Highly entangled quantum many-body systems – Topological order

Xiao-Gang Wen

https://canvas.mit.edu/courses/11339

Our world is very rich with all kinds of materials

In middle school, we learned ...

there are four states of matter:

Solid

Liquid

Plasma

In university, we learned

- Rich forms of matter ← rich types of order
- A deep insight from Landau: different orders come from different symmetry breaking.
- A corner stone of condensed matter physics

Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry breaking classify all phases of matter

• Symm. breaking phases are classified by a pair $G_{\Psi} \subset G_H$

 G_H = symmetry group of the Hamiltonian H.

 G_{Ψ} = symmetry group of the ground states Ψ .

• 230 crystals from group theory

				-					-		•						10000000	3656	5 60 S	68 .	2	antes.	- materia	Mar 3		-
1420	1424	Planne	P0/exc	Phylodes	rajoni raj	inter Ph/en	e Misere	es Philees	Plaine	(NJ	were .	PR,INK	ra,/east	rs, inic	rt,/ess	Philome	70000	- 283	: (B)	22	125	200	- mathem	tations 🛔	10 C	28
1000	204		225	100	註:: *0	🕸 🐝	: 22	2 32	56, 5	 58% 	566	202	2005	222	335	ANA	Ginaite	Owners	 Tores 	0.57	Madala			i.o	Taiwgite	64
12424	265		366	1900	344 O	6 XX	7.64	- XX	5 199	• 222	∞.	202	200	XX	2009	ANA	c1/6	×212	P22	o, ,	2,2,3	12,2,3,	(233)	(232	P222	
laward to	lar XI	Full (0, (\$50 °C)	Telle,	Calls, Au, D.;	Ratific Proc	gents Europein	She Follow	i) B(Gal)	64.0	112	(CN)	Mr.(%,0,)	Cale(2H)	5e0,	Ratio	245	TITLES.	11-1	: - A	MA 🖇	19	100	****	100	350	
PELSICA	Monana	Misce	njand	M_feed	11	n, i	<i>n</i> ,	×1	A1	A.0	P\$12	/121	P8,12	P1.2		P8,13	1000	- 27 2	2 . TA	14 S	.	258	1868 - C	285	1.00	1
<<<	244	- XX	21212	*****	9696 · •1	8X. 📲	<u>а</u> 1	1. A. P.	<u>~~~</u>	- 9494	1944	5355.	-	100	60 s	**	A STOL	Automation and	- 0.00		146	140	145	(adaptive)	Autoria.	. 1
- 555	111	- 283	RRF	- 1	1998	78. 3		77°	- 78R	. 388	1.000	< 788.	- 22	1999	9 9 '	3828.	For2.	Pre2	Presi	2. 10	102	tral.	Ano2	Central Central	Cec2.	
14	Infan	N/Cu	CxSO ₂	(SA., 84, 390)	Singuarite S	citation of a	widota P	MERGUINCE.	K/1+0,	Datanit	 B_6x(0) 	19,044,5,0	Meanite	at bei	inite:	00,	20000	- 'ee	- 414	😸 🛞	0 s	100	25454	54552	****	*
A9,22	#12	Pint	P85/8	PRC	P110	Abe	43	K P	-ite	Alte	Alant	A80	8.84	61	kr .		20000	- 88		🕈 🖗	03	66 A .	201			₽.
366	1.25	No.	10000	. 33	8. NA	s. 1997	6 W	M. *	W. '	YAYA		0.0	1 tx	. 86	NA ·	1.204	Gastin	Tentitie	Energ	pa 18.4	Nite	And a second	44,9369,	ENGIN, C.	Sperioda	÷.,
		2456	Wi	80 🖗	66 😲	84. S	A Y	9996 I	700	TATA,	-		- 340	4. 5 0	- £73	X1x 5	Net	in the last	m2 .	842	les?	~	ner fane	018	rben	
Quelo	Techorite	ferance	ter Gale	ite fa	0, LM2	o, here	der 1	Proatile	6,24,	Coquintiète	Particular	flacente-(La	P01-6	9	ista -	10165.0.	15 2.5	海 部	選 🎦	80.	ಿಗ	F 3	æ 🕸	922.	2626	
PG,	PG.	~	h.	16	16.	74	76/e	16,0	n /6	22	\$6,22	\$6,22	P\$.3	12 /	PG ₅ 22	P6,22	124.44	200 242	49. F		1000	🗣 🖓	ar 😵	3 26	32.52	* :
-466-	Ale -	. 1948	1.10 I	1, M. 1940	20.00	1014	44	i 🐄	L 😒	S. 3		Augos	- Ă	Ă+ 1		REAL	Cabultor	~	6 6	and black	Seriebe	Ta,	a manage	CONT CAT BAND,	Bettien	
	1999	* .	B 🛛 👌	n n He	3.95	. 204	. ~	Υ 🕈	Re - 5	88. X	600-	. 200	6. P	x9xt ∘	大学	2000	Acres	PROM	Apon	Phoe	Pena	CN00	ceca d	INNO GUN	a como	
A55	16640	160	80.	015.03%.05	Holein	ENCD. 1	served and page	man field	state and	Goodestage	46.	Left)		show-the	6-facestly	DRIVING.	2.26	322	和新	28	-872	986 - E	200 I	🗰 🐼	6 M	
fime	Plec	rs.cm	Nunc	P-6m2	A60	P-62m	#42c	PG/mm	ner Pikin	xx 14./	more	re, inne	123	/23	12	3 /2,3	100	444	200	28	-7272 -	511L I	2010 I	🗱 🐼	> 36	
15511-66	. H. 1	40.00	لمغد	1114	45656	1000	-444	بلعلا ا	4 1000				57074	* * ×	26 AL	at Kurkur	CHARTING?	Permit	CAB/G,	Namiargia	haptile	he unite	Tabuallo: A	Apic, Gundari	te brundet	i ve
- #EU 0	101.	789.	-444	100	C 300	- 10285	. 386	a 188	* 7	🕱 🕺	**	10000	304	- ××	× 38	C 282		10,		×4,		А,	- 24	14	PLON	
12231	A.15	4	$-\infty$	Y . 77	- RORS	et refes	5 4 84	N 71	14- 4	1998 - I	***	193814	25,254	: *××	× *	1 10707			255	4242	14	' 🕮		- 200	2 200	
BACK	APOA	1940,	44	HC#(SS	() estisio,) M4,0,	546,0	2, M	a, a	-4	24,	Graphin	month	2-60	с, н.	D, Langlainta	+++	-	7676	4042	-474	· ***	***		ê , 292	4.3
12.3	Per-3	Pe-3	/m-3	14/2	Jan-3	rs-3	ie-3	P432	P6,32	/432	/4.32	A33		4,32	P4,32	H-32	nu, 1994,	Pendrowla	Povala	14,44(O)	900,	160	2006.3	10%.1	BAHOUS	
SUZ	10.00	- 949	***	1000		400 1	100	1000	<u> </u>		312	1 100	M 🖻	100	200		Page 4	-			4,0,0					
21.5	10.000	- 2022	222	388	- 344	233		3.5	1999	**	18	E niñ	in 🛔		1.200	100	100	1000	1283		H.	1200	- 899	: 19 8	¥ 00	κ.
60.0	9.0	and all a	K PHERION	i Indexed	No. 500	Date:	Visio I	MAG.	14.0	204.00	1404			10	CHULM	6000		22088	- 000	100	ALC: NO.	-	-	a none	u :xo	< .;
A-13m	6480	(43m	A424	F-63c	1434	Per-3m	Fe 1o	Ap-34	Fm-3m	/p3p	/m-3c	15.30	. 10	k	der Ber	4234	He/103	Crickealle	White the	Ang) 11.00	when the second	84,5	róan/o's	Dank	Q#1	
×100×1	-	CLEAR !!	-1004	-444	10000	20-02		_	HAMA	1111	JACOB				-	-	PL/C		41414	Mark I	1,63	-Uni	P424	1400	P.0.0	- 4
272	-	B.4	- 303	1000	122	883	18181 v		CECC.		3434	- 39			5692	3662		- 666	366	332	荧	RF.	888 -	- 122	2005	- 5
XXXXX	-	1997	- 130	200	1000	-392	ISTST .	1	different of	-111-	1	- 99	12		1000	1000		144	4.9.9	200	<u>m</u>	242			<u></u>	- 2
663,0995	N.O.	Decite Rise	Solater	MARCH	Cdaile hybrighted	38-25-840 0	o-Squarase	8.545 (ma)	(manufacture)	nag NO	674	Spini	20.044	100403	800	Ex.540049.3	1420	1434	Ph/mmm	PAGency	(Materia	Allow	filmina .	Allen I	incards a	un e

Can symmetry breaking describes all phases of matter?

A spin-liquid theory of high T_c superconductors:

- It was proposed that a 2d spin liquid can have spin-charge separation: An electron can change into two topological quasi particles: electron = holon ⊗ spinon, holon: charge-1 spin-0 boson, spinon: charge-0 spin-1/2 fermion. Holon condensation → high T_c superconductivity.
- Does such a strnge spin liquid exist? How to characterize it? A spin liquid was explicitly constructed Kalmeyer-Laughlin, PRL 59 2095 (87), and we found that it is a state that break time reversal and parity symmetry, but not spin rotation symmetry, with order parameter $S_1 \cdot (S_2 \times S_3) \neq 0 \rightarrow$ Chiral spin liquid Wen, Wilczek, Zee, PRB 39 11413 (89)
- However, we also discovered several different chiral spin states with identical symmetry breaking pattern. How distinguish those chiral spin states with the same symmetry breaking?

Xiao-Gang Wen

Topological orders in quantum Hall effect

R_{xy} [h/e²]

• Quantum Hall (QH) states $R_{xy} = V_y/I_x = \frac{m}{n} \frac{2\pi\hbar}{c^2}$ vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)

 Fractional quantum Hall (FQH) states have different phases even when the only U(1) symmetry is not broken for those states.

Topological orders in quantum Hall effect

• Quantum Hall (QH) states $R_{xy} = V_y/I_x = \frac{m}{n} \frac{2\pi\hbar}{c^2}$ vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)

- Fractional quantum Hall (FQH) states have different phases even when the only U(1) symmetry is not broken for those states.
- Chiral spin and FQH liquids must contain a new kind of order, which was named as topological order Wen, PRB 40 7387 (89); IJMP 4 239 (90)

_{xy} [h/e²]

- Three kinds of quantum matter:
 - (1) no low energy excitations (Insulator) \rightarrow trivial
 - (2) some low energy excitations (Superfluid) \rightarrow interesting
 - (3) a lot of low energy excitations (Metal) \rightarrow messy

Topological orders belong to the "trivial" class (*ie* have an energy gap and no low energy excitations)

Topological orders are trivial state of matter?!

Every physical concept is defined by experiment

• The concept of crystal order is defined via X-ray scattering

 The concept of superfuild order no low energy excitations is defined via zer[®] quantization of vorticity

What is **topological order**? How to characterize it?

- How to extract universal information (topological invariants) from complicated many-body wave function Ψ(x₁, ···, x_{10²⁰})
 Put the gapped system on space with various topologies, and measure the ground state degeneracy.
 (The dynamics of a quantum many-body system is controlled by a
 - hermitian operator, Hamiltonian H, acting on the many-body wave functions. The spectrum of the Hamiltonian has a gap)
 - \rightarrow The notion of topological order

Wen PRB 40 7387 (89)

• The name topological order was motivated by Witten's topological quantum field theory (field theories that do not depend on spacetime metrics), such as Chern-Simons theories which happen to be the low energy effective theories for both chiral spin states and QH states. Witten CMP 121 351 (1989)

Xiao-Gang Wen

The ground state degeneracy is a topological invariant

- At first, some people objected that the ground state degeneracies are finite-size effects or symmetry effect, not reflecting the intrinsic order of a phase of matter.
- The ground state degeneracies are robust against any local perturbations that can **break any symmetries**.

 \rightarrow topological degeneracy (another motivation for the name topological) Wen Int. J. Mod. Phys. B 04 239 (90); Wen Niu PRB 41 9377 (90)

 The ground state degeneracies can only vary by some large changes of Hamiltonian → gap-closing phase transition.

How to fully characterize topological order?

Deform the space and measure the **non-Abelian geometric phase** of the deg. ground states. Wilczek & Zee PRL **52** 2111 (84)

S, T generate a representation of modular group: $S^2 = (ST)^3 = C$, $C^2 = 1$ Conjecture: The non-Abelian geometric phases of the degenerate
ground states for closed spaces with all kinds of topologies can
fully characterize topological orders.Wen, IJMPB 4 239 (1990);
Wen, IJMPB 7 4227 (1993)

• Non-Abelian geometric phases = Projective representations of the mapping class group of closed spaces with all kinds of topologies

An modern understanding of topological degeneracy

 In 2005, we discovered that topological order has topological entanglement entropy
 Kitaev-Preskill hep-th/0510092 Levin-Wen cond-mat/0510613 and long range quantum entanglement

- Chen-Gu-Wen arXiv:1004.3835
- For a long-range entangled many-body quantum system, knowing every overlapping local parts still cannot determine the whole.
- still cannot determine the whole.
 In other words, there are different "wholes",
 WHOLE = ∑parts + that their every local parts are identical (Like fiber bundle in math).
- Local interactions/impurities can only see the local parts \rightarrow those different "wholes" (the whole quantum states) have the same energy.

Topological degeneracy comes from long range entanglement.

The pseudo-gauge transformations \rightarrow different "wholes" with identical local "parts". Long-range entanglement \rightarrow Chern-Simons theory

Xiao-Gang Wen

Why knowing every part does not imply knowing whole?

WHOLE =
$$\sum_{parts} + ?$$

• What is a "whole"?, what is "part"? whole = many-body wave function $|\Psi\rangle = \Psi(m_1, m_2, \cdots, m_N)$ where m_i label states on site-*i* part = local entanglement density matrix:

$$\rho_{\mathsf{site-1,2,3}} = \mathrm{Tr}_{\mathsf{site-3,\cdots,N}} |\Psi\rangle\langle\Psi|,$$

 $\rho_{m_1,m_2,m_3;m_1',m_2',m_3'}$

$$= \sum_{m_4,\cdots,m_N} \Psi^*(m_1, m_2, m_3, m_4, \cdots, m_N) \Psi(m_1', m_2', m_3', m_4, \cdots, m_N)$$

• The energy only depends on the local parts $\rho_{\rm site-1,2,3}$ due to the local interaction $H_{\rm 1,2,3}$

$$\langle \mathcal{H}_{1,2,3}
angle = \mathrm{Tr}(\mathcal{H}_{1,2,3}
ho_{\mathsf{site-1},2,3})$$

• $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{more entangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $\bullet \mid \uparrow \rangle \otimes \mid \uparrow \rangle + \mid \downarrow \rangle \otimes \mid \downarrow \rangle + \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle$
 - $= (|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $\bullet | \uparrow \rangle \otimes | \uparrow \rangle + | \downarrow \rangle \otimes | \downarrow \rangle + | \uparrow \rangle \otimes | \downarrow \rangle + | \downarrow \rangle \otimes | \uparrow \rangle$
- $= (|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \varphi = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \dots \rightarrow \text{unentangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\begin{array}{c} \bullet \end{array} = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\downarrow\rangle \otimes |\downarrow\rangle \dots \rightarrow \text{unentangled}$
- Crystal order: $|\Phi_{\text{crystal}}\rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$

= direct-product state \rightarrow unentangled state (classical)

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\begin{array}{c} \bullet \end{array} = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\downarrow\rangle \otimes |\downarrow\rangle \dots \rightarrow \text{unentangled}$
- Crystal order: $|\Phi_{crystal}\rangle = |1\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$ = direct-product state \rightarrow unentangled state (classical)
- Particle condensation (superfluid)

 $|\Phi_{\mathsf{SF}}\rangle = \sum_{\mathsf{all conf.}} \left| \underbrace{\blacksquare} \right\rangle$

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\begin{array}{c} \bullet \end{array} = | \downarrow \rangle \otimes | \uparrow \rangle \otimes | \downarrow \rangle \otimes | \downarrow \rangle \otimes | \downarrow \rangle \dots \rightarrow \text{unentangled}$
- Crystal order: $|\Phi_{\text{crystal}}\rangle = |1\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$ = direct-product state \rightarrow unentangled state (classical)
- Particle condensation (superfluid)

 $|\Phi_{\mathsf{SF}}\rangle = \sum_{\mathsf{all conf.}} \left| \underbrace{\underbrace{\mathsf{III}}}_{x_1} \right\rangle = (|0\rangle_{x_1} + |1\rangle_{x_1} + ..) \otimes (|0\rangle_{x_2} + |1\rangle_{x_2} + ..)...$

= direct-product state \rightarrow unentangled state (classical)

What is long-range entanglement?

• The above example are all unentangled or short-range entangled.

What is long-range entanglement?

- The above example are all unentangled or short-range entangled.
- Define **long range entanglement** via local unitary (LU) transformations (*ie* **local quantum circuit**)

Chen-Gu-Wen arXiv:1004.3835

What is long-range entanglement?

- The above example are all unentangled or short-range entangled.
- Define long range entanglement via local unitary (LU) transformations (*ie* local quantum circuit)

- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
 - = different patterns of long-range entanglements
 - = different topological orders Wen PRB 40 7387 (89)

Xiao-Gang Wen

Macroscopic characterization \rightarrow microscopic origin

- From macroscopic characterization of **topological order** (1989) (topological ground state degeneracies, mapping class group representations)
 - \rightarrow microscopic origin (long range entanglement 2010) took 20+ years

Macroscopic characterization \rightarrow microscopic origin

- From macroscopic characterization of **topological order** (1989) (topological ground state degeneracies, mapping class group representations)
 - \rightarrow microscopic origin (long range entanglement 2010) took 20+ years
- From macroscopic characterization of superconductivity (1911) (zero-resistivity, quantized vorticity)
 → microscopic origin (BSC electron-pairing 1957) took 46 years

This topology is not that topology

Topology in topological insulator/superconductor (2005) corresponds to the twist in the band structure of orbitals, which is similar to the topological structure that distinguishes a sphere from a torus. This kind of topology is *classical topology*.

Kane-Mele cond-mat/0506581

This **topology** is not that *topology*

Topology in topological order (1989) corresponds to pattern of many-body entanglement in many-body wave function $\Psi(m_1, m_2, \dots, m_N)$, that is robust against any local perturbations that can break any symmetry. Such robustness is the meaning of **topological** in topological order. This kind of topology is **quantum topology**.

Wen PRB 40 7387 (1989)

How to make long range entanglement? (Mechanism of topological order)

A mechanism of superconductivity: electron pairing \rightarrow boson condensation \rightarrow superconductivity

To make topological order, we need to sum over many different product states, but we should not sum over everything.

 $\sum_{\text{all spin config.}} |\uparrow\downarrow ..\rangle = |\rightarrow\rightarrow ..\rangle$

How to make long range entanglement? (Mechanism of topological order)

A mechanism of superconductivity: electron pairing \rightarrow boson condensation \rightarrow superconductivity

 $\sum_{\rm all \ spin \ config.} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$

• A mechanism:

Sum over a subset of spin configurations:

$$\left|\Phi_{\text{loops}}^{Z_2}\right\rangle = \sum \left|\Im \Diamond \rangle$$

$$|\Phi^{DS}_{
m loops}
angle = \sum (-)^{\#
m of loops} \left| \stackrel{\scriptstyle \sim}{\scriptstyle \sim} \right.$$

$$|\Phi^{ heta}_{\mathsf{loops}}
angle = \sum (e^{\mathrm{i}\, heta})^{\# \; \mathsf{of} \; \mathsf{loops}} \left| igotimes_{\searrow}^{\bigotimes} igodom_{\bigotimes}^{\bigotimes}
ight|$$

• Can the above wavefunctions be the ground states of local Hamiltonians?

Xiao-Gang Wen

Local dance rule (Hamiltonian) \rightarrow global dance pattern

Local rules of a string liquid (for ground state):

 (1) Dance while holding hands (no open ends)
 (2) Φ_{str} (□) = Φ_{str} (□), Φ_{str} (□) = Φ_{str} (□)
 → Global wave function of loops Φ_{str} ([∞]) = 1

• There is a local Hamiltonian *H*:

(1) Open ends cost energy

(2) string can hop and reconnect freely. *ie* H contains terms causing \rightarrow \rightarrow \rightarrow \rightarrow with negative coefficient.

The ground state of H gives rise to the above string lquid wave function. (For the explicite H, see page 33).

Xiao-Gang Wen

Local dance rule \rightarrow global dance pattern

• Local rules of another string liquid (ground state): (1) Dance while holding hands (no open ends) (2) $\Phi_{str} () = \Phi_{str} () , \Phi_{str} () = -\Phi_{str} ()$ \rightarrow Global wave function of loops $\Phi_{str} () = (-)^{\# \text{ of loops}}$
Local dance rule \rightarrow global dance pattern

- Local rules of another string liquid (ground state): (1) Dance while holding hands (no open ends) (2) $\Phi_{str} () = \Phi_{str} (), \Phi_{str} () = -\Phi_{str} ()$ \rightarrow Global wave function of loops $\Phi_{str} () = (-)^{\# \text{ of loops}}$
- The second string liquid $\Phi_{str} \left(\bigotimes \bigotimes \right) = (-)^{\# \text{ of loops}}$ can exist only in 2-dimensions.
- The first string liquid $\Phi_{str} \left(\bigotimes \bigotimes \right) = 1$ can exist in both 2- and 3-dimensions.
- The thirsd string liquid $\Phi_{str} \left(\bigotimes \bigotimes \right) = (e^{i\theta})^{\# \text{ of loops}}$ can exist in neither 2- nor 3-dimensions.

Knowing all the parts \neq knowing the whole

 Do those two string liquids really have topological order? Do they have topological ground state degenercy?

Knowing all the parts \neq knowing the whole

 Do those two string liquids really have topological order? Do they have topological ground state degenercy?

WHOLE =
$$\sum parts + ?$$

- 4 locally indistinguishable states on torus for both liquids \rightarrow **topological order**

e

0

0

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone \rightarrow **topological**

- There are 2 sectors \rightarrow 2 states.

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone \rightarrow **topological**

 Let us fix 4 ends of string on a sphere S². How many locally indistinguishable states are there?
 There are 2 sectors > 2 states.

- In fact, there is only 1 sector \rightarrow 1 state, due to the string reconnection fluctuations Φ_{str} () = $\pm \Phi_{str}$ ().
- For our string liquids, in general, fixing 2N ends of string $\rightarrow 1$ state. Each end of string has no degeneracy \rightarrow no internal degrees of freedom.

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone \rightarrow **topological**

 Let us fix 4 ends of string on a sphere S². How many locally indistinguishable states are there?
 There are 2 sectors > 2 states.

- In fact, there is only 1 sector \rightarrow 1 state, due to the string reconnection fluctuations Φ_{str} () = $\pm \Phi_{str}$ ().
- For our string liquids, in general, fixing 2N ends of string $\rightarrow 1$ state. Each end of string has no degeneracy \rightarrow no internal degrees of freedom.
- Another type of topological excitation vortex at × (by modifying the string wave function): $|m\rangle = \sum (-)^{\# \text{ of loops around } \times}$

- Ends of strings are point-like. Are they bosons or fermions? Two ends = a small string = a boson, but each end can still be a fermion. Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583
- $\Phi_{str} \left(\bigotimes \bigotimes \right) = 1$ string liquid $\Phi_{str} \left(\bigotimes \bigotimes \right) = \Phi_{str} \left(\boxtimes \bigotimes \right)$
- End of string wave function: $|end\rangle = |+c|^{\circ} + c_{\uparrow}^{\circ} + \cdots$ The string near the end is totally fixed, since the end is determined by a trapping Hamiltonian δH which can be chosen to fix the string. The string alway from the end is not fixed, since they are determined by the bluk Hamiltonian H which gives rise to a string liquid.
- 360° rotation: $\stackrel{\bullet}{|} \rightarrow \stackrel{\bullet}{?}$ and $\stackrel{\bullet}{?} = \stackrel{\bullet}{?} \rightarrow \stackrel{\bullet}{|}$: $R_{360^\circ} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- We find four types of topological exitations (1) $|e\rangle = |+ ?$ spin 0. (2) $|f\rangle = |-?$ spin 1/2.

Spin-statistics theorem: Emergence of Fermi statistics

- (a) \rightarrow (b) = exchange two string-ends.
- (d) \rightarrow (e) = 360° rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a 360° rotation of one of the string-end generate no phase.

\rightarrow Spin-statistics theorem

Z_2 topological order and its physical properties

 $\Phi_{\text{str}} \left(\bigotimes_{i=1}^{\infty} \bigotimes_{i=1}^{\infty} \right) = 1$ string liquid has Z₂-topological order.

• 4 types of topological excitations: (1) $|e\rangle = \stackrel{\bullet}{|} + \stackrel{\bullet}{?} \text{spin } 0.$ (2) $|f = e \otimes m\rangle = \stackrel{\bullet}{|} - \stackrel{\bullet}{?} \text{spin } 1/2.$ (3) $|m = e \otimes f\rangle = \times - \otimes \text{spin } 0.$ (4) $|1\rangle = \times + \otimes \text{spin } 0.$

• The type-1 excitation is the tirivial excitation, that can be created by local operators.

The type-e, type-m, and type-f excitations are non-tirivial excitation, that cannot be created by local operators.

- 1, *e*, *m* are bosons and *f* is a fermion. *e*,*m*, and *f* have π mutual statistics between them.
- Fusion rule:

 $e \otimes e = 1;$ $f \otimes f = 1;$ $m \otimes m = 1;$

- $e \otimes m = f$; $f \otimes e = m$; $m \otimes f = e$;
- $1 \otimes e = e;$ $1 \otimes m = m;$ $1 \otimes f = f;$

Physical properties of Z_2 gauge theory

- = Physical properties of Z_2 topological order
- Z₂-charge (a representatiosn of Z₂) and Z₂-vortex (π-flux) as two bosonic point-like excitations.
- Z_2 -charge and Z_2 -vortex bound state \rightarrow a fermion (f), since Z_2 -charge and Z_2 -vortex has a π mutual statistics between them (charge-1 around flux- π).
- Z_2 -charge, Z_2 -vortex, and their bound state has a π mutual statistics between them.
- Z_2 -charge $\rightarrow e$, Z_2 -vortex $\rightarrow m$, bound state $\rightarrow f$.
- Z_2 gauge theory on torus also has 4 degenerate ground states

Emergence of fractional spin and semion statistics

Consider another string wave function:

- End of string wave function: $|\text{end}\rangle = [+c] + c + c + \cdots$
- 360° rotation: $\stackrel{\bullet}{|} \rightarrow \stackrel{\bullet}{?}$ and $\stackrel{\bullet}{?} = -\stackrel{\bullet}{?} \rightarrow -\stackrel{\bullet}{|}: R_{360^{\circ}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- Types of topological excitations: (1) $|s_{+}\rangle = |+i^{\circ}\rangle$ spin $\frac{1}{4}$. (2) $|s_{-}\rangle = |-i^{\circ}\rangle$ spin $-\frac{1}{4}$ (3) $|m = s_{-} \otimes s_{+}\rangle = \times - \otimes$ spin 0. (4) $|1\rangle = \times + \otimes$ spin 0.
- double-semion topological order = $U^2(1)$ Chern-Simon gauge theory $L(a_\mu) = \frac{2}{4\pi} a_\mu \partial_\nu a_\lambda \epsilon^{\mu\nu\lambda} - \frac{2}{4\pi} \tilde{a}_\mu \partial_\nu \tilde{a}_\lambda \epsilon^{\mu\nu\lambda}$

Emergence of fractional spin and semion statistics

Consider another string wave function:

- End of string wave function: $|\text{end}\rangle = |+c|^{\bigcirc} c|^{\bigcirc} + \cdots$
- 360° rotation: $\stackrel{\bullet}{|} \rightarrow \stackrel{\bullet}{?}$ and $\stackrel{\bullet}{?} = -\stackrel{\bullet}{?} \rightarrow -\stackrel{\bullet}{|}: R_{360^{\circ}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- Types of topological excitations: (1) $|s_{+}\rangle = |+i|^{\circ} \sin \frac{1}{4}$. (2) $|s_{-}\rangle = |-i|^{\circ} \sin -\frac{1}{4}$ (3) $|m = s_{-} \otimes s_{+}\rangle = \times - \otimes \sin 0$. (4) $|1\rangle = \times + \otimes \sin 0$.
- double-semion topological order = $U^2(1)$ Chern-Simon gauge theory $L(a_\mu) = \frac{2}{4\pi} a_\mu \partial_\nu a_\lambda \epsilon^{\mu\nu\lambda} - \frac{2}{4\pi} \tilde{a}_\mu \partial_\nu \tilde{a}_\lambda \epsilon^{\mu\nu\lambda}$
- \bullet Two string lqiuids \rightarrow Two topological orders:

 $\label{eq:22} \frac{Z_2 \ topological \ order \ {\sf Read-Sachdev \ PRL \ 66, \ 1773 \ (91), \ Wen \ PRB \ 44, \ 2664 \ (91), \ Moessner-Sondhi \ PRL \ 86 \ 1881 \ (01) \ and \ double-semion \ topo. \ order \ {\sf Freedman} \ etal \ cond-mat/0307511, \ Levin-Wen \ cond-mat/0404617 \ double-semion \ double-s$

Xiao-Gang Wen

Lattice Hamiltonians to realize Z_2 topological order

 Frustrated spin-1/2 model on square lattice (slave-particle meanfield theory) Read Sachdev, PRL 66 1773 (91); Wen, PRB 44 2664 (91).

$$H = J \sum_{nn} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j + J' \sum_{nnn} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$$

• Dimer model on triangular lattice (Mont Carlo numerics)

Moessner Sondhi, PRL 86 1881 (01)

Why dimmer liquid has topological order

- Dimmer liquid \sim string liquid:
- Non-bipartite lattice: unoritaded string \rightarrow Z_2 topological order $=\!Z_2$ gauge theory
- Bipartite lattice: oriented string ightarrow U(1) gauge theory
- Which local Hamiltonians can realize the following string wavefunctions:
 - $|\Phi_{\text{loops}}^{Z_2}\rangle = \sum \left|\Im \Diamond \circ \rangle\right\rangle$

Toric-code model: Z_2 topological order, Z_2 gauge theory

Local Hamiltonian enforces local rules on any lattice: $\hat{P}\Phi_{str} = 0$ $\Phi_{str} (\square) - \Phi_{str} (\square) = \Phi_{str} (\square) - \Phi_{str} (\square) = 0$

• The Hamiltonian to enforce the local rules:

Kitaev quant-ph/9707021

$$H = -U\sum_{I} \hat{Q}_{I} - g\sum_{p} \hat{F}_{p}, \quad \hat{Q}_{I} = \prod_{\text{legs of } I} \sigma_{i}^{z}, \quad \hat{F}_{p} = \prod_{\text{edges of } p} \sigma_{i}^{x}$$

• The Hamiltonian is a sum of commuting operators $[\hat{F}_{p}, \hat{F}_{p'}] = 0$, $[\hat{Q}_{l}, \hat{Q}_{l'}] = 0$, $[\hat{F}_{p}, \hat{Q}_{l}] = 0$. $\hat{F}_{p}^{2} = \hat{Q}_{l}^{2} = 1$

• Ground state $|\Psi_{\text{grnd}}\rangle$: $\hat{F}_{p}|\Psi_{\text{grnd}}\rangle = \hat{Q}_{I}|\Psi_{\text{grnd}}\rangle = |\Psi_{\text{grnd}}\rangle$ $\rightarrow (1 - \hat{Q}_{I})\Phi_{\text{grnd}} = (1 - \hat{F}_{p})\Phi_{\text{grnd}} = 0.$

Physical properties of exactly soluble model

A string picture

- The $-U \sum_{I} \hat{Q}_{I}$ term enforces closed-string ground state.
- \hat{F}_{p} adds a small loop and deform the strings \rightarrow

permutes among the loop states $\left| \bigotimes \bigotimes \bigotimes \bigotimes \right\rangle \to$ Ground states

- $|\Psi_{\mathsf{grnd}}\rangle = \sum_{\mathsf{loops}} \left| \bigotimes \bigotimes \bigotimes \right\rangle \rightarrow \mathsf{highly entangled}$
- There are four degenerate ground states $\alpha = ee, eo, oe, oo$

• On genus g surface, ground state degeneracy $D_{\sigma} = 4^{g}$

Xiao-Gang Wen

Highly entangled quantum many-body systems - Topological order

Exactly soluble model on any graph

• On every link *i*, we degrees of freedom \uparrow, \downarrow .

$$H = -U \sum_{\mathbf{v}} \hat{Q}_{\mathbf{v}} - g \sum_{\mathbf{f}} \hat{F}_{\mathbf{f}},$$
$$\hat{Q}_{\mathbf{v}} = \prod_{\text{legs of } \mathbf{v}} \sigma_{\mathbf{e}}^{z}, \quad \hat{F}_{\mathbf{f}} = \prod_{\text{edges of } \mathbf{f}} \sigma_{\mathbf{e}}^{x}$$

The Hamiltonian is a sum of commuting operators $[\hat{F}_{f}, \hat{F}_{p'}] = 0$, $[\hat{Q}_{v}, \hat{Q}_{v'}] = 0$, $[\hat{F}_{f}, \hat{Q}_{v}] = 0$. $\hat{F}_{f}^{2} = \hat{Q}_{v}^{2} = 1$

- Identities $\otimes_{\mathbf{v}} \hat{Q}_{\mathbf{v}} = 1, \otimes_{\mathbf{f}} \hat{F}_{\mathbf{f}} = 1.$
- Ground state degeneracy (GSD) Number of degrees of freedom = E. Number of constraints = V + F - 2. $GSD = 2^{E}/2^{V+F-2} = 2^{2-\chi}, \chi = V - E + F$ – Euler characteristic.
- GSD on genus g Riemann surface Σ_g : from $\chi(\Sigma_g) = 2 2g$ we obtain $GSD = 2^{2g}$. In fact, the degeneracy of any eigenstates is 2^g .

The string operators and topological excitations

- Topological excitations: e-type: $\hat{Q}_{l} = 1 \rightarrow \hat{Q}_{l} = -1$ *m*-type: $\hat{F}_{p} = 1 \rightarrow \hat{F}_{p} = -1$
- *e*-type and *m*-type excitations cannot be created alone due to identiy: $\prod_{l} \hat{Q}_{l} = \prod_{p} \hat{F}_{p} = 1$

The string operators and topological excitations

- Topological excitations: e-type: $\hat{Q}_{l} = 1 \rightarrow \hat{Q}_{l} = -1$ m-type: $\hat{F}_{p} = 1 \rightarrow \hat{F}_{p} = -1$
- *e*-type and *m*-type excitations cannot be created alone due to identiy: $\prod_{l} \hat{Q}_{l} = \prod_{p} \hat{F}_{p} = 1$

- Type-*e* string operator: $W_e = \prod_{\text{string}} \sigma_i^x$
- Type-*m* string operator: $W_m = \prod_{\text{string}^*} \sigma_i^z$
- Type-*f* string operator: $W_f = \prod_{\text{string}} \sigma_i^x \prod_{\text{legs}} \sigma_i^z$
- $[H, W_e^{\text{close}}] = [H, W_m^{\text{close}}] = [H, W_f^{\text{closed}}] = 0.$
 - \rightarrow Closed strings cost no energy (\rightarrow higher symmetry)
- $[\hat{Q}_{l}, W_{e}^{\text{open}}] \neq 0 \rightarrow W_{e}^{\text{open}}$ flip $\hat{Q}_{l} \rightarrow -\hat{Q}_{l}$, $[\hat{F}_{p}, W_{m}^{\text{open}}] \neq 0 \rightarrow W_{m}^{\text{open}}$ flip $\hat{F}_{p} \rightarrow -\hat{F}_{p}$ An open-string creates a pair of topo. excitations at its ends

Three types of topological excitations and their fusion

- Type-*e* string operator $W_e = \prod_{\text{string}} \sigma_i^{X}$
- Type-*m* string operator $W_m = \prod_{\text{string}^*} \sigma_i^z$
- Type-*f* string operator $W_f = \prod_{\text{string}} \check{\sigma}_i^x \prod_{\text{legs}} \sigma_i^z$
- Fusion algebra of string operators $W_e^2 = W_m^2 = W_e^2 = W_e W_m W_e = 1$ when strings are parallel
- Fusion of topo. excitations:
 e-type. e × e = 1
 m-type. m × m = 1
 f-type = e × m
- 4 types of excitations: 1, e, m, f

• Statistical distribution

Boson: $n_b = \frac{1}{e^{\epsilon/k_B T} - 1}$ Fermion: $n_f = \frac{1}{e^{\epsilon/k_B T} + 1}$ They are just properties of non-interacting bosons or fermions

• Pauli exclusion principle

Only works for non-interacting bosons or fermions

• Symmtric/anti-symmetric wave function.

For identical particles $|x, y\rangle$ and $|y, x\rangle$ are just differnt names of same state. A generic state $\sum_{x,y} \psi(x, y) | x, y\rangle$ is always described symmetric wave function $\psi(x, y) = \psi(y, x)$ regardless the statistics of the identical particles.

- **Commuting/anti-commuting operators** Boson: $[a_x, a_y] = 0$ Fermiion: $\{c_x, c_y\} = 0$
- C-number-field/Grassmann-field

Boson: $\phi(x)$ Fermion: $\psi(x)$

"Exchange" statistics and Braid group

- Quantum statistics is defined via phases induced by exchanging identical particles.
- Quantum statistics is not defined via exchange, but via braiding. Yong-Shi Wu, PRL **52** 2103 (84)
- Braid group:

"Exchange" statistics and Braid group

- Quantum statistics is defined via phases induced by exchanging identical particles.
 Quantum statistics is
- Quantum statistics is not defined via exchange, but via braiding.
 Yong-Shi Wu, PRL 52 2103 (84)
- Braid group:
- Representations of braid group (not permutation group) define quantum statistics:
- Trivial representation of braid group \rightarrow Bose statistics.

- higher dimensional representation of braid group \rightarrow non-Abelian statistics \rightarrow non-Abelian anyon.

Wen 91; More-Read 91

KX KX KX KX

Statistics of ends of strings

• The statistics is determined by particle hopping operators

 An open string operator is a hopping operator of the 'ends'. The algebra of the open string op. determines the statistics.

• For type-*e* string: $t_{ba} = \sigma_1^x$, $t_{cb} = \sigma_3^x$, $t_{bd} = \sigma_2^x$ We find $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$ **The ends of type-***e* string are bosons

• For type-*f* strings: $t_{ba} = \sigma_1^{\times}$, $t_{cb} = \underline{\sigma_3^{\times}}\sigma_4^z$, $t_{bd} = \sigma_2^{\times}\underline{\sigma_3^z}$ We find $t_{bd}t_{cb}t_{ba} = -t_{ba}t_{cb}t_{bd}$ The ends of type-*f* strings are fermions

Topological ground state degeneracy and code distance

• When strings cross, $W_e W_m = (-)^{\# \text{ of } \text{ cross}} W_m W_e$

 \rightarrow 4^g degeneracy on genus g surface

 \rightarrow Topological degneracy

Degeneracy remain exact for any perturbations localized in a finite region.

Topological ground state degeneracy and code distance

• When strings cross, $W_e W_m = (-)^{\# \text{ of } \text{cross}} W_m W_e$

 \rightarrow 4^g degeneracy on genus g surface

 \rightarrow Topological degneracy

Degeneracy remain exact for any perturbations localized in a finite region.

- The above degenerate ground states form a "code", which has a large code distance of order *L* (the size of the system).
- Two states $|\psi\rangle$ and $|\psi'\rangle$ that can be connected by first-order local perturbation δH : $\langle \psi' | \delta H | \psi \rangle > O(|\delta H|), \quad L \to \infty$ \rightarrow code distance = 1.

Two states $|\psi\rangle$ and $|\psi'\rangle$ that can be connected by n^{th} -order local perturbation \rightarrow code distance = n.

• Symmetry breaking ground states in *d*-dim have code distance $\sim L^d$ respected to symmetry preserving perturbation. code distance ~ 1 respected to symmetry breaking perturbation.

Higher symmetry

• The toric code model has higher symmetry (1-symmetry), whose symmetry transformation is generated the loop operators W_e^{loop} and W_m^{loop} :

 $HW_e(S^1) = W_e(S^1)H, \qquad HW_m(S^1) = W_m(S^1)H.$

for any loops S^1 . If the transformation is *n*-dimensional, the symmetry is (d - n)-symmetry, in *d*-dimensional space. The transformation is *d*-dimensional for the usual global symmetry, which is a 0-symmetry.

• Charged operator (for Abelian symmetry): $WO_{charged} = e^{i\varphi}O_{charged}W$

For U(1) symmetry, $\varphi = q\theta$ if W generate θ -rotation. For Z_2 symmetry, $\varphi = \pi$ if W is the generator.

- W_m (open-string) is the charged operators for the $W_e(S^1)$ 1-symmetry:

 $W_e(S^1)W_m$ (open-string) = $\pm W_m$ (open-string) $W_e(S^1)$.

Spontaneous breaking of higher symmetry

- Definition: A (higher) symmetry is spontaneously broken if the symmetry transformations have non-trivial actions on the ground states, *ie* is not proportional to an identity operator $W \neq e^{i\varphi}$ id in the ground state subspace, for any closed space. $\Delta \rightarrow finite gap$
- The toric code model has a W_e 1-symmetry (Z_2^e 1-symmetry). Its ground states spontaneously breaks the Z_2^e 1-symmetry.
- The toric code model has a W_m 1-symmetry (Z_2^m 1-symmetry). Its ground states spontaneously breaks the Z_2^m 1-symmetry.
- Spondtaneous breaking of higher symmetry \rightarrow topological order But, topological order \neq Spondtaneous breaking of higher symmetry

• The toric code model has a $Z_2^e \lor Z_2^m$ 1-symmetry. Its ground states must spontaneously break the $Z_2^e \lor Z_2^m$ 1-symmetry \rightarrow **Enforaced spontaneous symmetry breaking** when ends of the symmetry transformation operators (*ie* the strings W_e , W_m) have non-trivial (mutual) statistics. Xiao-Gang Wen

Toric-code model in terms of closed string operators

• Toric-code Hmailtonian

$$H = -U \sum_{I} W_m^{ ext{closed}} - g \sum_{p} W_e^{ ext{closed}}$$

• A new Hamitonian

$$H = -U \sum_{I} W_{m}^{\text{closed}} - g \sum_{P} W_{f}^{\text{closed}}$$

which realizes the same Z_2 topological order.

Xiao-Gang Wen

Double-semion model: taking square root of fermion string

Local rules:

Levin-Wen cond-mat/0404617

$$\Phi_{\mathsf{str}}\left(\blacksquare\right) = \Phi_{\mathsf{str}}\left(\blacksquare\right), \ \Phi_{\mathsf{str}}\left(\blacksquare\right) = -\Phi_{\mathsf{str}}\left(\blacksquare\right)$$

• The Hamiltonian to enforce the local rules:

Double-semion model

The action of operator *F̂_p* = (∏_{edges of p} σ_j^x)(-∏_{legs of p} i^{1-σ_j²/2}):
(1) flip string around the loop;
(2) add a phase -(i[#] of strings attached to the loop), which is ±1 in the closed-string subspace.

Combine the above two in the closed-string subspace: \hat{F}_p adds a loop and a sign $(-)^{\text{change in } \# \text{ of loops}}$

This allows us to conclude:

- \hat{F}_{p} is hermitian in the closed-string subspace.
- $\hat{F}_{p}\hat{F}_{p'} = \hat{F}_{p'}\hat{F}_{p}$ in the closed-string subspace.
- Ground state wave function $\Phi(X) = (-)^{\# \text{ of loops}}$.

Dressed string operators and topological excitations

- To create a pair of topological excitations, we need find closed string operators that commute with \hat{Q}_{I} and \hat{F}_{p} terms in the Hamiltonian.
- We find 4 types of string operators

 $W_1 = \mathrm{id}.$ $\prod^{-} (-)^{s_l}$ $W_{s_1} = \prod \sigma_i^{\times} \prod i^{\frac{1-\sigma_j^2}{2}}$ $i \in \text{str}$ R-legs of str L-vertices of str $W_{s_2} = \prod \sigma_i^{x} \prod (-i)^{\frac{1-\sigma_i^{z}}{2}} \prod (-)^{s_l} = W_{s_1} W_b$ $i \in \text{str}$ R-legs of str L-vertices of str $W_b = \prod \sigma_i^z = W_m,$ where $s_l = \frac{1}{4}(1 - \sigma_{l-}^z)(1 + \sigma_{l+}^z)$ R-legs of str Levin-Wen cond-mat/0404617

-vertex-

R-legc

Commutators of dressed string operators W_{s_1}

Highly entangled quantum many-body systems – Topological order

Commutators of dressed string operators W_{s_1}

Xiao-Gang Wen

Highly entangled quantum many-body systems – Topological order

Commutators of dressed string operators W_{s_1}

$$\begin{split} & \left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{2}^{x}\sigma_{1}^{x}(-)^{\frac{(1-\sigma_{2}^{z})(1+\sigma_{1}^{z})}{4}}\right] \\ &= \left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{2}^{x}\sigma_{1}^{x}(-)^{\frac{(1+\sigma_{2}^{z})(1-\sigma_{1}^{z})}{4}}(-)^{\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}}\right] \\ &= \left[\sigma_{2}^{x}\sigma_{1}^{x}(-)^{\frac{(1-\sigma_{2}^{z})(1+\sigma_{1}^{z})}{4}}\right]\left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right](-)^{\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}} \\ &= \left[\sigma_{1}^{x}\sigma_{3}^{x}(-)^{\frac{(1-\sigma_{1}^{z})(1+\sigma_{3}^{z})}{4}}\right]\left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right]\sigma_{1}^{z}\sigma_{2}^{z} \end{split}$$

Overlapped strings are in opposite direction

- Different loops of W_{s_1} -string operators commute in the closed string subspace, shown by collecting the "phase factors" $\sigma_i^z = Z_i$.

- Loops of W_{s_1} -string operators commute with \hat{Q}_l .

We can use \hat{Q}_l and loops of W_{s_1} -string operators to construct a soluble Hamiltonian, and which is what we have before.

Xiao-Gang Wen

Highly entangled quantum many-body systems - Topological order

Statistics of ends of dressed strings

• The statistics is determined by particle hopping operators Levin-Wen cond-mat/0302460:

• For dressed strings: $t_{ba} = \sigma_1^{\chi} i^{\frac{1-\sigma_2^{\chi}}{2}}$, $t_{cb} = \sigma_3^{\chi}$, $t_{bd} = \sigma_2^{\chi}(-)^{\frac{(1-\sigma_2^{\chi})(1+\sigma_3^{\chi})}{4}}$ We find $t_{bd} t_{cb} t_{ba} = -i t_{ba} t_{cb} t_{bd}$ via

$$[\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{z}})(1+\sigma_3^{\mathsf{z}})}{4}}][\sigma_3^{\mathsf{x}}][\sigma_1^{\mathsf{x}}\mathrm{i}^{\frac{1-\sigma_2^{\mathsf{z}}}{2}}] = [\sigma_1^{\mathsf{x}}\mathrm{i}^{\frac{1-\sigma_2^{\mathsf{z}}}{2}}][\sigma_3^{\mathsf{x}}][\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{z}})(1+\sigma_3^{\mathsf{z}})}{4}}](-\mathrm{i})$$

The end of string is a semion.

Xiao-Gang Wen
The computation

$$\begin{split} & [\sigma_2^x(-)^{\frac{(1-\sigma_2^z)(1+\sigma_3^z)}{4}}][\sigma_3^x][\sigma_1^x i^{\frac{1-\sigma_2^z}{2}}] \\ &= [\sigma_2^x(-)^{\frac{(1-\sigma_2^z)(1-\sigma_3^z)}{4}}(-)^{\frac{\sigma_3^z(1-\sigma_2^z)}{2}}][\sigma_3^x][\sigma_1^x i^{\frac{1+\sigma_2^z}{2}} i^{-\sigma_2^z}] \\ &= [\sigma_1^x i^{\frac{1-\sigma_2^z}{2}}][\sigma_3^x][\sigma_2^x(-)^{\frac{(1-\sigma_2^z)(1+\sigma_3^z)}{4}}] \ (-)^{-\frac{\sigma_3^z(1-\sigma_2^z)}{2}} i^{-\sigma_2^z} \\ &= [\sigma_1^x i^{\frac{1-\sigma_2^z}{2}}][\sigma_3^x][\sigma_2^x(-)^{\frac{(1-\sigma_2^z)(1+\sigma_3^z)}{4}}] \ (-i) \end{split}$$

3D Z_2 topological order on Cubic lattice

• Untwisted-string model: $H = -U \sum_{l} Q_{l} - g \sum_{p} F_{p}$

$$Q_{I} = \prod_{i \text{ next to } I} \sigma_{i}^{z}, \quad F_{p} = \sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}$$

Can get 3D fermions for free (almost) Levin-Wen cond-mat/0302460

Just add a little twist

• Twisted-string model: $H = U \sum_{I} Q_{I} - g \sum_{p} F_{p}$

$$F_{\boldsymbol{p}} = \sigma_1^x \sigma_2^x \sigma_3^x \sigma_4^x \sigma_5^z \sigma_6^z$$

String operators and Z_2 charges Levin-Wen cond-mat/0302460

• A pair of Z₂ charges is created by an open string operator which commute with the Hamiltonian except at its two ends. Strings cost no energy and is unobservable.

In untwisted-string model – untwisted-string operator

 $\sigma_{\mathbf{i}_1}^{\mathbf{x}}\sigma_{\mathbf{i}_2}^{\mathbf{x}}\sigma_{\mathbf{i}_3}^{\mathbf{x}}\sigma_{\mathbf{i}_4}^{\mathbf{x}}\dots$

• In twisted-string model - twisted-string operator

$$(\sigma_{i_1}^x \sigma_{i_2}^x \sigma_{i_3}^x \sigma_{i_4}^x ...) \prod_{i \text{ on crossed legs of } C} \sigma_i^z$$

Xiao-Gang Wen

Twisted string operators commute $[W_1, W_2] = 0$

$$W_1 = (\sigma_1^x \sigma_2^z \sigma_3^x \sigma_4^x \sigma_5^x \sigma_6^z \sigma_7^x) [\boldsymbol{\sigma}_d^z \sigma_e^z \sigma_f^z] W_2 = (\sigma_h^x \sigma_c^x \sigma_5^x \sigma_4^x \sigma_3^x \boldsymbol{\sigma}_d^x \sigma_g^x) [\boldsymbol{\sigma}_6^z \sigma_e^z]$$

• We also have $[W, Q_I] = 0$ for closed string operators W, since W only create closed strings.

Statistics of ends of twisted strings

- An open string operator is a hopping operator of the 'ends'. The algebra of the open string op. determine the statistics.
- For untwisted-string model: $t_{ba} = \sigma_2^x$, $t_{cb} = \sigma_3^x$, $t_{bd} = \sigma_1^x$ We find $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$ The ends of untwisted-string are bosons
- For twisted-string model: $t_{ba} = \sigma_4^z \sigma_1^z \sigma_2^x$, $t_{cb} = \sigma_5^z \sigma_3^x$, $t_{bd} = \sigma_1^x$ We find $t_{bd} t_{cb} t_{ba} = -t_{ba} t_{cb} t_{bd}$ **The ends of twisted-string are fermions**

Xiao-Gang Wen

String-net liquid

Ground state:

not allow a string to end Φ_{str}

• String-net liquid: allow three strings to join, but do

Levin-Wen cond-mat/0404617

• The dancing rule :
$$\Phi_{str} (\Box) = \Phi_{str} (\Box)$$

 $\Phi_{str} (\heartsuit) = a \Phi_{str} (\heartsuit) + b \Phi_{str} (\heartsuit)$
 $\Phi_{str} (\heartsuit) = c \Phi_{str} (\heartsuit) + d \Phi_{str} (\heartsuit)$

 $\frac{1}{2}$

- The above is a relation between two orthogonal basis: two local resolutions of how four strings join (quantum geometry)

and
$$(a, b) = orthogonal matrix$$

 $a^2 + b^2 = 1$, $ac + bd = 0$, $ca + db = 0$, $c^2 + d^2 = 1$

Apply reconnection rule twice:

$$\Phi_{\rm str}\left(\bigotimes\right) = a(a\Phi_{\rm str}\left(\bigotimes\right) + b\Phi_{\rm str}\left(\bigotimes\right)) + b(c\Phi_{\rm str}\left(\bigotimes\right) + d\Phi_{\rm str}\left(\bigotimes\right))$$
$$\Phi_{\rm str}\left(\bigotimes\right) = c(a\Phi_{\rm str}\left(\bigotimes\right) + b\Phi_{\rm str}\left(\bigotimes\right)) + d(c\Phi_{\rm str}\left(\bigotimes\right) + d\Phi_{\rm str}\left(\bigotimes\right))$$

We find

 $a^{2} + bc = 1$, ab + bd = 0, ac + dc = 0, $bc + d^{2} = 1$

 $\rightarrow d = -a, \quad b = c, \quad a^2 + b^2 = 1.$

More self consistency condition

• Rewrite the string reconnection rule $(0 \rightarrow \text{no-string}, 1 \rightarrow \text{string})$

$$\Phi\left(\bigvee_{m=1}^{i} \bigvee_{l}^{j}\right) = \sum_{n=0}^{1} F_{kln}^{ijm} \Phi\left(\bigvee_{l}^{i} \bigvee_{l}^{j}\right), \quad i, j, k, l, m, n = 0, 1$$

The 2-by-2 matrix $F_{kl}^{ij} \rightarrow (F_{kl}^{ij})_n^m$ is unitary. We have

$$F_{000}^{000} \land \langle \downarrow = 1$$

$$F_{111}^{000} \land \langle \downarrow = (F_{100}^{011} \land \downarrow)^* = (F_{010}^{101} \land \downarrow)^* = F_{001}^{110} \land \langle \downarrow = 1$$

$$F_{011}^{011} \land \downarrow = (F_{101}^{101} \land \downarrow)^* = 1$$

$$F_{1111}^{011} \land \downarrow = (F_{1111}^{101} \land \downarrow)^* = F_{0111}^{111} \land \downarrow = (F_{101}^{111} \land \downarrow)^* = 1$$

$$F_{110}^{110} \land \langle \downarrow = a$$

$$F_{110}^{110} \land \langle \downarrow = b = (F_{110}^{111} \land \downarrow)^* = c^*$$

$$F_{1111}^{111} \land \langle \downarrow = d = -a,$$

More self consistency condition

• The two paths should lead to the same relation

$$\sum_{t} F_{knt}^{ijm} F_{lps}^{itn} F_{lsq}^{jkt} = F_{lpq}^{mkn} F_{qps}^{ijm}$$

Such a set of non-linear algebraic equations is the famous pentagon identity.

Xiao-Gang Wen

The pentagon identity

• $i, j, k, l, p, m, n, q, s = 0, 1 \rightarrow$ $2^9 = 512+$ non-linear equations with $2^6 = 64$ unknowns.

• Solving the pentagon identity: choose i, j, k, l, p = 1 $\sum_{t=0,1} F_{1nt}^{11m} F_{11s}^{1tn} F_{1sq}^{11t} = F_{11q}^{m1n} F_{q1s}^{11m}$ choose n, q, s = 1, m = 0 $\sum_{t=0,1} F_{11t}^{110} F_{111}^{1t1} F_{111}^{11t} = F_{111}^{011} F_{111}^{110}$ $\rightarrow a \times 1 \times b + b \times (-a) \times (-a) = 1 \times b$ $\rightarrow a + a^2 = 1, \rightarrow a = (\pm \sqrt{5} - 1)/2$

Since $a^2 + b^2 = 1$, we find

 $a = (\sqrt{5} - 1)/2 \equiv \gamma, \quad b = \sqrt{a} = \sqrt{\gamma}$

String-net dancing rule

• The dancing rule : $\Phi_{str} \left(\square \right) = \Phi_{str} \left(\square \right)$ $\Phi_{str} \left(\bigotimes \right) = \gamma \Phi_{str} \left(\bigotimes \right) + \sqrt{\gamma} \Phi_{str} \left(\bigotimes \right)$ $\Phi_{str} \left(\bigotimes \right) = \sqrt{\gamma} \Phi_{str} \left(\bigotimes \right) - \gamma \Phi_{str} \left(\bigotimes \right)$

62 / 69

String-net dancing rule

• The dancing rule :
$$\Phi_{str} \left(\square \right) = \Phi_{str} \left(\square \right)$$

 $\Phi_{str} \left(\bigotimes \right) = \gamma \Phi_{str} \left(\bigotimes \right) + \sqrt{\gamma} \Phi_{str} \left(\bigotimes \right)$
 $\Phi_{str} \left(\bigotimes \right) = \sqrt{\gamma} \Phi_{str} \left(\bigotimes \right) - \gamma \Phi_{str} \left(\bigotimes \right)$

• Topological excitations:

For fixed 4 ends of string-net on a sphere S^2 , how many locally indistinguishable states are there?

String-net dancing rule

• The dancing rule :
$$\Phi_{str} \left(\square \right) = \Phi_{str} \left(\square \right)$$

 $\Phi_{str} \left(\bigotimes \right) = \gamma \Phi_{str} \left(\bigotimes \right) + \sqrt{\gamma} \Phi_{str} \left(\bigotimes \right)$
 $\Phi_{str} \left(\bigotimes \right) = \sqrt{\gamma} \Phi_{str} \left(\bigotimes \right) - \gamma \Phi_{str} \left(\bigotimes \right)$

• Topological excitations:

For fixed 4 ends of string-net on a sphere S², how many locally indistinguishable states are there? **four states?**

Topological degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the string-net in a particular order:

 \rightarrow There are only two locally indistinguishable states = a qubit

This is a quantum memory that is robust angainst any environmental noise.

 \rightarrow The defining character of topological order: a material with robust quantum memory.

$\mathsf{Direct} \mathsf{ sum} \oplus = \mathsf{accidental} \mathsf{ degeneracy}$

Consider two spin-¹/₂ particles.
 If we view the two particle as one particle spin-¹/₂ ⊗ spin-¹/₂ =?
 What is the spin of the bound state?

- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

$$\operatorname{spin} - \frac{1}{2} \otimes \operatorname{spin} - \frac{1}{2} = \operatorname{spin} - 0 \oplus \operatorname{spin} - 1, \quad 2 \times 2 = 1 + 3.$$

 \oplus is the **direct sum** of Hilbert space in mathematics and the **accidental degeneracy** in physics.

$\mathsf{Direct} \mathsf{ sum} \oplus = \mathsf{accidental} \mathsf{ degeneracy}$

- Consider two spin-¹/₂ particles.
 If we view the two particle as one particle spin-¹/₂ ⊗ spin-¹/₂ =?
 What is the spin of the bound state?
- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

$$\operatorname{spin} - \frac{1}{2} \otimes \operatorname{spin} - \frac{1}{2} = \operatorname{spin} - 0 \oplus \operatorname{spin} - 1, \quad 2 \times 2 = 1 + 3.$$

 \oplus is the **direct sum** of Hilbert space in mathematics and the **accidental degeneracy** in physics.

• Fusion of the ends of string-net φ :

 $\varphi \otimes \varphi = \mathbf{1} \oplus \varphi, \quad \varphi \otimes \varphi \otimes \varphi = (\mathbf{1} \oplus \varphi) \otimes \varphi = \mathbf{1} + 2\varphi.$

A bound state of 2 φ 's = an accidentical degeneracy of an **1** and a φ . A bound state of 3 φ 's = an accidentical degeneracy of an **1**, a φ , and a φ .

Compute the degeneracy of excitations on S^2

Consider **n** topological excitations (string ends) on a sphere. What is the ground state degeneracy? (GSD = 0 means not allowed)

- Consider the loop liquid (*ie* the Z_2 topological order).
- Trivial particle $\mathbf{1} \rightarrow \mathbf{a}$ state with no string ends, allowed $GSD = \mathbf{1}$.
- One *e* particles \rightarrow a state with 1 string ends, not allowed *GSD* = 0.
- Two *e* particles \rightarrow a state with 2 string ends, allowed *GSD* = 1.
- Three *e* particles \rightarrow a state w/ 3 string ends, not allowed GSD = 0.
- Fusion $e \otimes e = 1$, $e \otimes e \otimes e = e \rightarrow \text{GSD} = \#$ of 1's.

Compute the degeneracy of excitations on S^2

Consider **n** topological excitations (string ends) on a sphere. What is the ground state degeneracy? (GSD = 0 means not allowed)

- Consider the loop liquid (*ie* the Z_2 topological order).
- Trivial particle $\mathbf{1} \rightarrow$ a state with no string ends, allowed GSD = 1.
- One *e* particles \rightarrow a state with 1 string ends, not allowed *GSD* = 0.
- Two *e* particles \rightarrow a state with 2 string ends, allowed *GSD* = 1.
- Three *e* particles \rightarrow a state w/ 3 string ends, not allowed *GSD* = 0.
- Fusion $e \otimes e = 1$, $e \otimes e \otimes e = e \rightarrow \text{GSD} = \#$ of 1's.
- Consider the string-net liquid.
- Trivial particle 1 \rightarrow a state with no string ends, allowed GSD=1
- One φ particles \rightarrow a state with 1 string ends, not allowed GSD = 0
- Two arphi particles ightarrow a state with 2 string ends, allowed GSD=1
- Three arphi particles ightarrow a state with 3 string ends, allowed GSD=1
- Fusion $\varphi \otimes \varphi = \mathbf{1} \oplus \varphi$, one allowed state GSD = 1. $\varphi \otimes \varphi \otimes \varphi = \mathbf{1} \oplus \varphi \oplus \varphi$, one allowed state GSD = 1.

65 / 69

Internal degrees of freedom - quantum dimension

• Let D_n be the number of locally indistinguishable states for $n \\ \varphi$ -particles on a sphere. The internal degrees of freedom of φ – quantum dimension – $d = \lim_{n \to \infty} D_n^{1/n}$

$$\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{D_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n}}$$

 $D_n =$ the degeneracy of ground states, $F_n =$ the degeneracy of φ ,

Internal degrees of freedom - quantum dimension

• Let D_n be the number of locally indistinguishable states for $n \\ \varphi$ -particles on a sphere. The internal degrees of freedom of φ – quantum dimension – $d = \lim_{n \to \infty} D_n^{1/n}$

$$\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{D_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n}}$$

 $D_n =$ the degeneracy of ground states, $F_n =$ the degeneracy of φ ,

$$\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} \otimes \varphi = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{F_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n} + D_{n}}$$

 $D_{n+1} = F_n, \ F_{n+1} = F_n + D_n = F_n + F_{n-1}, \ D_1 = 0, \ F_1 = 1.$

The internal degrees of freedom of φ is (spin- $\frac{1}{2}$ electron d = 2)

$$d = \lim_{n \to \infty} F_{n-1}^{1/n} = \frac{1 + \sqrt{5}}{2} = 1.61803398874989 \cdots$$

Double-Fibonacci topological order = double G_2 Chern-Simon theory at level 1

$$\begin{split} L(a_{\mu},\tilde{a}_{\mu}) &= \frac{1}{4\pi} \mathrm{Tr}(a_{\mu}\partial_{\nu}a_{\lambda} + \frac{\mathrm{i}}{3}a_{\mu}a_{\nu}a_{\lambda})\epsilon^{\mu\nu\lambda} \\ &- \frac{1}{4\pi} \mathrm{Tr}(\tilde{a}_{\mu}\partial_{\nu}\tilde{a}_{\lambda} + \frac{\mathrm{i}}{3}\tilde{a}_{\mu}\tilde{a}_{\nu}\tilde{a}_{\lambda})\epsilon^{\mu\nu\lambda} \end{split}$$

 a_{μ} and \tilde{a}_{μ} are G_2 gauge fields.

String-net liquid can also realize a gauge theory of a finite group ${\cal G}$

- Trivial type-0 string \rightarrow trivial represental of G
- Type-*i* string \rightarrow irreducible represental R_i of G
- Triple-string join rule If $R_i \otimes R_j \otimes R_k$ contain trivial representation \rightarrow type-*i* type-*j* type-*k* strings can join.
- String reconnection rule:

$$\Phi\left(\overbrace{m_{l}}^{i}, \overbrace{m_{l}}^{j}\right) = \sum_{n=0}^{1} F_{kln}^{ijm} \Phi\left(\overbrace{m_{l}}^{i}, \overbrace{m_{l}}^{k}\right), \quad i, j, k, l, m, n = 0, 1$$

with F_{kln}^{ijm} given by the 6-j simple of G.

Topo. qubits and topo. quantum computation

 Four fixed Fibonacci anyons on S² has 2-fold topological degeneracy (two locally indistinguishable states)
 → topological qubit

• Exchange two Fibonacci anyons induce a 2 × 2 unitary matrix acting on the topological qubit \rightarrow non-Abelian statistics also appear in $\chi^3_{\nu=2}(z_i)$ FQH state, and the non-Abelian statistics is described by SU₂(3) CS theory Wen PRL 66 802 (91)

 \rightarrow universal **Topo. quantum computation** (via CS theory)

Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant-ph/0001108

Topological order is the natural medium (the "silicon") to do topological quantum computation

Xiao-Gang Wen