
2 i−σ

z
2

]
=
[
σx3σ

x
1 i

1−σz2
2

][
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

]
(−)−

σz1 (1−σz2 )

2 i−σ
z
2

=
[
σx3σ

x
1 i

1−σz2
2

][
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

]
(− i)
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Commutators of dressed string operators Ws1

R−leg R−leg

1 1

3 32 2Overlapped strings are in opposite direction:[
σx1σ

x
2 i

1−σz3
2

][
σx1σ

x
3 i

1−σz2
2

]
=
[
σx1σ

x
2 i

1+σz3
2 i−σ

z
3

][
σx1σ

x
3 i

1+σz2
2 i−σ

z
2

]
=
[
σx1σ

x
3 i

1−σz2
2

][
σx1σ

x
2 i

1−σz3
2

]
iσ

z
3 i−σ

z
2

=
[
σx1σ

x
3 i

1−σz2
2

][
σx1σ

x
2 i

1−σz3
2

]
σz3σ

z
2

L−vertex L−vertex

1 1

3 32 2[
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

][
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

]
=
[
σx2σ

x
1 (−)

(1−σz2 )(1−σz1 )

4 (−)
σz1 (1−σz2 )

2

][
σx1σ

x
3 (−)

(1+σz1 )(1+σz3 )

4 (−)−
σz1 (1+σz3 )

2

]
=
[
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

][
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

]
(−)−

σz1 (1−σz2 )

2 (−)−
σz1 (1+σz3 )

2

=
[
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

][
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

]
σz2σ

z
3
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Commutators of dressed string operators Ws1

R−leg L−vertex

1 1

3 32 2

Overlapped strings are
in opposite direction

[
σx1σ

x
2 i

1−σz3
2

][
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

]
=
[
σx1σ

x
2 i

1−σz3
2

][
σx2σ

x
1 (−)

(1+σz2 )(1−σz1 )

4 (−)
σz1−σ

z
2

2

]
=
[
σx2σ

x
1 (−)

(1−σz2 )(1+σz1 )

4

][
σx1σ

x
2 i

1−σz3
2

]
(−)

σz1−σ
z
2

2

=
[
σx1σ

x
3 (−)

(1−σz1 )(1+σz3 )

4

][
σx1σ

x
2 i

1−σz3
2

]
σz1σ

z
2

L−vertex

R−leg

j

i

I

Z
Z

Z
Z

Z
Z Z

Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

.

- Different loops of Ws1-string operators
commute in the closed string subspace,
shown by collecting the “phase factors”
σzi = Zi .

- Loops of Ws1-string operators
commute with Q̂I .

We can use Q̂I and loops of Ws1-string operators to construct a
soluble Hamiltonian, and which is what we have before.
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Statistics of ends of dressed strings

• The statistics is determined by particle hopping operators
Levin-Wen cond-mat/0302460:

1
2

3

4
c

d

a
b

b

c

a d

a d

b

a d

c

b

c

tbd tcb tba

tcbtba tbd

tcb

tba

tbd

• For dressed strings: tba = σx1 i
1−σz2

2 , tcb = σx3 , tbd = σx2 (−)
(1−σz2 )(1+σz3 )

4

We find tbd tcbtba = − itbatcbtbd via

[σx2 (−)
(1−σz2 )(1+σz3 )

4 ][σx3 ][σx1 i
1−σz2

2 ] = [σx1 i
1−σz2

2 ][σx3 ][σx2 (−)
(1−σz2 )(1+σz3 )

4 ](− i)

The end of string is a semion.
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Statistics of ends of dressed strings

The computation

[σx2 (−)
(1−σz2 )(1+σz3 )

4 ][σx3 ][σx1 i
1−σz2

2 ]

= [σx2 (−)
(1−σz2 )(1−σz3 )

4 (−)
σz3 (1−σz2 )

2 ][σx3 ][σx1 i
1+σz2

2 i−σ
z
2 ]

= [σx1 i
1−σz2

2 ][σx3 ][σx2 (−)
(1−σz2 )(1+σz3 )

4 ] (−)−
σz3 (1−σz2 )

2 i−σ
z
2

= [σx1 i
1−σz2

2 ][σx3 ][σx2 (−)
(1−σz2 )(1+σz3 )

4 ] (− i)
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3D Z2 topological order on Cubic lattice

6

5

3
4 1

2 3
4 1

2

a crossed leg a leg

i
I+z

I+yI+x

I

I+z

I+y

I

I+x

• Untwisted-string model: H = −U
∑

I QI − g
∑

p Fp

QI =
∏

i next to I

σzi , Fp = σx1σ
x
2σ

x
3σ

x
4

Can get 3D fermions for free (almost) Levin-Wen cond-mat/0302460

Just add a little twist
• Twisted-string model: H = U

∑
I QI − g

∑
p Fp

Fp = σx1σ
x
2σ

x
3σ

x
4σ

z
5σ

z
6
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String operators and Z2 charges Levin-Wen cond-mat/0302460

• A pair of Z2 charges is created by an open string operator which
commute with the Hamiltonian except at its two ends.
Strings cost no energy and is unobservable.

leg

crossed legi

i+x

i+z

i+y

i

i+x

i+z

i+y
dressed string

C

• In untwisted-string model – untwisted-string operator

σxi1σ
x
i2
σxi3σ

x
i4
...

• In twisted-string model – twisted-string operator

(σxi1σ
x
i2
σxi3σ

x
i4
...)

∏
i on crossed legs of C

σzi
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Twisted string operators commute [W1,W2] = 0

1 2 3 4 6 75

d e f

g

W2

W1
a b c

h

W1 = (σx1σ
x
2σ

x
3σ

x
4σ

x
5σ

x
6σ

x
7 ) [σz

dσ
z
eσ

z
f ]

W2 = (σxhσ
x
cσ

x
5σ

x
4σ

x
3σ

x
dσ

x
g ) [σz

6σ
z
e ]

• We also have [W ,QI ] = 0 for closed string operators W , since W only
create closed strings.
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Statistics of ends of twisted strings

• The statistics is determined by
particle hopping operators
Levin-Wen 03:

a

b

c

d

b

c

a d

12

3

4

5a d

b

a d

c

b

c

t bd t cb t ba

t cbt ba t bd

t cb

t ba

t bd

• An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string op. determine the statistics.
• For untwisted-string model: tba = σx2 , tcb = σx3 , tbd = σx1

We find tbd tcbtba = tbatcbtbd
The ends of untwisted-string are bosons
• For twisted-string model: tba = σz4σ

z
1σ

x
2 , tcb = σz5σ

x
3 , tbd = σx1

We find tbd tcbtba = −tbatcbtbd
The ends of twisted-string are fermions
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String-net liquid

Levin-Wen cond-mat/0404617.

Ground state:
• String-net liquid: allow three strings to join, but do

not allow a string to end Φstr

( )
• The dancing rule : Φstr

( )
= Φstr

( )
Φstr

( )
= a Φstr

( )
+ b Φstr

( )
Φstr

( )
= c Φstr

( )
+ d Φstr

( )
- The above is a relation between two orthogonal basis: two local

resolutions of how four strings join (quantum geometry)

, and , ,

(
a b
c d

)
= orthogonal matrix

a2 + b2 = 1, ac + bd = 0, ca + db = 0, c2 + d2 = 1
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Self consistent dancing rule

Apply reconnection rule twice:

Φstr

( )
= a(aΦstr

( )
+ bΦstr

( )
)

+ b(cΦstr

( )
+ dΦstr

( )
)

Φstr

( )
= c(aΦstr

( )
+ bΦstr

( )
)

+ d(cΦstr

( )
+ dΦstr

( )
)

We find

a2 + bc = 1, ab + bd = 0, ac + dc = 0, bc + d2 = 1

→ d = −a, b = c, a2 + b2 = 1.
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More self consistency condition

• Rewrite the string reconnection rule (0→no-string, 1→string)

Φ

(
ji k

m
l

)
=

1∑
n=0

F ijm
kln Φ

(
ji k

l

n

)
, i , j , k , l ,m, n = 0, 1

The 2-by-2 matrix F ij
kl → (F ij

kl)
m
n is unitary. We have

F 000
000 = 1

F 000
111 = (F 011

100 )∗ = (F 101
010 )∗ = F 110

001 = 1

F 011
011 = (F 101

101 )∗ = 1

F 011
111 = (F 101

111 )∗ = F 111
011 = (F 111

101 )∗ = 1

F 110
110 = a

F 110
111 = b = (F 111

110 )∗ = c∗

F 111
111 = d = −a,
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More self consistency condition

•
ji k l

m

p

n can be trans. to

ji k l

p

q
s through two different paths:

Φ

(
ji k l

m

p

n

)
=
∑
q

Fmkn
lpq Φ

(
ji k l

m

p

q

)
=
∑
q,s

Fmkn
lpq F ijm

qpsΦ

(
ji k l

p

q
s

)
,

Φ

(
ji k l

m

p

n

)
=
∑
t

F ijm
kntΦ

(
ji k l

p

n

t

)
=
∑
t,s

F ijm
kntF

itn
lps Φ

(
ji k l

p

s
t

)

=
∑
t,s,q

F ijm
kntF

itn
lps F

jkt
lsq Φ

(
φ

γ

δ
ji k l

p

q
s

)
.

• The two paths should lead to the same relation∑
t

F ijm
kntF

itn
lps F

jkt
lsq = Fmkn

lpq F ijm
qps

Such a set of non-linear algebraic equations is the famous pentagon
identity.
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The pentagon identity

• i , j , k, l , p,m, n, q, s = 0, 1 →
29 = 512+ non-linear equations with 26 = 64 unknowns.

• Solving the pentagon identity: choose i , j , k , l , p = 1
ji k l

m

p

n

ji k l

p

q
s

∑
t=0,1

F 11m
1nt F 1tn

11s F
11t
1sq = Fm1n

11q F 11m
q1s

choose n, q, s = 1,m = 0∑
t=0,1

F 110
11t F

1t1
111F

11t
111 = F 011

111 F
110
111

→a× 1× b + b × (−a)× (−a) = 1× b

→a + a2 = 1, → a = (±
√

5− 1)/2

Since a2 + b2 = 1, we find

a = (
√

5− 1)/2 ≡ γ, b =
√
a =
√
γ
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String-net dancing rule

• The dancing rule : Φstr

( )
= Φstr

( )
Φstr

( )
= γΦstr

( )
+
√
γΦstr

( )
Φstr

( )
=
√
γΦstr

( )
− γΦstr

( )

• Topological excitations:
For fixed 4 ends of string-net on a sphere S2, how many locally
indistinguishable states are there? four states?
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String-net dancing rule

• The dancing rule : Φstr

( )
= Φstr

( )
Φstr

( )
= γΦstr

( )
+
√
γΦstr

( )
Φstr

( )
=
√
γΦstr

( )
− γΦstr

( )

• Topological excitations:
For fixed 4 ends of string-net on a sphere S2, how many locally
indistinguishable states are there?

four states?
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String-net dancing rule

• The dancing rule : Φstr

( )
= Φstr

( )
Φstr

( )
= γΦstr

( )
+
√
γΦstr

( )
Φstr

( )
=
√
γΦstr

( )
− γΦstr

( )

• Topological excitations:
For fixed 4 ends of string-net on a sphere S2, how many locally
indistinguishable states are there? four states?
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Topological degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the string-net in a
particular order:

→ There are only two locally indistinguishable states
= a qubit

This is a quantum memory that is robust angainst any
environmental noise.

→ The defining character of topological order:
a material with robust quantum memory.
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Direct sum ⊕ = accidental degeneracy

• Consider two spin- 1
2 particles.

If we view the two particle as one particle spin- 1
2 ⊗ spin- 1

2 =?
What is the spin of the bound state?

- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

spin-
1

2
⊗ spin-

1

2
= spin-0⊕ spin-1, 2× 2 = 1 + 3.

⊕ is the direct sum of Hilbert space in mathematics
and the accidental degeneracy in physics.

ϕ ϕ ϕ ϕ

ϕ .
• Fusion of the ends of string-net ϕ:

ϕ⊗ ϕ = 1⊕ ϕ, ϕ⊗ ϕ⊗ ϕ = (1⊕ ϕ)⊗ ϕ = 1 + 2ϕ.

A bound state of 2 ϕ’s = an accidentical degeneracy of an 1 and a ϕ.
A bound state of 3 ϕ’s = an accidentical degeneracy of an 1, a ϕ, and
a ϕ.
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Direct sum ⊕ = accidental degeneracy

• Consider two spin- 1
2 particles.

If we view the two particle as one particle spin- 1
2 ⊗ spin- 1

2 =?
What is the spin of the bound state?

- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

spin-
1

2
⊗ spin-

1

2
= spin-0⊕ spin-1, 2× 2 = 1 + 3.

⊕ is the direct sum of Hilbert space in mathematics
and the accidental degeneracy in physics. ϕ ϕ ϕ ϕ

ϕ .
• Fusion of the ends of string-net ϕ:

ϕ⊗ ϕ = 1⊕ ϕ, ϕ⊗ ϕ⊗ ϕ = (1⊕ ϕ)⊗ ϕ = 1 + 2ϕ.

A bound state of 2 ϕ’s = an accidentical degeneracy of an 1 and a ϕ.
A bound state of 3 ϕ’s = an accidentical degeneracy of an 1, a ϕ, and
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Compute the degeneracy of excitations on S2

Consider n topological excitations (string ends) on a sphere. What is
the ground state degeneracy? (GSD = 0 means not allowed)
• Consider the loop liquid (ie the Z2 topological order).
- Trivial particle 1 → a state with no string ends, allowed GSD = 1.
- One e particles → a state with 1 string ends, not allowed GSD = 0.
- Two e particles → a state with 2 string ends, allowed GSD = 1.
- Three e particles → a state w/ 3 string ends, not allowed GSD = 0.

e
e- Fusion e ⊗ e = 1, e ⊗ e ⊗ e = e → GSD = # of 1’s.

• Consider the string-net liquid.
- Trivial particle 1 → a state with no string ends, allowed GSD = 1
- One ϕ particles → a state with 1 string ends, not allowed GSD = 0
- Two ϕ particles → a state with 2 string ends, allowed GSD = 1
- Three ϕ particles → a state with 3 string ends, allowed GSD = 1

ϕ ϕ ϕ ϕ

ϕ .

- Fusion ϕ⊗ ϕ = 1⊕ ϕ, one allowed state GSD = 1.
ϕ⊗ ϕ⊗ ϕ = 1⊕ ϕ⊕ ϕ, one allowed state GSD = 1.
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Compute the degeneracy of excitations on S2

Consider n topological excitations (string ends) on a sphere. What is
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- Trivial particle 1 → a state with no string ends, allowed GSD = 1
- One ϕ particles → a state with 1 string ends, not allowed GSD = 0
- Two ϕ particles → a state with 2 string ends, allowed GSD = 1
- Three ϕ particles → a state with 3 string ends, allowed GSD = 1

ϕ ϕ ϕ ϕ
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Internal degrees of freedom – quantum dimension

• Let Dn be the number of locally indistinguishable states for n
ϕ-particles on a sphere. The internal degrees of freedom of ϕ –

quantum dimension – d = limn→∞D
1/n
n

ϕ⊗ · · · ⊗ ϕ︸ ︷︷ ︸
n

= 1⊕ · · · ⊕ 1︸ ︷︷ ︸
Dn

⊕ϕ⊕ · · · ⊕ ϕ︸ ︷︷ ︸
Fn

Dn = the degeneracy of ground states, Fn = the degeneracy of ϕ,

ϕ⊗ · · · ⊗ ϕ︸ ︷︷ ︸
n

⊗ϕ = 1⊕ · · · ⊕ 1︸ ︷︷ ︸
Fn

⊕ϕ⊕ · · · ⊕ ϕ︸ ︷︷ ︸
Fn+Dn

Dn+1 = Fn, Fn+1 = Fn + Dn = Fn + Fn−1, D1 = 0, F1 = 1.

The internal degrees of freedom of ϕ is (spin- 1
2 electron d = 2)

d = lim
n→∞

F
1/n
n−1 =

1 +
√

5

2
= 1.61803398874989 · · · .
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Internal degrees of freedom – quantum dimension
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1/n
n
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Double-Fibonacci topological order
= double G2 Chern-Simon theory at level 1

L(aµ, ãµ) =
1

4π
Tr(aµ∂νaλ +

i

3
aµaνaλ)εµνλ

− 1

4π
Tr(ãµ∂ν ãλ +

i

3
ãµãν ãλ)εµνλ

aµ and ãµ are G2 gauge fields.
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String-net liquid can also realize a gauge theory of a finite
group G

• Trivial type-0 string → trivial represental of G

• Type-i string → irreducible represental Ri of G

• Triple-string join rule If Ri ⊗ Rj ⊗ Rk contain trivial representation →
type-i type-j type-k strings can join.

• String reconnection rule:

Φ

(
ji k

m
l

)
=

1∑
n=0

F ijm
kln Φ

(
ji k

l

n

)
, i , j , k , l ,m, n = 0, 1

with F ijm
kln given by the 6-j simple of G .
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Topo. qubits and topo. quantum computation

.

• Four fixed Fibonacci anyons on S2

has 2-fold topological degeneracy
(two locally indistinguishable states)
→ topological qubit

• Exchange two Fibonacci anyons induce a 2× 2 unitary matrix acting on
the topological qubit → non-Abelian statistics
also appear in χ3

ν=2(zi ) FQH state, and the non-Abelian statistics is
described by SU2(3) CS theory Wen PRL 66 802 (91)

→ universal Topo. quantum computation (via CS theory)

Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant-ph/0001108

Topological order is the natural medium (the “silicon”) to do
topological quantum computation
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