# Highly entangled quantum many-body systems - Topological order 

Xiao-Gang Wen

https://canvas.mit.edu/courses/11339

## Our world is very rich with all kinds of materials



## In middle school, we learned ...

there are four states of matter:


## In university, we learned




- Rich forms of matter $\leftarrow$ rich types of order
- A deep insight from Landau: different orders come from different symmetry breaking.
- A corner stone of condensed matter physics



## Classify phases of quantum matter ( $T=0$ phases)

For a long time, we thought that Landau symmetry breaking classify all phases of matter

- Symm. breaking phases are classified by a pair $G_{\Psi} \subset G_{H}$
$G_{H}=$ symmetry group of the Hamiltonian $H$.
$G_{\Psi}=$ symmetry group of the ground states $\psi$.
- 230 crystals from group theory



## Can symmetry breaking describes all phases of matter?

A spin-liquid theory of high $T_{c}$ superconductors:

- It was proposed that a 2 d spin liquid can have spin-charge separation:

An electron can change into two topological quasi particles:
electron $=$ holon $\otimes$ spinon,
holon: charge-1 spin-0 boson,
spinon: charge-0 spin-1/2 fermion.
Holon condensation $\rightarrow$ high $T_{c}$ superconductivity.

- Does such a strnge spin liquid exist? How to characterize it?

A spin liquid was explicitly constructed Kalmeyer-Laughlin, PRL 592095 (87), and we found that it is a state that break time reversal and parity symmetry, but not spin rotation symmetry, with order parameter $\boldsymbol{S}_{1} \cdot\left(\boldsymbol{S}_{2} \times \boldsymbol{S}_{3}\right) \neq 0 \rightarrow$ Chiral spin liquid Wen, Wilczek, Zee, PRB 3911413 (89)

- However, we also discovered several different chiral spin states with identical symmetry breaking pattern. How distinguish those chiral spin states with the same symmetry breaking?


## Topological orders in quantum Hall effect

- Quantum Hall (QH) states $R_{x y}=V_{y} / I_{x}=\frac{m}{n} \frac{2 \pi \hbar}{e^{2}}$ vonKlitzing Dorda Pepper, PRL 45494 (1980) Tsui Stormer Gossard, PRL 481559 (1982)

- Fractional quantum Hall (FQH) states have different phases even when the only $U(1)$ symmetry is not broken for those states.


Magnetic Field (T)

## Topological orders in quantum Hall effect

- Quantum Hall (QH) states $R_{x y}=V_{y} / I_{x}=\frac{m}{n} \frac{2 \pi \hbar}{e^{2}}$ vonKlitzing Dorda Pepper, PRL 45494 (1980) Tsui Stormer Gossard, PRL 481559 (1982)

- Fractional quantum Hall (FQH) states have different phases even when the only $U(1)$ symmetry is not broken for those states.
- Chiral spin and FQH liquids must contain a new kind of order, which was named as topological order Wen, PRB 407387 (89); IJMP 4239 (90)


Magnetic Field ( $T$ )

## What is topological order?

- Three kinds of quantum matter:
(1) no low energy excitations (Insulator) $\rightarrow$ trivial
(2) some low energy excitations (Superfluid) $\rightarrow$ interesting
(3) a lot of low energy excitations (Metal) $\rightarrow$ messy

Topological orders belong to the "trivial" class
(ie have an energy gap and no low energy excitations)

Topological orders are trivial state of matter?!

## Every physical concept is defined by experiment

- The concept of crystal order is defined via X-ray scattering

- The concept of superfuild order no low energy excitations is defined via zel ${ }^{(a)}$
 quantization of vorticity

(h)





## What is topological order? How to characterize it?

- How to extract universal information (topological invariants) from complicated many-body wave function $\psi\left(x_{1}, \cdots, x_{1020}\right)$
Put the gapped system on space with various topologies, and measure the ground state degeneracy.
(The dynamics of a quantum many-body system is controlled by a hermitian operator, Hamiltonian $H$, acting on the many-body wave functions. The spectrum of the Hamiltonian has a gap)
$\rightarrow$ The notion of topological order


$$
\mathrm{GSD}=1
$$


$\mathrm{GSD}=\mathrm{D}_{1}$

$\mathrm{GSD}=\mathrm{D}_{2}$

Wen PRB 407387 (89)
 for both chiral spin states and QH states.

Witten CMP 121351 (1989)

## The ground state degeneracy is a topological invariant

- At first, some people objected that the ground state degeneracies are finite-size effects or symmetry effect, not reflecting the intrinsic order of a phase of matter.
- The ground state degeneracies are robust against
 any local perturbations that can break any symmetries.
$\rightarrow$ topological degeneracy (another motivation for the name topological) Wen Int. J. Mod. Phys. B 04239 (90); Wen Niu PRB 419377 (90)
- The ground state degeneracies can only vary by some large changes of Hamiltonian $\rightarrow$ gap-closing phase transition.



Xiao-Gang Wen


## How to fully characterize topological order?

Deform the space and measure the non-Abelian geometric phase of the deg. ground states.

Wilczek \& Zee PRL 522111 (84)


- For 2d torus $\Sigma_{2}=S^{1} \times S^{1}$ :

Dehn twist: $\left|\Psi_{i}\right\rangle \rightarrow\left|\Psi_{i}^{\prime}\right\rangle=T_{i j}\left|\Psi_{j}\right\rangle$
$90^{\circ}$ rotation $\left|\Psi_{i}\right\rangle \rightarrow\left|\Psi_{i}^{\prime}\right\rangle=S_{i j}\left|\Psi_{j}\right\rangle$
$S, T$ generate a representation of modular group: $S^{2}=(S T)^{3}=C, C^{2}=1$

## How to fully characterize topological order?

Conjecture: The non-Abelian geometric phases of the degenerate ground states for closed spaces with all kinds of topologies can fully characterize topological orders.

Wen, IJMPB 4239 (1990);
KeskiVakkuri \& Wen, IJMPB 74227 (1993)

- Non-Abelian geometric phases $=$ Projective representations of the mapping class group of closed spaces with all kinds of topologies


## An modern understanding of topological degeneracy

- In 2005, we discovered that topological order has topological entanglement entropy Kitaev-Preskill hep-th/0510092 Levin-Wen cond-mat/0510613
 and long range quantum entanglement Chen-Gu-Wen arXiv:1004.3835
- For a long-range entangled many-body quantum system, knowing every overlapping local parts
 still cannot determine the whole.
- In other words, there are different "wholes", WHOLE $=\sum_{\text {parts }}$. that their every local parts are identical (Like fiber bundle in math).
- Local interactions/impurities can only see the local parts $\rightarrow$ those different "wholes" (the whole quantum states) have the same energy.
Topological degeneracy comes from long range entanglement.
The pseudo-gauge transformations $\rightarrow$ different "wholes" with identical local "parts". Long-range entanglement $\rightarrow$ Chern-Simons theory


## Why knowing every part does not imply knowing whole?

## wwar. $\sum^{m}$.?

- What is a "whole"?, what is "part"?
$\mathbf{w h o l e}=$ many-body wave function $|\Psi\rangle=\Psi\left(m_{1}, m_{2}, \cdots, m_{N}\right)$
where $m_{i}$ label states on site- $i$
part $=$ local entanglement density matrix:

$$
\begin{aligned}
& \rho_{\text {site- }-1,2,3}=\operatorname{Tr}_{\text {site-3, }, \cdots, N}|\Psi\rangle\langle\Psi|, \\
& \rho_{m_{1}, m_{2}, m_{3} ; m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}} \\
= & \sum_{m_{4}, \cdots, m_{N}} \Psi^{*}\left(m_{1}, m_{2}, m_{3}, m_{4}, \cdots, m_{N}\right) \Psi\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}, m_{4}, \cdots, m_{N}\right)
\end{aligned}
$$

- The energy only depends on the local parts $\rho_{\text {site- } 1,2,3}$ due to the local interaction $H_{1,2,3}$

$$
\left\langle H_{1,2,3}\right\rangle=\operatorname{Tr}\left(H_{1,2,3} \rho_{\text {site- } 1,2,3}\right)
$$

## Entanglement through examples

$\bullet|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)

## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ more entangled


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$ $=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- $q \downarrow-\downarrow-\downarrow=|\downarrow\rangle \otimes|\uparrow\rangle \otimes|\downarrow\rangle \otimes|\uparrow\rangle \otimes|\downarrow\rangle \ldots \rightarrow$ unentangled


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$ $=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- $q-\downarrow-\downarrow-\downarrow=|\downarrow\rangle \otimes|\uparrow\rangle \otimes|\downarrow\rangle \otimes|\uparrow\rangle \otimes|\downarrow\rangle \ldots \rightarrow$ unentangled
- (1)-(1)-(1)-(1)-(Q-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$ $=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- $Q \downarrow$
- (1)-(1)-(1)-(1)-(Q-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled
 $=$ direct-product state $\rightarrow$ unentangled state (classical)


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- $Q \perp$
- (1)-(1)-(1)-(1)-(Q-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled
- Crystal order: $\left|\Phi_{\text {crystal }}\right\rangle=\mid$ 䓍:斯:
$=$ direct-product state $\rightarrow$ unentangled state (classical)
- Particle condensation (superfluid)
$\left|\Phi_{\mathrm{SF}}\right\rangle=\sum_{\text {all conf. }} \mid \because \because: \because$


## Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state $\rightarrow$ unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- $Q d$
- (1)-(1)-(1)-(1)-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled

$=$ direct-product state $\rightarrow$ unentangled state (classical)
- Particle condensation (superfluid)
$\left|\Phi_{\mathrm{SF}}\right\rangle=\sum_{\text {all conf. }}|\because: \dot{\square}\rangle=\left(|0\rangle_{x_{1}}+|1\rangle_{x_{1}}+..\right) \otimes\left(|0\rangle_{x_{2}}+|1\rangle_{x_{2}}+..\right) \ldots$
$=$ direct-product state $\rightarrow$ unentangled state (classical)


## What is long-range entanglement?

- The above example are all unentangled or short-range entangled.


## What is long-range entanglement?

- The above example are all unentangled or short-range entangled.
- Define long range entanglement
 via local unitary (LU) transformations (ie local quantum circuit)



## What is long-range entanglement?

- The above example are all unentangled or short-range entangled.
- Define long range entanglement via local unitary (LU) transformations (ie local quantum circuit)


- All SRE states belong to the same trivial phase

- LRE states can belong to many different phases
$=$ different patterns of long-range entanglements
$=$ different topological orders Wen PRB 407387 (89)


## Macroscopic characterization $\rightarrow$ microscopic origin

- From macroscopic characterization of topological order (1989) (topological ground state degeneracies, mapping class group representations)
$\rightarrow$ microscopic origin (long range entanglement 2010) took $20+$ years


## Macroscopic characterization $\rightarrow$ microscopic origin

- From macroscopic characterization of topological order (1989) (topological ground state degeneracies, mapping class group representations)
$\rightarrow$ microscopic origin (long range entanglement 2010) took 20+ years
- From macroscopic characterization of superconductivity (1911) (zero-resistivity, quantized vorticity) $\rightarrow$ microscopic origin (BSC electron-pairing 1957) took 46 years


## This topology is not that topology




Topology in topological insulator/superconductor (2005) corresponds to the twist in the band structure of orbitals, which is similar to the topological structure that distinguishes a sphere from a torus. This kind of topology is classical topology.

## This topology is not that topology



Topology in topological order (1989) corresponds to pattern of many-body entanglement in many-body wave function $\psi\left(m_{1}, m_{2}, \cdots, m_{N}\right)$, that is robust against any local perturbations that can break any symmetry. Such robustness is the meaning of topological in topological order. This kind of topology is quantum topology.

## How to make long range entanglement? (Mechanism of topological order)

A mechanism of superconductivity: electron pairing
$\rightarrow$ boson condensation $\rightarrow$ superconductivity
To make topological order, we need to sum over many different product states, but we should not sum over everything.
$\sum_{\text {all spin config. }}|\uparrow \downarrow .\rangle=.|\rightarrow \rightarrow .$.

## How to make long range entanglement?

 (Mechanism of topological order)A mechanism of superconductivity: electron pairing
$\rightarrow$ boson condensation $\rightarrow$ superconductivity
To make topological order, we need to sum over many different product states, but we should not sum over everything. $\sum_{\text {all spin config. }}|\uparrow \downarrow .\rangle=.|\rightarrow \rightarrow .$.

- A mechanism:

Sum over a subset of spin configurations: $\left|\Phi_{\text {loops }}^{Z_{2}}\right\rangle=\sum|i \stackrel{\Im}{\varsigma} \underset{\sim}{\infty}$,
 $\left.\left|\phi_{\text {loops }}^{D S}\right\rangle=\sum(-)^{\# \text { of loops }|i \approx \underset{\sim}{c}\rangle}\right\rangle$ $\left|\Phi_{\text {loops }}^{\theta}\right\rangle=\sum\left(e^{\mathrm{i} \theta}\right)^{\# \text { of loops }}|\stackrel{\approx \underset{\sim}{\sim},\langle }{\substack{c}}\rangle$

- Can the above wavefunctions be the ground states of local Hamiltonians?



## Local dance rule (Hamiltonian) $\rightarrow$ global dance pattern



- Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)
(2) $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square), \Phi_{\text {str }}\left(\square\langle )=\Phi_{\text {str }}(\square \square)\right.$
$\rightarrow$ Global wave function of loops $\Phi_{\text {str }}(\underset{\sim}{c})=1$
- There is a local Hamiltonian $H$ :
(1) Open ends cost energy
(2) string can hop and reconnect freely. ie $H$ contains terms causing $\square \rightarrow \square$,
 with negative coefficient.

The ground state of $H$ gives rise to the above string lqiuid wave function. (For the explicite $H$, see page 33).

## Local dance rule $\rightarrow$ global dance pattern




- Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)
(2) $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square), \Phi_{\text {str }}\left(\square\langle )=-\Phi_{\text {str }}(\square \square)\right.$
$\rightarrow$ Global wave function of loops $\Phi_{\text {str }}\left(\underset{\sim}{i} \underset{c_{c}}{c}\right)=(-)^{\# \text { of loops }}$


## Local dance rule $\rightarrow$ global dance pattern





- Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)
(2) $\Phi_{\mathrm{str}}(\square)=\Phi_{\mathrm{str}}(\square), \Phi_{\mathrm{str}}\left(\square\langle )=-\Phi_{\mathrm{str}}(\square \square)\right.$
$\rightarrow$ Global wave function of loops $\Phi_{\text {str }}(\underset{\sim}{i} \underset{\sim}{c})=(-)^{\#}$ of loops
- The second string liquid $\Phi_{\text {str }}(\mathbb{\sim} \underset{\sim}{\mathcal{c}})=(-)^{\#}$ of loops can exist only in 2-dimensions.
- The first string liquid $\Phi_{\text {str }}(\mathbb{N} \underset{\sim}{\sim})=1$ can exist in both 2 - and 3-dimensions.
- The thirsd string liquid $\Phi_{\text {str }}\left(\mathbb{N} \mathbb{\sim} \mathscr{N}_{4}\right)=\left(\mathrm{e}^{\mathrm{i} \theta}\right)^{\# \text { of loops }}$ can exist in neither 2- nor 3-dimensions.


## Knowing all the parts $\neq$ knowing the whole

- Do those two string liquids really have topological order? Do they have topological ground state degenercy?



## Knowing all the parts $\neq$ knowing the whole

- Do those two string liquids really have topological order? Do they have topological ground state degenercy? WHOLE $=\sum^{\text {parts }+?}$

- 4 locally indistinguishable states on torus for both liquids $\rightarrow$ topological order

- Ground state degeneracy cannot distinguish them.


0


0

## Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone $\rightarrow$ topological

- Let us fix 4 ends of string on a sphere $S^{2}$. How many locally indistinguishable states are there?
- There are 2 sectors $\rightarrow 2$ states.



## Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone $\rightarrow$ topological

- Let us fix 4 ends of string on a sphere $S^{2}$. How many locally indistinguishable states are there?
- Thereare 2 seeters, 2 states.

- In fact, there is only 1 sector $\rightarrow 1$ state, due to the string reconnection fluctuations $\phi_{\text {str }}\left(\square\langle )= \pm \Phi_{\text {str }}(\square \square)\right.$.
- For our string liquids, in general, fixing $2 N$ ends of string $\rightarrow 1$ state. Each end of string has no degeneracy $\rightarrow$ no internal degrees of freedom.


## Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone $\rightarrow$ topological

- Let us fix 4 ends of string on a sphere $S^{2}$. How many locally indistinguishable states are there?
- There are 2 seeters > 2 -states.

- In fact, there is only 1 sector $\rightarrow 1$ state, due to the string reconnection fluctuations $\phi_{\text {str }}\left(\square\langle )= \pm \Phi_{\text {str }}(\square \square)\right.$.
- For our string liquids, in general, fixing $2 N$ ends of string $\rightarrow 1$ state. Each end of string has no degeneracy $\rightarrow$ no internal degrees of freedom.
- Another type of topological excitation vortex at $\times$ (by modifying the string wave function): $|m\rangle=\sum(-)^{\#}$ of loops around $\times|\overbrace{\sim}^{\sim} \overbrace{<}^{\infty}\rangle$


## Emergence of fractional spin

- Ends of strings are point-like. Are they bosons or fermions? Two ends $=$ a small string $=$ a boson, but each end can still be a fermion.

Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

- $\Phi_{\text {str }}\left(\underset{\sim}{\sim} \widetilde{\sim}_{<}^{c}\right)=1$ string liquid $\Phi_{\text {str }}\left(\square\langle )=\Phi_{\text {str }}(\square \square)\right.$
- End of string wave function: $\mid$ end $\left.\rangle=\boldsymbol{\dagger}+c^{\ominus}+c^{\ominus}\right\rangle+\cdots$

The string near the end is totally fixed, since the end is determined by a trapping Hamiltonian $\delta \mathrm{H}$ which can be chosen to fix the string. The string alway from the end is not fixed, since they are determined by the bluk Hamiltonian H which gives rise to a string liquid.

- $360^{\circ}$ rotation: $\uparrow \rightarrow \ominus$ and ${ }^{\ominus}={ }^{\ominus} \rightarrow \bullet: R_{360^{\circ}}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- We find four types of topological exitations
(1) $|e\rangle=\dagger+\varrho \operatorname{spin} 0$.
(2) $|f\rangle=\emptyset-\ominus \operatorname{spin} 1 / 2$.


## Spin-statistics theorem:

## Emergence of Fermi statistics


(a)

(b)

(c)

(d)
(e)

- (a) $\rightarrow$ (b) $=$ exchange two string-ends.
- (d) $\rightarrow(e)=360^{\circ}$ rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a $360^{\circ}$ rotation of one of the string-end generate no phase.
$\rightarrow$ Spin-statistics theorem


## $Z_{2}$ topological order and its physical properties

$\Phi_{\text {str }}\left(\underset{\sim}{\sim} \mathscr{O}_{<}\right)=1$ string liquid has $Z_{2}$-topological order.

- 4 types of topological excitations:
(1) $|e\rangle=\dagger+9 \operatorname{spin} 0$.
(2) $|f=e \otimes m\rangle=\emptyset-9 \operatorname{spin} 1 / 2$.
(3) $|m=e \otimes f\rangle=\times-\otimes \operatorname{spin} 0$.
(4) $|1\rangle=\times+\otimes \operatorname{spin} 0$.
- The type-1 excitation is the tirivial excitation, that can be created by local operators.
The type-e, type- $m$, and type- $f$ excitations are non-tirivial excitation, that cannot be created by local operators.
- $1, e, m$ are bosons and $f$ is a fermion. $e, m$, and $f$ have $\pi$ mutual statistics between them.
- Fusion rule:
$e \otimes e=1 ; \quad f \otimes f=1 ; \quad m \otimes m=1 ;$
$e \otimes m=f ; \quad f \otimes e=m ; \quad m \otimes f=e ;$
$1 \otimes e=e ; \quad 1 \otimes m=m ; \quad 1 \otimes f=f ;$


## $Z_{2}$ topological order is described by $Z_{2}$ gauge theory

## Physical properties of $Z_{2}$ gauge theory

$=$ Physical properties of $Z_{2}$ topological order

- $Z_{2}$-charge (a representatiosn of $Z_{2}$ ) and $Z_{2}$-vortex ( $\pi$-flux) as two bosonic point-like excitations.
- $Z_{2}$-charge and $Z_{2}$-vortex bound state $\rightarrow$ a fermion ( $f$ ), since $Z_{2}$-charge and $Z_{2}$-vortex has a $\pi$ mutual statistics between them (charge-1 around flux- $\pi$ ).
- $Z_{2}$-charge, $Z_{2}$-vortex, and their bound state has a $\pi$ mutual statistics between them.
- $Z_{2}$-charge $\rightarrow e, \quad Z_{2}$-vortex $\rightarrow m, \quad$ bound state $\rightarrow f$.
- $Z_{2}$ gauge theory on torus also has 4 degenerate ground states


## Emergence of fractional spin and semion statistics

Consider another string wave function:

$$
\Phi_{\text {str }}\left(\underset{\sim}{\infty} \tilde{c}_{<}^{c}\right)=(-)^{\# \text { of loops }} \text { string liquid. } \Phi_{\text {str }}(\square \square)=-\Phi_{\text {str }}(\square \square)
$$

- End of string wave function: $\mid$ end $\left.\rangle=\boldsymbol{\dagger}+c^{\bullet}-c^{\ominus}\right\rangle+\cdots$
- $360^{\circ}$ rotation: ${ }^{\bullet} \rightarrow \ominus$ and $\ominus=-\ominus^{\ominus} \rightarrow-\uparrow: R_{360^{\circ}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
- Types of topological excitations:
( $s_{ \pm}$are semions)
(1) $\left|s_{+}\right\rangle=i+i \emptyset \operatorname{spin} \frac{1}{4}$.
(2) $\left|s_{-}\right\rangle=\dagger-i \upharpoonleft \operatorname{spin}-\frac{1}{4}$
(3) $\left|m=s_{-} \otimes s_{+}\right\rangle=\times-\bigotimes \operatorname{spin} 0$. (4) $|1\rangle=\times+\bigotimes \operatorname{spin} 0$.
- double-semion topological order $=U^{2}(1)$ Chern-Simon gauge theory $L\left(a_{\mu}\right)=\frac{2}{4 \pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu \nu \lambda}-\frac{2}{4 \pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu \nu \lambda}$


## Emergence of fractional spin and semion statistics

Consider another string wave function:

- End of string wave function: $\mid$ end $\rangle=\boldsymbol{\dagger}+c^{\bullet}-c^{\ominus}+\cdots$
- $360^{\circ}$ rotation: ${ }^{\bullet} \rightarrow \ominus$ and $\ominus=-\ominus^{\ominus} \rightarrow-\uparrow: R_{360^{\circ}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
- Types of topological excitations:
( $s_{ \pm}$are semions)
(1) $\left|s_{+}\right\rangle=\dagger+i \emptyset \operatorname{spin} \frac{1}{4}$.
(2) $\left|s_{-}\right\rangle=\emptyset-i \upharpoonleft$ spin $-\frac{1}{4}$
(3) $\left|m=s_{-} \otimes s_{+}\right\rangle=\times-\otimes \operatorname{spin} 0$. (4) $|1\rangle=\times+\otimes \operatorname{spin} 0$.
- double-semion topological order $=U^{2}(1)$ Chern-Simon gauge theory $L\left(a_{\mu}\right)=\frac{2}{4 \pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu \nu \lambda}-\frac{2}{4 \pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu \nu \lambda}$
- Two string lqiuids $\rightarrow$ Two topological orders:
$Z_{2}$ topological order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91),
Moessner-Sondhi PRL 861881 (01) and double-semion topo. order Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617


## Lattice Hamiltonians to realize $Z_{2}$ topological order

- Frustrated spin-1/2 model on square lattice (slave-particle meanfield theory)

Read Sachdev, PRL 661773 (91); Wen, PRB 442664 (91).

$$
H=J \sum_{n n} \sigma_{i} \cdot \sigma_{j}+J^{\prime} \sum_{n n n} \sigma_{i} \cdot \sigma_{j}
$$

- Dimer model on triangular lattice (Mont Carlo numerics)

Moessner Sondhi, PRL 861881 (01)


## Why dimmer liquid has topological order

- Dimmer liquid $\sim$ string liquid:
- Non-bipartite lattice: unoritaded string $\rightarrow Z_{2}$ topological order $=Z_{2}$ gauge theory
- Bipartite lattice: oriented string $\rightarrow U(1)$ gauge theory
- Which local Hamiltonians can realize the following string wavefunctions:

$$
\begin{aligned}
& \left|\Phi_{\text {loops }}^{D S}\right\rangle=\sum(-)^{\# \text { of loops }}|; \widetilde{\sim} \underset{\sim}{\underset{\sim}{c}}\rangle
\end{aligned}
$$



## Toric-code model: $Z_{2}$ topological order, $Z_{2}$ gauge theory

Local Hamiltonian enforces local rules on any lattice: $\hat{P} \Phi_{\text {str }}=0$ $\Phi_{\text {str }}(\square)-\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square \square)-\Phi_{\text {str }}(\square \square)=0$

- The Hamiltonian to enforce the local rules:

- The Hamiltonian is a sum of commuting operators $\left[\hat{F}_{\boldsymbol{p}}, \hat{F}_{\boldsymbol{p}^{\prime}}\right]=0,\left[\hat{Q}_{\boldsymbol{I}}, \hat{Q}_{\mathbf{I}^{\prime}}\right]=0,\left[\hat{F}_{\boldsymbol{p}}, \hat{Q}_{\boldsymbol{I}}\right]=0 . \hat{F}_{\boldsymbol{p}}^{2}=\hat{Q}_{1}^{2}=1$
- Ground state $\left|\Psi_{\text {grnd }}\right\rangle: \hat{F}_{\boldsymbol{p}}\left|\psi_{\text {grnd }}\right\rangle=\hat{Q}_{\boldsymbol{I}}\left|\Psi_{\text {grnd }}\right\rangle=\left|\Psi_{\text {grnd }}\right\rangle$ $\rightarrow\left(1-\hat{Q}_{\boldsymbol{l}}\right) \Phi_{\mathrm{grnd}}=\left(1-\hat{F}_{\boldsymbol{p}}\right) \Phi_{\mathrm{grnd}}=0$.


## Physical properties of exactly soluble model

## A string picture

- The $-U \sum_{I} \hat{Q}_{I}$ term enforces closed-string ground state.
- $\hat{F}_{p}$ adds a small loop and deform the strings $\rightarrow$
 permutes among the loop states $|\approx \underset{\sim}{\infty}\rangle \rightarrow$ Ground states $\left|\Psi_{\text {grnd }}\right\rangle=\sum_{\text {loops }}\left|\geqslant \underset{\sim}{\sim} \sim_{i}\right\rangle \rightarrow$ highly entangled
- There are four degenerate ground states $\alpha=e e, e o, o e, o o$


e


- On genus $g$ surface, ground state degeneracy $D_{g}=4^{g}$


## Exactly soluble model on any graph

- On every link $i$, we degrees of freedom $\uparrow, \downarrow$.

$$
\begin{aligned}
H & =-U \sum_{v} \hat{Q}_{\boldsymbol{v}}-g \sum_{\boldsymbol{f}} \hat{F}_{\boldsymbol{f}}, \\
\hat{Q}_{\boldsymbol{v}} & =\prod_{\text {legs of } \boldsymbol{v}} \sigma_{\boldsymbol{e}}^{z}, \quad \hat{F}_{\boldsymbol{f}}=\prod_{\text {edges of } \boldsymbol{f}} \sigma_{\boldsymbol{e}}^{\times}
\end{aligned}
$$



The Hamiltonian is a sum of commuting operators
$\left[\hat{F}_{\boldsymbol{f}}, \hat{F}_{\boldsymbol{p}^{\prime}}\right]=0,\left[\hat{Q}_{\boldsymbol{v}}, \hat{Q}_{\mathbf{v}^{\prime}}\right]=0,\left[\hat{F}_{\boldsymbol{f}}, \hat{Q}_{v}\right]=0 . \hat{F}_{\boldsymbol{f}}^{2}=\hat{Q}_{v}^{2}=1$

- Identities $\otimes_{v} \hat{Q}_{v}=1, \otimes_{\boldsymbol{f}} \hat{F}_{f}=1$.
- Ground state degeneracy (GSD)

Number of degrees of freedom $=E$.


Number of constraints $=V+F-2$.
$G S D=2^{E} / 2^{V+F-2}=2^{2-\chi}, \chi=V-E+F-$ Euler characteristic.

- GSD on genus $g$ Riemann surface $\Sigma_{g}$ : from $\chi\left(\Sigma_{g}\right)=2-2 g$ we obtain $G S D=2^{2 g}$. In fact, the degeneracy of any eigenstates is $2^{g}$.


## The string operators and topological excitations

- Topological excitations:
e-type: $\hat{Q}_{1}=1 \rightarrow \hat{Q}_{I}=-1$ m-type: $\hat{F}_{\boldsymbol{p}}=1 \rightarrow \hat{F}_{\boldsymbol{p}}=-1$
- e-type and $m$-type excitations cannot be created alone due to identiy: $\Pi_{l} \hat{Q}_{I}=\prod_{p} \hat{F}_{p}=1$



## The string operators and topological excitations

- Topological excitations:
e-type: $\hat{Q}_{I}=1 \rightarrow \hat{Q}_{I}=-1$
m-type: $\hat{F}_{\boldsymbol{p}}=1 \rightarrow \hat{F}_{\boldsymbol{p}}=-1$
- e-type and $m$-type excitations cannot be created alone due to identiy: $\Pi_{l} \hat{Q}_{I}=\prod_{p} \hat{F}_{p}=1$

- Type-e string operator: $W_{e}=\prod_{\text {string }} \sigma_{i}^{\times}$
- Type- $m$ string operator: $W_{m}=\prod_{\text {string }} \sigma_{i}^{z}$
- Type- $f$ string operator: $W_{f}=\prod_{\text {string }} \sigma_{i}^{\times} \prod_{\text {legs }} \sigma_{i}^{z}$
- $\left[H, W_{e}^{\text {close }}\right]=\left[H, W_{m}^{\text {close }}\right]=\left[H, W_{f}^{\text {closed }}\right]=0$.
$\rightarrow$ Closed strings cost no energy ( $\rightarrow$ higher symmetry)
- $\left[\hat{Q}_{I}, W_{e}^{\text {open }}\right] \neq 0 \rightarrow W_{e}^{\text {open }}$ flip $\hat{Q}_{1} \rightarrow-\hat{Q}_{I}$,
$\left[\hat{F}_{\boldsymbol{p}}, W_{m}^{\text {open }}\right] \neq 0 \rightarrow W_{m}^{\text {open }}$ flip $\hat{F}_{p} \rightarrow-\hat{F}_{\boldsymbol{p}}$
An open-string creates a pair of topo. excitations at its ends


## Three types of topological excitations and their fusion

- Type-e string operator $W_{e}=\prod_{\text {string }} \sigma_{i}^{x}$
- Type- $m$ string operator $W_{m}=\prod_{\text {string* }} \sigma_{i}^{z}$
- Type- $f$ string operator $W_{f}=\prod_{\text {string }} \sigma_{i}^{\times} \prod_{\text {legs }} \sigma_{i}^{z}$
- Fusion algebra of string operators $W_{e}^{2}=W_{m}^{2}=W_{\epsilon}^{2}=W_{e} W_{m} W_{\epsilon}=1$ when strings are parallel
- Fusion of topo. excitations:
$e$-type. $e \times e=1$ $m$-type. $m \times m=1$ $f$-type $=e \times m$
- 4 types of excitations:
$1, e, m, f$



## What are bosons? What are fermions?

## - Statistical distribution

Boson: $n_{b}=\frac{1}{\mathrm{e}^{\epsilon / k_{B} T}-1} \quad$ Fermion: $n_{f}=\frac{1}{\mathrm{e}^{\epsilon / k_{B} T}+1}$
They are just properties of non-interacting bosons or fermions

- Pauli exclusion principle

Only works for non-interacting bosons or fermions

- Symmtric/anti-symmetric wave function.

For identical particles $|x, y\rangle$ and $|y, x\rangle$ are just differnt names of same state. A generic state $\sum_{x, y} \psi(x, y)|x, y\rangle$ is always described symmetric wave function $\psi(x, y)=\psi(y, x)$ regardless the statistics of the identical particles.

- Commuting/anti-commuting operators
Boson: $\left[a_{x}, a_{y}\right]=0 \quad$ Fermiion: $\left\{c_{x}, c_{y}\right\}=0$
- C-number-field/Grassmann-field Boson: $\phi(x) \quad$ Fermion: $\psi(x)$


## "Exchange" statistics and Braid group

- Quantum statistics is defined via phases induced by exchanging identical particles.
- Quantum statistics is not defined via exchange, but via braiding.
Yong-Shi Wu, PRL 522103 (84)
- Braid group:



## "Exchange" statistics and Braid group

- Quantum statistics is defined via phases induced by exchanging identical particles.
- Quantum statistics is not defined via exchange, but via braiding.
Yong-Shi Wu, PRL 522103 (84)
- Braid group:
- Representations of braid group (not permutation group) define quantum statistics:
- Trivial representation of braid group $\rightarrow$ Bose statistics.
- 1-dimensional representation of


Leinaas-Myrheim 77; Wilczek 82 braid group $\rightarrow$ Fermi/fractional statistics $\rightarrow$ anyon.

- higher dimensional representation of braid group $\rightarrow$ non-Abelian statistics $\rightarrow$ non-Abelian anyon.


## Statistics of ends of strings

- The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:


- An open string operator is a hopping operator of the 'ends'. The algebra of the open string op. determines the statistics.
- For type-e string: $t_{b a}=\sigma_{1}^{\chi}, t_{c b}=\sigma_{3}^{\chi}, t_{b d}=\sigma_{2}^{\chi}$

We find $t_{b d} t_{c b} t_{b a}=t_{b a} t_{c b} t_{b d}$
The ends of type-e string are bosons

- For type-f strings: $t_{b a}=\sigma_{1}^{\times}, t_{c b}=\underline{\sigma_{3}^{\times}} \sigma_{4}^{z}, t_{b d}=\sigma_{2}^{\times} \underline{\sigma_{3}^{z}}$

We find $t_{b d} t_{c b} t_{b a}=-t_{b a} t_{c b} t_{b d}$
The ends of type- $f$ strings are fermions


## Topological ground state degeneracy and code distance

- When strings cross, $W_{e} W_{m}=(-)^{\#}$ of cross $W_{m} W_{e}$ $\rightarrow 4^{g}$ degeneracy on genus $g$ surface $\rightarrow$ Topological degneracy
Degeneracy remain exact for any perturbations localized in a finite region.



## Topological ground state degeneracy and code distance

- When strings cross, $W_{e} W_{m}=(-)^{\#}$ of cross $W_{m} W_{e}$ $\rightarrow 4^{g}$ degeneracy on genus $g$ surface $\rightarrow$ Topological degneracy
Degeneracy remain exact for any perturbations localized in a finite region.

- The above degenerate ground states form a "code", which has a large code distance of order $L$ (the size of the system).
- Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ that can be connected by first-order local perturbation $\delta H:\left\langle\psi^{\prime}\right| \delta H|\psi\rangle>O(|\delta H|), \quad L \rightarrow \infty$
$\rightarrow$ code distance $=1$.
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ that can be connected by $n^{\text {th }}$-order local perturbation $\rightarrow$ code distance $=n$.
- Symmetry breaking ground states in $d$-dim have code distance $\sim L^{d}$ respected to symmetry preserving perturbation. code distance $\sim 1$ respected to symmetry breaking perturbation.


## Higher symmetry

- The toric code model has higher symmetry (1-symmetry), whose symmetry transformation is generated the loop operators $W_{e}^{\text {loop }}$ and $W_{m}^{\text {loop }}$ :

$$
H W_{e}\left(S^{1}\right)=W_{e}\left(S^{1}\right) H, \quad H W_{m}\left(S^{1}\right)=W_{m}\left(S^{1}\right) H
$$

for any loops $S^{1}$. If the transformation is $n$-dimensional, the symmetry is $(d-n)$-symmetry, in $d$-dimensional space. The transformation is $d$-dimensional for the usual global symmetry, which is a 0 -symmetry.

- Charged operator (for Abelian symmetry):

$$
W O_{\text {charged }}=\mathrm{e}^{\mathrm{i} \varphi} O_{\text {charged }} W
$$

For $U(1)$ symmetry, $\varphi=q \theta$ if $W$ generate $\theta$-rotation. For $Z_{2}$ symmetry, $\varphi=\pi$ if $W$ is the generator.

- $W_{m}$ (open-string) is the charged operators for the $W_{e}\left(S^{1}\right) 1$-symmetry:


$$
W_{e}\left(S^{1}\right) W_{m}(\text { open-string })= \pm W_{m}(\text { open-string }) W_{e}\left(S^{1}\right)
$$

## Spontaneous breaking of higher symmetry

- Defintion: A (higher) symmetry is spontaneously broken if the symmetry transformations have non-trivial actions on the ground states, ie is not proportional to an identity operator
ground-state subspace $\xlongequal{\square} \varepsilon \rightarrow 0$ $W \neq \mathrm{e}^{\mathrm{i} \varphi} \mathrm{id}$ in the ground state subspace, for any closed space.
- The toric code model has a $W_{e} 1$-symmetry ( $Z_{2}^{e} 1$-symmetry). Its ground states spontaneously breaks the $Z_{2}^{e} 1$-symmetry.
- The toric code model has a $W_{m} 1$-symmetry ( $Z_{2}^{m} 1$-symmetry). Its ground states spontaneously breaks the $Z_{2}^{m} 1$-symmetry.
- Spondtaneous breaking of higher symmetry $\rightarrow$ topological order But, topological order $\neq$ Spondtaneous breaking of higher symmetry
- The toric code model has a $Z_{2}^{e} \vee Z_{2}^{m} 1$-symmetry. Its ground states must spontaneously break the $Z_{2}^{e} \vee Z_{2}^{m}$ 1-symmetry $\rightarrow$ Enforaced spontaneous symmetry breaking when ends of the symmetry transformation operators (ie the strings $W_{e}, W_{m}$ ) have non-trivial (mutual) statistics.


## Toric-code model in terms of closed string operators



- Toric-code Hmailtonian

$$
H=-U \sum_{\boldsymbol{l}} W_{m}^{\text {closed }}-g \sum_{\boldsymbol{p}} W_{e}^{\text {closed }}
$$

- A new Hamitonian

$$
H=-U \sum_{\boldsymbol{l}} W_{m}^{\text {closed }}-g \sum_{\boldsymbol{p}} W_{f}^{\text {closed }}
$$

which realizes the same $Z_{2}$ topological order.

## Double-semion model: taking square root of fermion string

Local rules:
Levin-Wen cond-mat/0404617

$$
\Phi_{\mathrm{str}}(\square)=\Phi_{\mathrm{str}}(\square), \Phi_{\mathrm{str}}\left(\square\langle )=-\Phi_{\mathrm{str}}(\square \square)\right.
$$

- The Hamiltonian to enforce the local rules:



$H=-U \sum_{I} \hat{Q}_{\mathbf{I}}-\frac{g}{2} \sum_{\boldsymbol{p}}\left(\hat{F}_{\boldsymbol{p}}+\right.$ h.c. $)$,
$\mathrm{i}^{\frac{1-\sigma_{i}^{z}}{2}}=\left(\begin{array}{ll}1 & 0 \\ 0 & \mathrm{i}\end{array}\right)=w_{\boldsymbol{i}} \sim \sqrt{\sigma_{\boldsymbol{i}}^{z}}$

$$
\hat{Q}_{\boldsymbol{I}}=\prod_{\text {legs of } \boldsymbol{I}} \sigma_{\boldsymbol{i}}^{z}, \quad \hat{F}_{\boldsymbol{p}}=\left(\prod_{\text {edges of } \boldsymbol{p}} \sigma_{\boldsymbol{j}}^{x}\right)\left(-\prod_{\text {legs of } \boldsymbol{p}} \mathrm{i}^{\frac{1-\sigma_{i}^{z}}{2}}\right)
$$

## Double-semion model

- The action of operator $\hat{F}_{\boldsymbol{p}}=\left(\prod_{\text {edges of } \boldsymbol{p}} \sigma_{\boldsymbol{j}}^{X}\right)\left(-\prod_{\text {legs of } \boldsymbol{p}} \mathrm{i}^{\frac{1-\sigma_{i}^{z}}{2}}\right)$ :
(1) flip string around the loop;
(2) add a phase $-(\mathrm{i} \#$ of strings attatched to the loop $)$, which is $\pm 1$ in the closed-string subspace.
Combine the above two in the closed-string subspace:
$\hat{F}_{p}$ adds a loop and a sign $(-)$ change in \# of loops

This allows us to conclude:

- $\hat{F}_{\boldsymbol{p}}$ is hermitian in the closed-string subspace.
- $\hat{F}_{\boldsymbol{p}} \hat{F}_{\boldsymbol{p}^{\prime}}=\hat{F}_{\boldsymbol{p}^{\prime}} \hat{F}_{\boldsymbol{p}}$ in the closed-string subspace.

- Ground state wave function $\Phi(X)=(-)^{\#}$ of loops.


## Dressed string operators and topological excitations

- To create a pair of topological excitations, we need find closed string operators that commute with $\hat{Q}_{I}$ and $\hat{F}_{p}$ terms in the Hamiltonian.
- We find 4 types of string operators

$$
\begin{aligned}
& W_{1}=\mathrm{id} \\
& W_{s_{1}}=\prod_{i \in \text { str }} \sigma_{i}^{x} \prod_{\mathrm{R}-\mathrm{legs} \text { of str }} \mathrm{i}^{\frac{1-\sigma_{j}^{2}}{2}} \\
& W_{s_{2}}=\prod_{\boldsymbol{i} \in \text { str }} \sigma_{\boldsymbol{i}}^{\times} \prod_{\text {R-legs of str }}(-\mathrm{i})^{\frac{1-}{1-}} \\
& W_{b}=\prod_{\text {R-legs of str }} \sigma_{\boldsymbol{j}}^{z}=W_{m},
\end{aligned}
$$



$$
W_{s_{2}}=\prod_{i \in \text { str }} \sigma_{i}^{x} \prod_{R-\text { legs of str }}(-i)^{\frac{1-\sigma_{j}^{2}}{2}} \prod_{\text {L-vertices of str }}(-)^{s_{1}}=W_{s_{1}} W_{b}
$$

$$
\text { where } s_{l}=\frac{1}{4}\left(1-\sigma_{I_{-}}^{z}\right)\left(1+\sigma_{I_{+}}^{z}\right)
$$

## Commutators of dressed string operators $W_{s}$

Overlapped strings are in the same direction:

$$
\begin{aligned}
& {\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1-\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right] } \\
= & {\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1+\sigma_{3}^{z}}{2}} \mathrm{i}^{-\sigma_{3}^{z}}\right]\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1+\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}(-)^{-\frac{\sigma_{1}^{z}\left(1+\sigma_{3}^{z}\right)}{2}}\right] } \\
= & {\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1-\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right]\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{1 \frac{1-\sigma_{3}^{z}}{2}}\right] \mathrm{i}_{3}^{\sigma_{3}^{z}}(-)^{-\frac{\left(1+\sigma_{3}^{z}\right)}{2}} } \\
= & {\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1-\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right]\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1-\sigma_{3}^{z}}{2}}\right] \mathrm{i} } \\
= & {\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1-\sigma_{1}^{z}\right)}{4}}(-)^{\frac{\sigma_{1}^{z}\left(1-\sigma_{2}^{z}\right)}{2}}\right]\left[\sigma_{3}^{x} \sigma_{1}^{x} \mathrm{i}^{\frac{1+\sigma_{2}^{z}}{2}} \mathrm{i}^{-\sigma_{2}^{z}}\right] } \\
= & {\left[\sigma_{3}^{x} \sigma_{1}^{x} \mathrm{i} \frac{1-\sigma_{2}^{z}}{2}\right]\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right]\left[\sigma_{3}^{x} \sigma_{1}^{x} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right](-)^{-\frac{\sigma_{1}^{z}\left(1-\sigma_{2}^{z}\right)}{2}} \mathrm{i}-\sigma_{2}^{2} } \\
= & {\left[\sigma_{3}^{x} \sigma_{1}^{x} \mathrm{i} \frac{1-\sigma_{2}^{z}}{2}\right]\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right](-\mathrm{i}) }
\end{aligned}
$$

## Commutators of dressed string operators $W_{s}$

Overlapped strings are in opposite direction:

$$
\begin{aligned}
& \text { Overlapped strings are in opposite direction: } \\
& =\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{1}^{x} \sigma_{3}^{x} \mathrm{i}^{\left.\frac{1-\sigma_{2}^{z}}{2}\right]}\right. \\
& =\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1+\sigma_{3}^{z}}{2}} \mathrm{i}^{-\sigma_{3}^{z}}\right]\left[\sigma_{1}^{x} \sigma_{3}^{x} \mathrm{i}^{\frac{1+\sigma_{2}^{z}}{2}} \mathrm{i}^{-\sigma_{2}^{z}}\right] \\
& =\left[\sigma_{3}^{x} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right]\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\left.\frac{1-\sigma_{3}^{z}}{2}\right]} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right]\left[\mathrm{i}_{1}^{\left.\sigma_{3}^{z} \mathrm{i}^{-} \sigma_{2}^{x} \mathrm{i} \frac{1-\sigma_{3}^{z}}{2}\right] \sigma_{3}^{z} \sigma_{2}^{z}}\right. \\
& =\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right]\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1-\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right] \\
& =\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1-\sigma_{1}^{z}\right)}{4}}(-)^{\frac{\sigma_{1}^{z}\left(1-\sigma_{2}^{z}\right)}{2}}\right]\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1+\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}(-)^{-\frac{\sigma_{1}^{z}\left(1+\sigma_{3}^{z}\right)}{2}}\right] \\
& =\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1-\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right]\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right](-)^{-\frac{\sigma_{1}^{z}\left(1-\sigma_{2}^{z}\right)}{2}}(-)^{-\frac{\sigma_{1}^{z}\left(1+\sigma_{3}^{z}\right)}{2}} \\
& =\left[\sigma_{1}^{x} \sigma_{3}^{x}(-)^{\frac{\left(1-\sigma_{1}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right]\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right] \sigma_{2}^{z} \sigma_{3}^{z}
\end{aligned}
$$

## Commutators of dressed string operators $W_{s}$

$$
\begin{aligned}
& {\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right] } \\
= & {\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1+\sigma_{2}^{z}\right)\left(1-\sigma_{1}^{z}\right)}{4}}(-)^{\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}}\right] } \\
= & {\left[\sigma_{2}^{x} \sigma_{1}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{1}^{z}\right)}{4}}\right]\left[\sigma_{1}^{x} \sigma_{2}^{x} \mathrm{i}^{\frac{1-\sigma_{3}^{z}}{2}}\right](-)^{\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}} }
\end{aligned}
$$

R-leg

Overlapped strings are in opposite direction

- Different loops of $W_{s_{1}}$-string operators commute in the closed string subspace, shown by collecting the "phase factors" $\sigma_{i}^{z}=Z_{i}$.
- Loops of $W_{s_{1}}$-string operators commute with $\hat{Q}_{I}$.


We can use $\hat{Q}_{I}$ and loops of $W_{s_{1}}$-string operators to construct a soluble Hamiltonian, and which is what we have before.

## Statistics of ends of dressed strings

- The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:



- For dressed strings: $t_{b a}=\sigma_{1}^{\times} i \frac{1-\sigma_{2}^{2}}{2}, t_{c b}=\sigma_{3}^{\times}, t_{b d}=\sigma_{2}^{\times}(-)^{\frac{\left(1-\sigma_{2}^{Z}\right)\left(1+\sigma_{3}^{Z}\right)}{4}}$

We find $t_{b d} t_{c b} t_{b a}=-i t_{b a} t_{c b} t_{b d}$ via

$$
\left[\sigma_{2}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right]\left[\sigma_{3}^{x}\right]\left[\sigma_{1}^{\times} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right]=\left[\sigma_{1}^{\times} \mathrm{i} \frac{1-\sigma_{2}^{z}}{2}\right]\left[\sigma_{3}^{x}\right]\left[\sigma_{2}^{\times}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right](-\mathrm{i})
$$

The end of string is a semion.

## Statistics of ends of dressed strings

The computation

$$
\begin{aligned}
& {\left[\sigma_{2}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right]\left[\sigma_{3}^{x}\right]\left[\sigma_{1}^{x} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right] } \\
= & {\left[\sigma_{2}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1-\sigma_{3}^{z}\right)}{4}}(-)^{\frac{\sigma_{3}^{z}\left(1-\sigma_{2}^{z}\right)}{2}}\right]\left[\sigma_{3}^{x}\right]\left[\sigma_{1}^{x} \mathrm{i}^{\frac{1+\sigma_{2}^{z}}{2}} \mathrm{i}^{-\sigma_{2}^{z}}\right] } \\
= & {\left[\sigma_{1}^{x} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right]\left[\sigma_{3}^{x}\right]\left[\sigma_{2}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right](-)^{-\frac{\sigma_{3}^{z}\left(1-\sigma_{2}^{z}\right)}{2}} \mathrm{i}^{-\sigma_{2}^{z}} } \\
= & {\left[\sigma_{1}^{x} \mathrm{i}^{\frac{1-\sigma_{2}^{z}}{2}}\right]\left[\sigma_{3}^{x}\right]\left[\sigma_{2}^{x}(-)^{\frac{\left(1-\sigma_{2}^{z}\right)\left(1+\sigma_{3}^{z}\right)}{4}}\right](-\mathrm{i}) }
\end{aligned}
$$

## 3D $Z_{2}$ topological order on Cubic lattice



- Untwisted-string model: $H=-U \sum_{I} Q_{I}-g \sum_{\boldsymbol{p}} F_{p}$

$$
Q_{\mathbf{I}}=\prod_{i \text { next to } 1} \sigma_{i}^{z}, \quad F_{\boldsymbol{p}}=\sigma_{1}^{\times} \sigma_{2}^{\times} \sigma_{3}^{\times} \sigma_{4}^{\times}
$$

Can get 3D fermions for free (almost) Levin-Wen cond-mat/0302460 Just add a little twist

- Twisted-string model: $H=U \sum_{I} Q_{I}-g \sum_{p} F_{p}$

$$
F_{\boldsymbol{p}}=\sigma_{1}^{㐅} \sigma_{2}^{×} \sigma_{3}^{×} \sigma_{4}^{×} \sigma_{5}^{z} \sigma_{6}^{z}
$$

## String operators and $Z_{2}$ charges Levin-Wen cond-mat/0302460

- A pair of $Z_{2}$ charges is created by an open string operator which commute with the Hamiltonian except at its two ends.
Strings cost no energy and is unobservable.


dressed string
- In untwisted-string model - untwisted-string operator

$$
\sigma_{i_{1}}^{\chi} \sigma_{i_{2}}^{\chi} \sigma_{i_{3}}^{\chi} \sigma_{i_{4}}^{\chi}
$$

- In twisted-string model - twisted-string operator

$$
\left(\sigma_{i_{1}}^{X} \sigma_{i_{2}}^{X} \sigma_{i_{3}}^{x} \sigma_{i_{4}}^{x} \ldots\right) \prod_{i \text { on crossed legs of } C} \sigma_{\boldsymbol{i}}^{z}
$$

## Twisted string operators commute $\left[W_{1}, W_{2}\right]=0$



$$
\begin{aligned}
& W_{1}=\left(\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x} \sigma_{5}^{x} \sigma_{6}^{x} \sigma_{7}^{x}\right)\left[\boldsymbol{\sigma}_{d}^{z} \sigma_{e}^{z} \sigma_{f}^{z}\right] \\
& W_{2}=\left(\sigma_{h}^{x} \sigma_{c}^{x} \sigma_{5}^{x} \sigma_{4}^{\times} \sigma_{3}^{\times} \sigma_{d}^{\times} \sigma_{g}^{x}\right)\left[\boldsymbol{\sigma}_{6}^{z} \sigma_{e}^{z}\right]
\end{aligned}
$$

- We also have $\left[W, Q_{1}\right]=0$ for closed string operators $W$, since $W$ only create closed strings.


## Statistics of ends of twisted strings

- The statistics is determined by particle hopping operators
Levin-Wen 03:

$t_{b d} t_{c b} t_{b a}$


$t_{b a} t_{c b} t_{b d}$

- An open string operator is a hopping operator of the 'ends'. The algebra of the open string op. determine the statistics.
- For untwisted-string model: $t_{b a}=\sigma_{2}^{x}, t_{c b}=\sigma_{3}^{x}, t_{b d}=\sigma_{1}^{\times}$

We find $t_{b d} t_{c b} t_{b a}=t_{b a} t_{c b} t_{b d}$
The ends of untwisted-string are bosons

- For twisted-string model: $t_{b a}=\sigma_{4}^{z} \sigma_{1}^{z} \sigma_{2}^{\chi}, t_{c b}=\sigma_{5}^{z} \sigma_{3}^{\chi}, t_{b d}=\sigma_{1}^{x}$

We find $t_{b d} t_{c b} t_{b a}=-t_{b a} t_{c b} t_{b d}$
The ends of twisted-string are fermions

## String-net liquid

## Ground state:

- String-net liquid: allow three strings to join, but do not allow a string to end $\Phi_{\text {str }}$


Levin-Wen cond-mat/0404617

- The dancing rule : $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

$$
\begin{aligned}
& \Phi_{\mathrm{str}}(\Omega)=a \Phi_{\mathrm{str}}(\Omega)+b \Phi_{\mathrm{str}}(\Omega) \\
& \Phi_{\mathrm{str}}(\Omega)=c \Phi_{\mathrm{str}}(\Omega)+d \Phi_{\mathrm{str}}(\Omega)
\end{aligned}
$$

- The above is a relation between two orthogonal basis: two local resolutions of how four strings join (quantum geometry)

$$
\begin{aligned}
& \text { (2). (Q) and ©, (1), } \left.\quad \begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\text { orthogonal ma } \\
& a^{2}+b^{2}=1, \quad a c+b d=0, \quad c a+d b=0, \quad c^{2}+d^{2}=1
\end{aligned}
$$

## Self consistent dancing rule

Apply reconnection rule twice:

$$
\begin{aligned}
\Phi_{\mathrm{str}}(\Omega) & =a\left(a \Phi_{\mathrm{str}}(\Omega)+b \Phi_{\mathrm{str}}(\Omega)\right) \\
& +b\left(c \Phi_{\mathrm{str}}(\Omega)+d \Phi_{\mathrm{str}}(\Omega)\right) \\
\Phi_{\mathrm{str}}(\Omega) & =c\left(a \Phi_{\mathrm{str}}(\Omega)+b \Phi_{\mathrm{str}}(\zeta)\right) \\
& +d\left(c \Phi_{\mathrm{str}}(\Omega)+d \Phi_{\mathrm{str}}(\Omega)\right)
\end{aligned}
$$

We find

$$
a^{2}+b c=1, \quad a b+b d=0, \quad a c+d c=0, \quad b c+d^{2}=1
$$

$\rightarrow d=-a, \quad b=c, \quad a^{2}+b^{2}=1$.

## More self consistency condition

－Rewrite the string reconnection rule（ $0 \rightarrow$ no－string， $1 \rightarrow$ string $)$

The 2－by－2 matrix $F_{k l}^{i j} \rightarrow\left(F_{k l}^{i j}\right)_{n}^{m}$ is unitary．We have

$$
\begin{aligned}
& F_{000}^{000}<=1 \\
& F_{111}^{000}\left\langle 〔=\left(F_{100}^{011} \searrow \zeta\right)^{*}=\left(F_{010}^{101}\ulcorner\text {, })^{*}=F_{001}^{110}\right\rangle\right\rangle=1 \\
& F_{011}^{011} \measuredangle<=\left(F_{101}^{101} \zeta\right)^{*}=1 \\
& F_{111}^{011} \measuredangle \Upsilon=\left(F_{111}^{101}-()^{*}=F_{011}^{111} \prec \chi=\left(F_{101}^{111}\right\rangle \nearrow\right)^{*}=1 \\
& \left.F_{110}^{110}\right\rangle\langle\nearrow=a \\
& \left.F_{111}^{110}\right\rangle\left\langle X=b=\left(F_{110}^{111}\right\rangle\langle\text { 久 })^{*}=c^{*}\right. \\
& \left.F_{111}^{111}\right\rangle \backslash=d=-a,
\end{aligned}
$$

## More self consistency condition

- 
- The two paths should lead to the same relation

$$
\sum_{t} F_{k n t}^{i j m} F_{l p s}^{i t n} F_{l s q}^{j k t}=F_{l p q}^{m k n} F_{q p s}^{i j m}
$$

Such a set of non-linear algebraic equations is the famous pentagon identity.

## The pentagon identity

- $i, j, k, l, p, m, n, q, s=0,1 \rightarrow$
$2^{9}=512+$ non-linear equations with $2^{6}=64$ unknowns.
- Solving the pentagon identity: choose $i, j, k, l, p=1$

$$
\sum_{t=0,1} F_{1 n t}^{11 m} F_{11 s}^{1 t n} F_{1 s q}^{11 t}=F_{11 q}^{m 1 n} F_{q 1 s}^{11 m}
$$

choose $n, q, s=1, m=0$

$$
\begin{aligned}
& \sum_{t=0,1} F_{11 t}^{110} F_{111}^{1 t 1} F_{111}^{11 t}=F_{111}^{011} F_{111}^{110} \\
\rightarrow & a \times 1 \times b+b \times(-a) \times(-a)=1 \times b \\
\rightarrow & a+a^{2}=1, \quad \rightarrow a=( \pm \sqrt{5}-1) / 2
\end{aligned}
$$



Since $a^{2}+b^{2}=1$, we find

$$
a=(\sqrt{5}-1) / 2 \equiv \gamma, \quad b=\sqrt{a}=\sqrt{\gamma}
$$

## String-net dancing rule

- The dancing rule : $\phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

$$
\begin{aligned}
& \phi_{\text {str }}(\Omega)=\gamma \phi_{\text {str }}(\Omega)+\sqrt{\gamma} \phi_{\text {str }}(\Omega) \\
& \phi_{\text {str }}(\Theta)=\sqrt{\gamma} \phi_{\text {str }}(\Omega)-\gamma \phi_{\text {str }}(\Omega)
\end{aligned}
$$

## String-net dancing rule

- The dancing rule : $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

$$
\begin{aligned}
& \Phi_{\text {str }}(\Omega)=\gamma \Phi_{\text {str }}(\Omega)+\sqrt{\gamma} \Phi_{\text {str }}(\Omega) \\
& \Phi_{\text {str }}(\Omega)=\sqrt{\gamma} \Phi_{\text {str }}(\Omega)-\gamma \Phi_{\text {str }}(\Omega)
\end{aligned}
$$

## - Topological excitations:

For fixed 4 ends of string-net on a sphere $S^{2}$, how many locally indistinguishable states are there?

## String-net dancing rule

- The dancing rule : $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

$$
\begin{aligned}
& \Phi_{\text {str }}(\Omega)=\gamma \Phi_{\text {str }}(\Omega)+\sqrt{\gamma} \Phi_{\text {str }}(\Omega) \\
& \left.\Phi_{\text {str }}(\Omega)=\sqrt{\gamma} \Phi_{\text {str }}(\Omega)-\gamma \Phi_{\text {str }}(\Omega)\right)
\end{aligned}
$$

## - Topological excitations:

For fixed 4 ends of string-net on a sphere $S^{2}$, how many locally indistinguishable states are there? four states?


## Topological degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the string-net in a particular order:

$\rightarrow$ There are only two locally indistinguishable states
= a qubit
This is a quantum memory that is robust angainst any environmental noise.
$\rightarrow$ The defining character of topological order:
a material with robust quantum memory.

## Direct sum $\oplus=$ accidental degeneracy

- Consider two spin- $\frac{1}{2}$ particles. If we view the two particle as one particle spin- $\frac{1}{2} \otimes \operatorname{spin}-\frac{1}{2}=$ ? What is the spin of the bound state?
- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

$$
\text { spin- } \frac{1}{2} \otimes \operatorname{spin}-\frac{1}{2}=\operatorname{spin}-0 \oplus \text { spin- } 1, \quad 2 \times 2=1+3
$$

$\oplus$ is the direct sum of Hilbert space in mathematics and the accidental degeneracy in physics.

## Direct sum $\oplus=$ accidental degeneracy

- Consider two spin- $\frac{1}{2}$ particles.

If we view the two particle as one particle spin- $\frac{1}{2} \otimes \operatorname{spin}-\frac{1}{2}=$ ? What is the spin of the bound state?

- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

$$
\text { spin- } \frac{1}{2} \otimes \operatorname{spin}-\frac{1}{2}=\operatorname{spin}-0 \oplus \text { spin- } 1, \quad 2 \times 2=1+3
$$

$\oplus$ is the direct sum of Hilbert space in mathematics and the accidental degeneracy in physics.

- Fusion of the ends of string-net $\varphi$ :


$$
\varphi \otimes \varphi=\mathbf{1} \oplus \varphi, \quad \varphi \otimes \varphi \otimes \varphi=(\mathbf{1} \oplus \varphi) \otimes \varphi=\mathbf{1}+2 \varphi
$$

A bound state of $2 \varphi^{\prime} s=$ an accidentical degeneracy of an 1 and a $\varphi$. A bound state of $3 \varphi^{\prime}$ s $=$ an accidentical degeneracy of an 1, a $\varphi$, and a $\varphi$.

## Compute the degeneracy of excitations on $S^{2}$

Consider $n$ topological excitations (string ends) on a sphere. What is the ground state degeneracy? (GSD $=0$ means not allowed)

- Consider the loop liquid (ie the $Z_{2}$ topological order).
- Trivial particle $1 \rightarrow$ a state with no string ends, allowed $G S D=1$.
- One e particles $\rightarrow$ a state with 1 string ends, not allowed GSD $=0$.
- Two e particles $\rightarrow$ a state with 2 string ends, allowed $G S D=1$.
- Three e particles $\rightarrow$ a state $\mathrm{w} / 3$ string ends, not allowed $G S D=0$.
- Fusion $e \otimes e=1, e \otimes e \otimes e=e \rightarrow$ GD $=\#$ of 1's.


## Compute the degeneracy of excitations on $S^{2}$

Consider $n$ topological excitations (string ends) on a sphere. What is the ground state degeneracy? (GSD $=0$ means not allowed)

- Consider the loop liquid (ie the $Z_{2}$ topological order).
- Trivial particle $1 \rightarrow$ a state with no string ends, allowed $G S D=1$.
- One e particles $\rightarrow$ a state with 1 string ends, not allowed GSD $=0$.
- Two e particles $\rightarrow$ a state with 2 string ends, allowed $G S D=1$.
- Three e particles $\rightarrow$ a state $\mathrm{w} / 3$ string ends, not allowed $G S D=0$.
- Fusion $e \otimes e=1, e \otimes e \otimes e=e \rightarrow$ GSD $=\#$ of 1's.
- Consider the string-net liquid.

- Trivial particle $1 \rightarrow$ a state with no string ends, allowed $G S D=1$
- One $\varphi$ particles $\rightarrow$ a state with 1 string ends, not allowed GSD $=0$
- Two $\varphi$ particles $\rightarrow$ a state with 2 string ends, allowed GSD $=1$
- Three $\varphi$ particles $\rightarrow$ a state with 3 string ends, allowed GSD $=1$
- Fusion $\varphi \otimes \varphi=\mathbf{1} \oplus \varphi$, one allowed state $G S D=1$.
$\varphi \otimes \varphi \otimes \varphi=\mathbf{1} \oplus \varphi \oplus \varphi$, one allowed state $G S D=1$.


## Internal degrees of freedom - quantum dimension

- Let $D_{n}$ be the number of locally indistinguishable states for $n$ $\varphi$-particles on a sphere. The internal degrees of freedom of $\varphi$ quantum dimension $-d=\lim _{n \rightarrow \infty} D_{n}^{1 / n}$

$D_{n}=$ the degeneracy of ground states, $F_{n}=$ the degeneracy of $\varphi$,


## Internal degrees of freedom - quantum dimension

- Let $D_{n}$ be the number of locally indistinguishable states for $n$ $\varphi$-particles on a sphere. The internal degrees of freedom of $\varphi$ quantum dimension $-d=\lim _{n \rightarrow \infty} D_{n}^{1 / n}$

$D_{n}=$ the degeneracy of ground states, $F_{n}=$ the degeneracy of $\varphi$,

$$
\begin{gathered}
\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} \otimes \varphi=\underbrace{1 \oplus \cdots \oplus 1}_{F_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n}+D_{n}} \\
D_{n+1}=F_{n}, \quad F_{n+1}=F_{n}+D_{n}=F_{n}+F_{n-1}, \quad D_{1}=0, \quad F_{1}=1 .
\end{gathered}
$$

The internal degrees of freedom of $\varphi$ is (spin- $\frac{1}{2}$ electron $d=2$ )

$$
d=\lim _{n \rightarrow \infty} F_{n-1}^{1 / n}=\frac{1+\sqrt{5}}{2}=1.61803398874989 \cdots
$$

## Double-Fibonacci topological order $=$ double $G_{2}$ Chern-Simon theory at level 1

$$
\begin{aligned}
L\left(a_{\mu}, \tilde{a}_{\mu}\right) & =\frac{1}{4 \pi} \operatorname{Tr}\left(a_{\mu} \partial_{\nu} a_{\lambda}+\frac{\mathrm{i}}{3} a_{\mu} a_{\nu} a_{\lambda}\right) \epsilon^{\mu \nu \lambda} \\
& -\frac{1}{4 \pi} \operatorname{Tr}\left(\tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda}+\frac{\mathrm{i}}{3} \tilde{a}_{\mu} \tilde{a}_{\nu} \tilde{a}_{\lambda}\right) \epsilon^{\mu \nu \lambda}
\end{aligned}
$$

$a_{\mu}$ and $\tilde{a}_{\mu}$ are $G_{2}$ gauge fields.

## String-net liquid can also realize a gauge theory of a finite group G

- Trivial type-0 string $\rightarrow$ trivial represental of $G$
- Type- $i$ string $\rightarrow$ irreducible represental $R_{i}$ of $G$
- Triple-string join rule If $R_{i} \otimes R_{j} \otimes R_{k}$ contain trivial representation $\rightarrow$ type- $i$ type- $j$ type- $k$ strings can join.
- String reconnection rule:

$$
\Phi\left(\stackrel{i}{i}_{{\underset{m}{l}}_{l}^{j}}^{Y_{l}}{ }^{k}\right)=\sum_{n=0}^{1} F_{k l n}^{i j m} \Phi\left(\stackrel{i}{j}_{Y_{l}^{j}}^{y_{n}^{k}}\right), \quad i, j, k, l, m, n=0,1
$$

with $F_{k l n}^{i j m}$ given by the $6-j$ simple of $G$.

## Topo. qubits and topo. quantum computation

- Four fixed Fibonacci anyons on $S^{2}$ has 2-fold topological degeneracy (two locally indistinguishable states) $\rightarrow$ topological qubit

- Exchange two Fibonacci anyons induce a $2 \times 2$ unitary matrix acting on the topological qubit $\rightarrow$ non-Abelian statistics
also appear in $\chi_{\nu=2}^{3}\left(z_{i}\right)$ FQH state, and the non-Abelian statistics is described by $\mathrm{SU}_{2}(3)$ CS theory Wen PRL 66802 (91) $\rightarrow$ universal Topo. quantum computation (via CS theory)


Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant-ph/0001108
Topological order is the natural medium (the "silicon") to do topological quantum computation

