Highly entangled quantum many-body systems – SPT order in free fermion systems

Xiao-Gang Wen

https://canvas.mit.edu/courses/11339

Understand (classify) Chern insulators systematically

First, we try to systematically understand (classify) gapped 0+1D free fermion system with U(1) symmetry (fermion number conservation).

ullet 0+1D free fermion system with U(1) symmetry is described by the following many-body Hamiltonian

$$\hat{H} = \sum_{ab} M_{ab} \hat{c}_a^{\dagger} \hat{c}_b$$

It is fully characterized by a $N \times N$ hermitian matrix $M = M^{\dagger}$. So we will concentrate on the matrix M. Eigenvalues of M are called the single-body energy level.

- The many-body ground state has all the negative single-body energy levels filled.
- Gapped $\to M$ has no zero eigenvalue. Space of 0+1D gapped free fermion system with U(1) symmetry $\tilde{\mathcal{C}}_0 =$ space of hermitian matrices with no zero eigenvalue.

Classify gapped phases of 0+1D free fermions with U(1)

- Gapped phases of 0+1D free fermions with U(1) symmetry are labeled by $\pi_0(\tilde{\mathcal{C}}_0) =$ disconnected parts of the space of hermitian matrices with no zero eigenvalue.
- Let \mathcal{C}_0 = the space of hermitian matrices with eigenvalue ± 1 . $\tilde{\mathcal{C}}_0$ and \mathcal{C}_0 are homotopic equivalent (one can deform into the other without closing gap, like "a point \sim a ball"): $\pi_n(\tilde{\mathcal{C}}_0) = \pi_n(\mathcal{C}_0)$ Gapped phases of 0+1D free fermions with U(1) symmetry are labeled by $\pi_0(\mathcal{C}_0)$ = disconnected parts of the space of hermitian matrices with eigenvalues ± 1 .
- Hermitian matrices with eigenvalues ± 1 has a form

$$U_{n+m} \begin{pmatrix} I_n & 0 \\ 0 & -I_m \end{pmatrix} U_{n+m}^{\dagger}$$
. $C_0 = \frac{U(m+n)}{U(m) \times U(n)} \times \{(m,n)\}$ where $m =$ the number of -1 eigenvalues and $n =$ the number of $+1$ eigenvalues.

- For $N = \infty$, $\pi_0(C_0) = \mathbb{Z}$ is labeled an integer. Gapped phases of 0+1D free fermions with U(1) symmetry are classified by integer \mathbb{Z} . The number of the fermions in the ground state. The result is also valid for interacting fermions.

Classify gapped phases of 1+1D free fermions with U(1)

- Start with a large (universal) gapless system, such that other gapless systems can be viewed as partially gapped systems.
- Find all different disconnected ways to gap the universal gapless system.

 Kitaev arXiv:0901.2686
- Consider a gapless 1D free fermion $\epsilon(k) = -\sin k$, which is gapless at k = 0 (right movers) and $k = \pi$ (left movers). Double unit cell (half the Brillouin zone) \rightarrow right movers and left movers are both a k = 0.
- Continuum limit: $M_{\text{one-body}} = \mathrm{i}\sigma^3 \partial_x$ (acting on $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$) or $\hat{H}_{\text{many-body}} = \int \mathrm{d}x \; \psi^\dagger(x) \mathrm{i}\sigma^3 \partial_x \psi(x) \to 1 \mathrm{D}$ Dirac fermion
- Can be gapped by adding the mass term $M_{\text{one-body}} = i\sigma^3 \partial_x + m\sigma^1$.
- Universal gapless system $M_{\text{one-body}} = i\sigma^3 \otimes I_n \partial_x$ acting on $\psi(x)$, a 2n-component wave function.
- Gap by mass term $M_{\text{one-body}} = i\sigma^3 \otimes I_n \partial_x + M$, where $M^{\dagger} = M$, $\sigma^3 \otimes I_n M = -M\sigma^3 \otimes I_n$ and M has no zero eigenvalue

The space of gapped 1 + 1D free fermions w/ U(1) symm.

is the space of the mass matrices that satisfy

$$M^{\dagger}=M, \quad M^2=1, \quad \gamma^1 M=-\gamma^1 M, \quad \gamma^1=\sigma^3\otimes I_n$$

If $i\gamma_1\partial_x + M_{gen}$ has no zero eigenvalue, then we can deform $M_{gen} = M_A + fM_C$ from f = 1 to f = 0, without encounter zero eigenvalue.

• M must have n eigenvalues +1 and n eigenvalues -1.

The space of such M is $\frac{U(2n)}{U(n) \times U(n)}$:

$$M = U_{2n}^{\dagger} (U_n^{\dagger} \oplus \tilde{U}_n^{\dagger}) (\sigma^1 \otimes I_n) (U_n \oplus \tilde{U}_n) U_{2n}$$

- M also must satisfy $\gamma^1 M = -\gamma^1 M$, the unitary rotations U(2n) and $U(n) \times U(n)$ must also keep γ^1 invariant.
- $U_{2n} = U_n \oplus \tilde{U}_n$: $U(2n) \to U(n) \times U(n)$.
- $U(n) \times U(n) = \sigma^0 \otimes U_n$: $U(n) \times U(n) \rightarrow U(n)$
- The space of gapped 1 + 1D free fermion systems with U(1) symmetry

$$C_1 = \frac{U(n) \times U(n)}{U(n)} = U(n), \quad n \to \infty.$$

• $\pi_0[U(n)] = 0 \rightarrow$ There is only one trivial phase for gapped 1 + 1D free fermion systems with U(1) symmetry.

Gapped $d+1\mathsf{D}$ free fermion systems with U(1) symmetry

- d+1D gapless system $H_{\text{one-body}} = i\gamma^i \partial_i + M \ (i=1,\cdots,d)$
- The gapping mass matrix satisfies

$$M^{\dagger} = M, \ M^2 = 1, \ \gamma^i M = -\gamma^i M, \ (\gamma^i)^2 = 1, \ (\gamma^i) = (\gamma^i)^{\dagger}, \ \gamma^i \gamma^j = -\gamma^j \gamma^i$$

- d = 1: $M^{\dagger} = M$, $M^2 = 1$, $\gamma^1 M = -\gamma^1 M$, $\gamma^1 = \sigma^3 \otimes I_n$.
- d=2: $M^{\dagger}=M, M^2=1, \gamma^i M=-\gamma^i M,$ $\gamma^1=\sigma^3\otimes I_n, \gamma^2=\sigma^1\otimes I_n.$
- d = 3: $M^{\dagger} = M$, $M^2 = 1$, $\gamma^i M = -\gamma^i M$, $\gamma^1 = \sigma^3 \otimes \sigma^0 \otimes I_n$, $\gamma^2 = \sigma^1 \otimes \sigma^0 \otimes I_n$, $\gamma^3 = \sigma^2 \otimes \sigma^3 \otimes I_n$.
- For d=3, M has a form $M=\sigma^2\otimes \tilde{M}$, and \tilde{M} satisfy $\tilde{M}^\dagger=M,\ \tilde{M}^2=1,\ \gamma^3\tilde{M}=-\gamma^3\tilde{M},\ \gamma^3=\sigma^3\otimes I_n.$ The space of d=3 gapped sys. = the space of d=1 gapped sys.

The *d*-dimensional gapped phases = the d+2-dimensional gapped phases, for free fermions with U(1) symmetry: $C_d = C_{d+2}$

Symmetry	class	d = 0	1	2	3	4	5	6	7
U(1)	Α	\mathbb{Z}	0	\mathbb{Z} IQH states	0	\mathbb{Z}	0	\mathbb{Z}	0

Edge excitations

2d bulk has even number of 2-component Direc fermions (R-L pairs)

$$\hat{H}_{\text{many-body}} = \int d^2 \mathbf{x} \ \psi^{\dagger}(\mathbf{x}) (i\sigma^3 \partial_{\mathbf{x}} + i\sigma^1 \partial_{\mathbf{y}} + m\sigma^2) \psi(\mathbf{x})$$

$$+ \int d^2 \mathbf{x} \ \Psi^{\dagger}(\mathbf{x}) (i\sigma^3 \partial_{\mathbf{x}} - i\sigma^1 \partial_{\mathbf{y}} + M\sigma^2) \Psi(\mathbf{x})$$

- The Edge excitations are described by the low energy part $H=\mathrm{i}\sigma^i\partial_i+m\sigma^2$ (assuming $M\gg |m|$)
 Two different ways of gapping m>0 and m<0 $\rightarrow n=1$ state and n=0 state. Edge is where m change sign.
- For one edge $(i\sigma^3\partial_x + i\sigma^1\partial_y + y\sigma^2)\psi_2 = i\partial_t\psi_2$ Can be solved by $\psi_2(x,y,t) = c(x,t)\tilde{\psi}_2(y)$, and $(i\sigma^1\partial_y + y\sigma^2)\tilde{\psi}_2(y) = \begin{pmatrix} 0 & i(\partial_y - y) \\ i(\partial_y + y) & 0 \end{pmatrix}\tilde{\psi}_2(y) = 0$. We find $\tilde{\psi}_2^\top = (e^{-\frac{y^2}{2}},0) \rightarrow i\partial_x c = i\partial_t c \ (k = -\omega \text{ left mover})$.
- For the other edge $(i\sigma^3\partial_x + i\sigma^1\partial_y y\sigma^2)\psi_2 = i\partial_t\psi_2$ \rightarrow right mover.

The gapped phases of 4+1D free fermions with U(1) symm

Those phases are classified by \mathbb{Z} (ie labeled by an integer $n \in \mathbb{Z}$)

Edge excitations for n = 1 phase

The bulk low-energy Hamiltonian:
$$H = i\gamma^i\partial_i + m\gamma^5$$
, $i = 1, \dots, 4$
 $\gamma^1 = \sigma^1 \otimes \sigma^3, \gamma^2 = \sigma^2 \otimes \sigma^3, \gamma^3 = \sigma^3 \otimes \sigma^3, \gamma^4 = \sigma^0 \otimes \sigma^1, \gamma^5 = \sigma^0 \otimes \sigma^2$.

Two different ways of gapping m > 0 and $m < 0 \rightarrow n = 0, 1$. Edge is where m change sign.

- +Edge: $[(\sum_{i=1,2,3} i \gamma^i \partial_{x^i}) + \sigma^0 \otimes \sigma^1 \partial_{x^4} + x^4 \sigma^0 \otimes \sigma^2] \psi_4 = i \partial_t \psi_4.$
 - Let $\psi_4(x^i, x^4) = \psi_2(x^i) \otimes \tilde{\psi}_2(x^4)$ and $(i\sigma^1 \partial_{x^4} + x^4 \sigma^2) \tilde{\psi}_2(x^4) = 0$.

We find
$$\tilde{\psi}_2^{\top} = (e^{-\frac{(x^4)^2}{2}}, 0) \rightarrow i\sigma^i \partial_{x^i} \psi_2(x^i) = i\partial_t \psi_2(x^i)$$

- → right-hand massless Weyl fermion
- -Edge: $[(\sum_{i=1,2,3} i \gamma^i \partial_{x^i}) + \sigma^0 \otimes \sigma^1 \partial_{x^4} x^4 \sigma^0 \otimes \sigma^2] \psi_4 = i \partial_t \psi_4.$
 - Let $\psi_4(x^i, x^4) = \psi_2(x^i) \otimes \tilde{\psi}_2(x^4)$ and $(i\sigma^1 \partial_{x^4} x^4 \sigma^2) \tilde{\psi}_2(x^4) = 0$.
 - We find $\tilde{\psi}_2^{\top} = (0, \mathrm{e}^{-\frac{(x^4)^2}{2}}) \to -\mathrm{i}\sigma^i \partial_{x^i} \psi_2(x^i) = \mathrm{i}\partial_t \psi_2(x^i)$
 - → left-hand massless Weyl fermion

Is the handness of 3+1D Weyl fermion absolute?

- Right-hand Weyl fermion: $i\sigma^i\partial_{x^i}\psi_2^R=i\partial_t\psi_2^R$
- Left-hand Weyl fermion: $-i\sigma^i\partial_{x^i}\psi_2^{\bar{L}} = i\partial_t\psi_2^{\bar{L}}$ To give Weyl fermion a mass \rightarrow
- Massive Dirac fermion = Right-hand Weyl \oplus Left-hand Weyl:

$$i\sigma^{i}\otimes\sigma^{3}\partial_{x^{i}}\psi_{4}+m\sigma^{0}\otimes\sigma^{2}\psi_{4}=i\partial_{t}\psi_{4}$$

In the standard model, each family $(e, \mu, q_r, q_g, q_b, \nu)$ has 7 right-hand Weyl fermions and 8 left-hand Weyl fermions, or 8 right-hand Weyl fermions and 7 left-hand Weyl fermions, or 15 right-hand Weyl fermions and 0 left-hand Weyl fermions.

• The transformation $\psi_2^L = i\sigma^2(\psi_2^R)^*$ changes $i\sigma^i\partial_{x^i}\psi_2^R = i\partial_t\psi_2^R$ to $-i\sigma^i\partial_{x^i}\psi_2^L = i\partial_t\psi_2^L$.

$$-\mathrm{i}(\sigma^i)^* \partial_{x^i} (\psi_2^R)^* = \mathrm{i}\partial_t (\psi_2^R)^* \ \to \ -\mathrm{i}\sigma^i \partial_{x^i} \mathrm{i}\sigma^2 (\psi_2^R)^* = \mathrm{i}\partial_t \mathrm{i}\sigma^2 (\psi_2^R)^*$$

Charge conjugation of right-hand Weyl fermion = left-hand Weyl fermion

3+1D massive Majorana fermion

• $\bar{\psi}_4 = \sigma^2 \otimes \sigma^2(\psi_4)^*$ and ψ_4 satisfy the same massive Dirac equation

$$\begin{split} \mathrm{i}\,\sigma^i\otimes\sigma^3\partial_{x^i}\psi_4+m\sigma^0\otimes\sigma^2\psi_4&=\mathrm{i}\,\partial_t\psi_4\\ \mathrm{i}\,(\sigma^i)^*\otimes\sigma^3\partial_{x^i}\psi_4^*-m\sigma^0\otimes(\sigma^2)^*\psi_4^*&=\mathrm{i}\,\partial_t\psi_4^*\\ \mathrm{i}\,\sigma^i\otimes\sigma^3\partial_{x^i}\bar{\psi}_4+m\sigma^0\otimes\sigma^2\bar{\psi}_4&=\mathrm{i}\,\partial_t\bar{\psi}_4 \end{split}$$

If we requires that $\bar{\psi}_4 = \psi_4 \to \text{massive 3+1D Majorana fermion.}$

- 3+1D massless Weyl fermion: 2 complex components
 3+1D massive Dirac fermion: 4 complex components
 3+1D massive Majorana fermion: 4 real = 2 complex components
- Rewrite the EOM of massive 3+1D Majorana fermion

$$\psi_{4} = (\psi_{2}^{R}, \psi_{2}^{L}), \quad \psi_{2}^{L} = i\sigma^{2}(\psi_{2}^{R})^{*}, \quad \psi_{2}^{R} = -i\sigma^{2}(\psi_{2}^{L})^{*}$$

$$i\sigma^{i}\partial_{x^{i}}\psi_{2}^{R} - im\psi_{2}^{L} = i\partial_{t}\psi_{2}^{R}$$

$$-i\sigma^{i}\partial_{x^{i}}\psi_{2}^{L} + im\psi_{2}^{R} = i\partial_{t}\psi_{2}^{L}$$
which is $i\sigma^{i}\partial_{x^{j}}\psi_{2}^{R} + m\sigma^{2}(\psi_{2}^{R})^{*} = i\partial_{x}\psi_{2}^{R}$

which is $i\sigma^i\partial_{x^i}\psi_2^R + m\sigma^2(\psi_2^R)^* = i\partial_t\psi_2^R$.

The right-hand Weyl fermion gains a mass at the cost of U(1) symm. breaking down to Z_2 (EOM not inv. under $\psi_2^R \to e^{i\theta} \psi_2^R$). The electrons in superconductor are Majorana ferions.

U(1) anomaly: realize 3D massless Weyl fermion in 3D

- We can give a massless right-hand Weyl fermion a mass if we break the U(1) symmetry down to Z_2 . \rightarrow
- Non-interacting 4+1D n=1 insulator is trivial without the U(1)symmetry, but non-trivial with the U(1) symmetry.
- For two gapped states of non-interating fermions, existance of a gapped boundary \leftrightarrow existance of a deformation path without closing gap.
- A single 3+1D massless right-hand Weyl fermion with U(1) symmetry is anomalous \rightarrow cannot be realized on a 3+1D lattice if we preserve the U(1) symmetry.
- Can realize 3+1D massless right-hand Weyl fermion on a 3D lattice if we break the U(1)symm. down to Z_2

Massless left-hand Weyl fermion

4+1D n=1 insulator

Massless right-hand Weyl fermion U(1) symmetry anomaly, but no gravitational anomaly

Massive Majorana fermion (supercoducting U(1)–>Z2)

4+1D n=1 insulator

Massless right-hand Weyl fermion

Put the chiral SO(10) GUT on lattice

- In the SO(10) GUT in 3+1D, we have 16 massless right-hand Weyl fermion forming a 16-dim. spinner representation of SO(10).
- Is such GUT anomalous or not?
- Can we put puch such a chiral GUT on a 3+1D lattice? (The long standing chiral fermion problem)
- We have seen that 16 massless right-hand Weyl fermion with $U^{16}(1)$ symmetry cannot be put on 3+1D lattice. But can be put on 3+1Dlattice if we reduce the symmetry to Z_2^{16} .

```
Can we put n massless d + 1D fermions with G symmetry on
d+1D lattice?
                                                 Wen arXiv:1305 1045
```

Yes if (1) there is a mass term that give all fermions a mass (which may break the symmetry G down to G_{Ψ}), and (2) $\pi_n(G/G_{\Psi}) = 0$ for n < d + 2.

- \rightarrow We can put SU(10) GUT on 3+1D lattice.
- The above condition is only sufficient. What is a necessary and sufficient condition?

Spectrum: relation between spaces of gapped states of non-interacting fermions in different dimensions

For two gapped states of non-interating fermions, existance of a gapped boundary \leftrightarrow existance of a deformation path without closing gap.

- Let \mathcal{M}_n be the space of gapped states of non-interacting fermions in n-dimensional space. Let $\mathcal{M}_n(\alpha), \alpha \in \pi_0(\mathcal{M}_n)$ be the α^{th} component. Let $\alpha = 0$ correspond to the trivial phase (the product states).
- The space of gapped boundaries of a trivial state is the space of the based loops in \mathcal{M}_n with base point in $\mathcal{M}_n(0)$ (which is the loop space $\Omega \mathcal{M}_n$. Check Wiki)

 Gaiotto Johnson-Freyd, arXiv:1712.07950
- Physically, the space of gapped boundary of a trivial state is (or homotopically equivalent to) the space of gapped states in one lower dimension: $\Omega \mathcal{M}_n(0) \sim \mathcal{M}_{n-1}$
- For loop space, we have $\pi_k(\Omega \mathcal{M}) = \pi_{k+1}(\mathcal{M})$. Thus the space \mathcal{M}_n of the space of gapped states of non-interacting fermions satisfies

$$\pi_k(\mathcal{M}_n) = \pi_l(\mathcal{M}_{n-k+l}) \quad \to \quad \pi_0(\mathcal{M}_n) = \pi_l(\mathcal{M}_{n+l}).$$

Classify gapped phases of 0+1D free fermions with no symmetry $= Z_2^f$ symmetry

- Fermion systems with no symmetry = Fermion system with Z_2^f symmetry. They correspond to fermionic superconductors.
- 0+1D free fermion system with \mathbb{Z}_2^f symmetry is described by the following many-body Hamiltonian

$$\hat{H} = \sum_{ab} M_{ab} \hat{c}_{a}^{\dagger} \hat{c}_{b} + \sum_{ab} (\frac{1}{2} \Delta_{ab} \hat{c}_{a} \hat{c}_{b} + h.c.) = \frac{1}{4} \sum_{\alpha,\beta} A_{\alpha\beta} i \hat{\eta}_{\alpha} \hat{\eta}_{\beta} + \#$$

$$\hat{c}_{a} = \frac{\hat{\eta}_{a,1} + i \hat{\eta}_{a,2}}{2}, \ \{\hat{c}_{a}^{\dagger}, \hat{c}_{b}\} = \delta_{ab}, \ \{\hat{\eta}_{\alpha}, \hat{\eta}_{\beta}\} = 2\delta_{\alpha\beta}, \ A^{\top} = -A, \ A^{*} = A.$$

- To see the relateion between M and A, let $M = M^S + i M^A$ and $\Delta = 0$.

$$\hat{H} = \sum_{ab} \frac{i}{4} (\hat{\eta}_{a,1} M_{ab}^S \hat{\eta}_{b,2} - \hat{\eta}_{a,2} M_{ab}^S \hat{\eta}_{b,1}) + \frac{i}{4} (\hat{\eta}_{a,1} M_{ab}^A \hat{\eta}_{b,1} + \hat{\eta}_{a,2} M_{ab}^A \hat{\eta}_{b,2}) + \#$$

Let us write $M = i(M^A - iM^S)$. We find that A is obtained by replacing 1 by σ^0 and i by $-\varepsilon$ in the bracket:

$$A = \sigma^{0} \otimes M^{A} - (-\varepsilon) \otimes M^{S} = \sigma^{0} \otimes M^{A} + \varepsilon \otimes M^{S}$$

- To see the relateion between Δ and A, let M=0 and $\Delta=\Delta^R+\mathrm{i}\Delta^I$

$$\begin{split} \hat{H} = & \sum_{ab} \frac{\mathrm{i}}{8} (\hat{\eta}_{a,1} \Delta^R_{ab} \hat{\eta}_{b,2} - \hat{\eta}_{a,2} \Delta^R_{ab} \hat{\eta}_{b,1}) + \frac{\mathrm{i}}{8} (\hat{\eta}_{a,1} \Delta^I_{ab} \hat{\eta}_{b,1} + \hat{\eta}_{a,2} \Delta^I_{ab} \hat{\eta}_{b,2}) + h.c. \\ = & \sum_{ab} \frac{\mathrm{i}}{4} (\hat{\eta}_{a,1} \Delta^R_{ab} \hat{\eta}_{b,2} - \hat{\eta}_{a,2} \Delta^R_{ab} \hat{\eta}_{b,1}) + \frac{\mathrm{i}}{4} (\hat{\eta}_{a,1} \Delta^I_{ab} \hat{\eta}_{b,1} + \hat{\eta}_{a,2} \Delta^I_{ab} \hat{\eta}_{b,2}). \end{split}$$

Let us write $\Delta = i(\Delta^I - i\Delta^R)$. We find that A is obtained by replacing 1 by σ^0 and i by $-\varepsilon$ in the bracket:

$$A = \sigma^0 \otimes \Delta^I - (-\varepsilon) \otimes \Delta^R = \sigma^0 \otimes \Delta^I + \varepsilon \otimes \Delta^R$$

- The superconductor is fully characterized by a $2n \times 2n$ anti-symmetric real matrix A. We will concentrate on A. Non-zero eigenvalues of iA appear in pairs $\pm \epsilon$. Up to homotopic equivalence, we may assume non-zero eigenvalues of iA to be ± 1 .
- Gapped \to A has no zero eigenvalue. Space of 0+1D gapped non-interacting fermion systems with Z_2^f symmetry $\mathcal{R}_0^0 \cong_{\mathsf{homotopic}}$ space of anti-symmetric real matrix matrices with $\pm \mathbf{i}$ eigenvalues.

The classifying space \mathcal{R}_0^0

$$\begin{split} A &= O_{O(2n)}\begin{pmatrix} \varepsilon & 0 & \cdots \\ 0 & \varepsilon & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} O_{O(2n)}^\top \qquad \text{where } \varepsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ &= O_{O(2n)}O_{U(n)}\begin{pmatrix} \varepsilon & 0 & \cdots \\ 0 & \varepsilon & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} O_{U(n)}^\top O_{O(2n)}^\top \quad \rightarrow \quad \mathcal{R}_0^0 = \frac{O_{O(2n)}}{O_{U(n)}}\Big|_{n \rightarrow \infty} \\ \bullet \text{ What is } \mathcal{R}_0^0 &= \frac{O_{O(2n)}}{O_{U(n)}} \text{ for } n = 1? \text{ From } \{U(1)\}_{1 \times 1} = \{\cos \theta + \mathrm{i} \sin \theta\} \rightarrow 0 \end{split}$$

$$\{O_{U(1)}\}_{2\times 2} = \left\{\cos\theta - \varepsilon\sin\theta = \begin{pmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{pmatrix}\right\}_{\text{replace i by }\varepsilon}$$

$$\{O(2)\}_{2\times 2} = \left\{ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}_{\det=1}, \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}_{\det=-1} \right\}$$

Setting $\theta=0$, we find $\mathcal{R}_0^0=\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\0&-1\end{pmatrix}\right\}$ as a set of \emph{O} 's.

As a set of A's, we have
$$\mathcal{R}_0^0 = \left\{ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} = \mathbb{Z}_2$$

Many-body picture of the classifying space \mathcal{R}^0_0

- Fermion-number-parity: $\hat{N}_{a} = \hat{c}_{a}^{\dagger} \hat{c}_{a} = \frac{1 + i \hat{\eta}_{2a-1} \hat{\eta}_{2a}}{2}$ $\rightarrow \hat{P}_{f} = \prod_{a} (1 - 2\hat{N}_{a}) = \prod_{a} (-i \hat{\eta}_{2a-1} \hat{\eta}_{2a}) = (-i)^{n} \prod_{\alpha=1}^{2n} \hat{\eta}_{\alpha}$
- \hat{P}_f is always a symmetry for fermion system

$$[\hat{P}_f,\hat{H}]=0$$

We denote this symmetry as Z_2^f , since $\hat{P}_f^2 = id$.

• Assume A is "diagonal"

$$A = \begin{pmatrix} \pm \varepsilon & 0 & \cdots \\ 0 & \pm \varepsilon & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \quad \rightarrow \quad \hat{H} = \pm \underbrace{i \hat{\eta}_1 \hat{\eta}_2}_{2\hat{c}_1^{\dagger} \hat{c}_1 - 1} \underbrace{i \hat{\eta}_3 \hat{\eta}_4}_{2\hat{c}_2^{\dagger} \hat{c}_2 - 1} + \cdots$$

 $\mathcal{R}_0^0 = \mathbb{Z}_2$ corresponds to $\hat{P}_f = \pm 1$ ground states of \hat{H} .

The $U^f(1)$ symmetry for non-interacting fermion systems

 \bullet \hat{H} commutes with the fermion-number operator

$$\hat{N} \equiv \sum_{a} (\hat{c}_{a}^{\dagger} \hat{c}_{a} - \frac{1}{2}) = \sum_{a} (\frac{\hat{c}_{a}^{\dagger} \hat{c}_{a} - \hat{c}_{a} \hat{c}_{a}^{\dagger}}{2}) = \frac{\mathrm{i}}{4} \sum_{\alpha \beta} Q_{\alpha \beta} \hat{\eta}_{\alpha} \hat{\eta}_{\beta}$$

where $Q = \varepsilon \otimes I$, $Q^2 = -1$, $Q^* = Q$, $Q^\top = -Q = Q^{-1}$, $\varepsilon \equiv i\sigma^2$.

- The symmetry group $\{U^f(1)\}=\{\mathrm{e}^{\mathrm{i}\theta\hat{N}}\}.$ $Z_2^f=\{\mathrm{id},\mathrm{e}^{\mathrm{i}\pi\hat{N}}\}\subset U^f(1).$
- $[\hat{H}, \hat{N}] = 0$ requires that $AQ = QA, \quad Q^2 = -1.$
- Such a real anti-symmetric matrix A has the form $A = \sigma^0 \otimes M_a + \varepsilon \otimes M_s$, where M_s is real symmetric and M_a real antisymmetric. We can convert such a $2n \times 2n$ real antisymmetric matrix A into a $n \times n$ Hermitian matrix $M = M_s + \mathrm{i}\,M_a$, by replacing ε by i. This reduces the problem to the one that we discussed before (with fermion number conservation).

Z_2 symmetry: $Z_2 \times Z_2^f$ or Z_4^f symmetry

- A $Z_2 \times Z_2^f$ or Z_4^f transformation is generated by \hat{P}_f and \hat{C} . (1) $\hat{C}^2 = \mathrm{id} \to Z_2 \times Z_2^f$. (2) $\hat{C}^2 = \hat{P}_f \to Z_4^f$. Note that $Z_2^f \subset Z_4^f$ or $Z_2 \times Z_2^f$.
- Matrix representation of \hat{C} :

$$\hat{C}\hat{\eta}_{lpha}\hat{C}^{\dagger}=C_{lphaeta}\hat{\eta}_{eta},~~\hat{C}^{\dagger}=\hat{C}^{-1},~~\hat{\eta}^{\dagger}_{lpha}=\hat{\eta}_{lpha},~~\{\hat{\eta}_{lpha},\hat{\eta}_{eta}\}=2\delta_{lphaeta},~~.$$

- $(\hat{C}\hat{\eta}_{\alpha}\hat{C}^{\dagger})^{\dagger} = \hat{C}\hat{\eta}_{\alpha}\hat{C}^{\dagger} = C_{\alpha\beta}^{*}\hat{\eta}_{\beta} \rightarrow C^{*} = C.$
- C must be an orthogonal matrix $C^{\top} = C^{-1}$ to keep $\{\hat{\eta}_{\alpha}, \hat{\eta}_{\beta}\} = 2\delta_{\alpha\beta}$ invariant.
- $C^2 = s_C$. (1) $s_C = + \rightarrow Z_2 \times Z_2^f$. (2) $s_C = \rightarrow Z_4^f$.
- A $Z_2 \times Z_2^f$ or Z_4^f symmetry: $\hat{C}\hat{H}\hat{C}^{-1} = \hat{H}$ implies that A satisfies

$$CA = CA$$
, $C^2 = s_C$.

$U^f(1)$ and Z_2 symmetries

• If we have both $U^f(1)$ and Z_2 symmetries, then $\hat{C}\hat{N}=\hat{N}\hat{C}$ and

$$CQ = s_{UC}QC$$
, $s_{UC} = +$.

- $U^f(1)$ and $Z_2 \times Z_2^f$ symmetry:

$$AQ = QA, AC = CA, Q^2 = -1, C^2 = 1, CQ = QC.$$

Symmetry group $G^f = U^f(1) \times Z_2$.

- $U^f(1)$ and Z_4^f symmetry:

$$AQ = QA, AC = CA, Q^2 = -1, C^2 = -1, CQ = QC.$$

Symmetry group $G^f = \frac{U^f(1) \times Z_4^f}{Z_2^f}$.

$U^f(1)$ and Z_2 charge conjugation symmetries

• If we have $U^f(1)$ and Z_2 charge conjugation symmetries, then $\hat{C}\hat{N} = -\hat{N}\hat{C}$ and

$$CQ = s_{UC}QC$$
, $s_{UC} = -$.

- $U^f(1)$ and $Z_2 \times Z_2^f$ charge conjugation symmetry:

$$AQ = QA$$
, $AC = CA$, $Q^2 = -1$, $C^2 = 1$, $CQ = -QC$.

Symmetry group $G^f = U^f(1) \times Z_2$.

Classification: We have $Q = \varepsilon \otimes I_n$ and $C = \sigma^1 \otimes I_n$. For A to have $U^f(1) \times Z_2$ symmetry, $A = \sigma^0 \otimes \tilde{A}$, and no condition on \tilde{A} . Same as no symmetry (or Z_2^f symmetry).

- $U^f(1)$ and Z_4^f charge conjugation symmetry:

$$AQ = QA$$
, $AC = CA$, $Q^2 = -1$, $C^2 = -1$, $CQ = -QC$.

Symmetry group $G^f = \frac{U^f(1) \rtimes Z_4^f}{Z_2^f}$.

Time-reversal symmetry

• The time-reversal transformation \hat{T} is antiunitary: $\hat{T} i \hat{T}^{-1} = -i$. In terms of the Majorana fermions, we have (just like Z_2 symmetry \hat{C})

$$\hat{T}\hat{\eta}_{lpha}\hat{T}^{-1} = T_{lphaeta}\hat{\eta}_{eta}, \hspace{0.5cm} T^{ op} = T^{-1}.$$

- For fermion systems, we may have $\hat{T}^2 = (s_T)^{\hat{N}}$, $s_T = \pm$. $(s_T = -$ for electrons). This implies that $\hat{T}^2 \hat{c}_i \hat{T}^{-2} = s_T \hat{c}_i$ and $T^2 = s_T$.
- Symmetry group: (1) $s_T = + \rightarrow Z_2^T$. (2) $s_T = \rightarrow Z_4^T$.
- The time-reversal invariance $\hat{T}\hat{H}\hat{T}^{-1}=\hat{H}$ for $\hat{H}=\frac{\mathrm{i}}{2}\sum_{\alpha\beta}A_{\alpha\beta}\hat{\eta}_{\alpha}\hat{\eta}_{\beta}$ implies that

$$T^{\top}AT = -A$$
 or $AT = -TA$, $T^2 = s_T$.

AT = -TA is different from the unitary Z_2 symmetry.

Relations between U, C, and T

• The time-reversal transformation \hat{T} and the $U^f(1)$ transformation \hat{N} may have a nontrivial relation: $\hat{T} e^{i\theta\hat{N}} \hat{T}^{-1} = e^{s_{UT}i\theta\hat{N}}$, $s_{UT} = \pm$, or $\hat{T} \hat{N} \hat{T}^{-1} = -s_{UT} \hat{N}$. This gives us

$$TQ = s_{UT}QT$$
.

- $s_{UT} = + \rightarrow U_{spin}^f(1)$ (conservation of S^z spin in XY magnets).
- $s_{UT} = \rightarrow U_{\text{charge}}^{\hat{f}}(1)$ (conservation of electric spin).
- The commutation relation between \hat{T} and \hat{C} has two choices: $\hat{T}\hat{C} = s_{TC}^{\hat{N}}\hat{C}\hat{T}$, $s_{TC} = \pm$, we have

$$CT = s_{TC}TC$$
.

• The commutation relation between \hat{N} and \hat{C} has two choices: $\hat{N}\hat{C} = s_{UC}\hat{C}\hat{N}, \ s_{UC} = \pm$, we have

$$CQ = s_{UC}QC$$
.

- $s_{UT} = - \rightarrow C$ is a charge conjugation. $s_{UT} = + \rightarrow C$ is not a charge conjugation.

Summary of symmetry groups with $U^f(1)$, C, and T

Symmetry groups		Relations total 52 gr	oups
$G_{s_C}(C)$	(2)	$\hat{C}^2 = s_C^{\hat{N}}, s_C = \pm.$	
$G_{s_T}(T)$	(2)	$\hat{T}^2 = s_T^{\hat{N}}, s_T = \pm.$	
$G_{s_C}^{s_{UC}}(U,C)$	(4)	$\hat{C}^2 = s_C^{\hat{N}}, \hat{C}\hat{N}\hat{C}^{-1} = s_{UC}\hat{N}, s_C, s_{UC} = \pm.$	
$G_{s_T}^{s_{UT}}(U,T)$	(4)	$\hat{T} e^{i\theta\hat{N}} \hat{T}^{-1} = e^{s_{UT} i\theta\hat{N}}, \hat{T}^2 = s_T^{\hat{N}}, s_{UT}, s_T = \pm.$	
$G_{s_T s_C}^{s_{TC}}(T,C)$		$\hat{T}^2 = s_T^{\hat{N}}, \ \hat{C}^2 = s_C^{\hat{N}}, \ \hat{C}\hat{T} = (s_{TC}^{\hat{N}})\hat{T}\hat{C}, \ s_{TC}, s_T, s_C$	
$G_{s_T s_C}^{s_{UT} s_{TC} s_{UC}}(U,$	T,C)	$\hat{C}\hat{N}\hat{C}^{-1} = s_{UC}\hat{N}, \hat{T}e^{i\theta\hat{N}}\hat{T}^{-1} = e^{s_{UT}i\theta\hat{N}}, \hat{T}^2 = s$	Ñ T,
	(32)	$\hat{C}^2 = s_C^{\hat{N}}, \ \hat{C}\hat{T} = (s_{TC}^{\hat{N}})\hat{T}\hat{C}, \ s_T, s_C, s_{UT}, s_{TC}, s_{UC} = s_T^{\hat{N}}$	= ±.

- **Topological insulator** Electrons with $U^f(1)$ -charge and T: symmetry group $G^-(U,T) = (U^f(1)_{\text{charge}} \rtimes Z_4^T)/Z_2^f$
- Topo. S_z superconductor Electrons with $U^f(1)$ -spin and T: symmetry group $G_-^+(U,T) = (U^f(1)_{\text{spin}} \times Z_4^T)/Z_2^f$
- **Topological** T **superconductor** Electrons with T: symmetry group $G_{-}(T) = Z_{4}^{T}$
- Topological \tilde{T} superconductor Electrons with \tilde{T} : symmetry group $G_+(T) = Z_2^T$ ($\tilde{T} = T \times \pi$ -spin-rotation)

Including the \mathbb{Z}_2^f FNP symmetry and fermionic symmetry

The fermion systems always has FNP Z_2^f symmetry. But for the symmetry groups in the above list, some conatin Z_2^f and are complete; some do not conatin Z_2^f and are incomplete.

Symmetry groups	Total fermion symmetry groups G^f					
$G_{s_C}(C)$	$G_+(C) \times Z_2^f$, $G(C) \supset Z_2^f$.					
$G_{s_T}(T)$	$G_+(T) \times Z_2^f$, $G(T) \supset Z_2^f$.					
$G_{s_C}^{s_{UC}}(U,C)$	$G_{s_C}^{s_{UC}}(U^f,C)\supset Z_2^f$					
$G_{s_T}^{s_{UT}}(U,T)$	$G_{s_T}^{s_{UT}}(U^f,T)\supset Z_2^f$					
$G_{s_Ts_C}^{s_{TC}}(T,C)$	$G_{++}^+(T,C) imes Z_2^f$, others $\supset Z_2^f$					
$G_{s_T s_C}^{s_{UT} s_{TC} s_{UC}}(U, T, C)$	$G_{s_Ts_C}^{s_{UT}s_{TC}s_{UC}}(U^f,T,C)\supset Z_2^f$					

If the full symmetry group is $G^f = G_b \times Z_2^f$, then the Z_2^f is missing.

Symmetry of fermion systems is described by

$$1 \to Z_2^f \to G^f \to G_b \to 1$$

or by the full symmetry group G^f and its central Z_2^f subgroup:

$$(G^f, Z_2^f \stackrel{\mathsf{cen}}{\subset} G^f)$$

Some 0d superconductors

- Superconductors with no symmetry $(G^f = Z_2^f)$ Classifying space $\mathcal{R}_0^0 =$ space of real anti-symmetric matrices A with eigenvalue $\pm i$ (ie with $A^2 = -1$).
- T superconductors with symmetry $G_{-}(T) = Z_4^T = G^f$

$$TA = -AT$$
, $T^2 = -1$

Classifying space \mathcal{R}_0^1 = space of real anti-symmetric matrices A, $A^2 = -1$, that anti commute with an orthogonal matrix that square to -1.

• \tilde{T} superconductors with symmetry $G_+(T) = Z_2^T (G^f = G_+(T) \times Z_2^f)$

$$TA = -AT$$
, $T^2 = 1$

Classifying space $\mathcal{R}_1^0 =$ space of real anti-symmetric matrices A, $A^2 = -1$, that anti commute with an orthogonal matrix that square to 1.

Some 0d topological superconductors

- S_z , T superconductors with $G_-^+(U,T) = (U^f(1) \times Z_4^T)/Z_2 = G^f$ QA = AQ, $Q = \varepsilon \otimes I$, TA = -AT, TQ = TQ, $T^2 = -1$, $T = \varepsilon \otimes T_M$
- A has the form $A=\sigma^0\otimes M_a+\varepsilon\otimes M_s\to M=M_s+\mathrm{i}\,M_a=M^\dagger.$ $T_MM=-MT_M,\quad T_M^2=1.$

Classifying space C_1 = space of hermitian matrix M, M^2 = 1, that anti-commute with an unitary matrix whose square is 1.

In comparison

- Insulators with symmetry $G^f = U^f(1)$. Classifying space C_0 = space of hermitian matrix M, with $M^2 = 1$.
- The above C_0 and C_1 agrees with our previous definition of classifying space C_d using γ -matrices.

Od insulator with $U^f(1)$ -charge and time-reversal symm.

• Insulator with symmetry $G_{-}^{-}(U,T) = (U^{f}(1) \rtimes Z_{4}^{T})/Z_{2} = G^{f}$

$$QA = AQ$$
, $Q^2 = -1$, $TA = -AT$, $TQ = -TQ$, $T^2 = -1$.
 $\rho_i A = -A\rho_i$, $\rho_1 = T$, $\rho_2 = TQ$, $\rho_1 \rho_2 = -\rho_2 \rho_1$, $\rho_1^2 = \rho_2^2 = -1$.

Classifying space \mathcal{R}_0^2 = space of real anti-symmetric matrices A, $A^2 = -1$, that anti commute with two anti-commuting orthogonal matrices that square to -1.

• Insulator with symmetry $G_{-}^{+}(U,T) = U^{f}(1) \rtimes Z_{2}^{T} = G^{f}$ (Here time reversal is $\tilde{T} = T_{\text{elec}} \times \pi$ -spin-rotation)

$$QA = AQ$$
, $Q^2 = -1$, $TA = -AT$, $TQ = -TQ$, $T^2 = 1$.
 $\rho_i A = -A\rho_i$, $\rho_1 = T$, $\rho_2 = TQ$, $\rho_1 \rho_2 = -\rho_2 \rho_1$, $\rho_1^2 = \rho_2^2 = 1$.

Classifying space \mathcal{R}_2^0 = space of real anti-symmetric matrices A, $A^2 = -1$, that anti commute with two anti-commuting orthogonal matrices that square to 1.

The classifying spaces \mathcal{R}_p^q and \mathcal{R}_p

• Classifying space \mathcal{R}_p^q is formed by anti-symmetric real matrix A satisfying $(i, j = 1, \cdots, p + q)$

$$\rho_{i}A = -A\rho_{i}, \qquad A^{2} = -1,$$

$$\rho_{i}^{\top} = \rho_{i}^{-1}, \quad \rho_{i}\rho_{j} = -\rho_{i}\rho_{j}, \quad \rho_{i}^{2}|_{i=1,\dots,p} = 1, \quad \rho_{i}^{2}|_{i=p+1,\dots,p+q} = -1.$$

• Classifying space \mathcal{R}_p is formed by symmetric real matrix A satisfying

$$\begin{aligned} \rho_i A &= -A \rho_i, \qquad A^2 = 1, \\ \rho_i^\top &= \rho_i^{-1}, \quad \rho_i \rho_j = -\rho_i \rho_j, \quad \rho_i^2|_{i=1,\dots,p} = 1. \end{aligned}$$

Properties of the classifying spaces \mathcal{R}^q_p

- $\bullet \ \mathcal{R}_p^q = \mathcal{R}_{p+1}^{q+1}$
- From $\tilde{A} \in R_p^q$ that satisfies

$$\begin{split} \tilde{A}\tilde{\rho}_i &= -\tilde{\rho}_i \tilde{A}, \quad \tilde{A}^2 = -1, \quad \tilde{\rho}_j \tilde{\rho}_i + \tilde{\rho}_i \tilde{\rho}_j|_{i \neq j} = 0, \\ \tilde{\rho}_i^2|_{i=1,\dots,p} &= 1, \quad \tilde{\rho}_i^2|_{i=p+1,\dots,p+q} = -1, \end{split}$$

we can define

$$A = \tilde{A} \otimes \sigma^{3}, \quad \rho_{i}|_{i=1,\dots,p} = \tilde{\rho}_{i} \otimes \sigma^{3}, \quad \rho_{p+1} = I \otimes \sigma^{1},$$
$$\rho_{i}|_{i=p+1+1,\dots,p+1+q} = \tilde{\rho}_{i-1} \otimes \sigma^{3}, \quad \rho_{p+1+q+1} = I \otimes \varepsilon.$$

We can check that $A \in \mathbb{R}^{q+1}_{p+1}$

$$A\rho_i = -\rho_i A, \quad A^2 = -1, \quad \rho_j \rho_i + \rho_i \rho_j|_{i \neq j} = 0,$$

 $\rho_i^2|_{i=1,\dots,p+1} = 1, \quad \rho_i^2|_{i=p+1+1,\dots,p+1+q+1} = -1,$

Properties of the classifying spaces \mathcal{R}^q_p

- For a $A \in \mathcal{R}^{q+1}_{p+1}$, we always choose a basis such that $\rho_{p+1} = I \otimes \sigma^1$, $\rho_{p+1+q+1} = I \otimes \varepsilon$. Then we have

$$A = \tilde{A} \otimes \sigma^{3}, \quad \rho_{i}|_{i=1,\dots,p} = \tilde{\rho}_{i} \otimes \sigma^{3}, \quad \rho_{p+1} = I \otimes \sigma^{1},$$
$$\rho_{i}|_{i=p+1+1,\dots,p+1+q} = \tilde{\rho}_{i-1} \otimes \sigma^{3}, \quad \rho_{p+1+q+1} = I \otimes \varepsilon.$$

We find $\tilde{A} \in \mathcal{R}_p^q$.

Properties of the classifying spaces \mathcal{R}^q_p and \mathcal{R}_p

- $\bullet \ \mathcal{R}_0^q = \mathcal{R}_{q+2}$
- From $\tilde{A} \in R_0^q$ that satisfies

$$\begin{split} \tilde{A}\tilde{\rho}_i &= -\tilde{\rho}_i \tilde{A}, \quad \tilde{A}^2 = -1, \quad \tilde{\rho}_j \tilde{\rho}_i + \tilde{\rho}_i \tilde{\rho}_j|_{i \neq j} = 0, \\ \tilde{\rho}_i^2 &= -1, \quad \tilde{\rho}_i^\top = \tilde{\rho}_i^{-1} \quad i, j = 1, \cdots, q \end{split}$$

we can define

$$A = \tilde{A} \otimes \varepsilon, \ \rho_i|_{i=1,\dots,q} = \tilde{\rho}_i \otimes \varepsilon, \ \rho_{q+1} = I \otimes \sigma^1, \ \rho_{q+2} = I \otimes \sigma^3.$$

We can check that $A \in \mathcal{R}_{q+2}$

$$A\rho_i = -\rho_i A, \quad A^2 = 1, \quad \rho_j \rho_i + \rho_i \rho_j|_{i \neq j} = 0, \rho_i^2 = 1, \quad \rho_i^\top = \rho_i^{-1}, \quad i, j = 1, \cdots, q + 2$$

- We can also show the reverse, by choosing a basis such that $\rho_{a+1} = I \otimes \sigma^1$, $\rho_{a+2} = I \otimes \sigma^3$.

Clifford algebra Cl(0,8n)

16 dimensional real symmetric representation of Clifford algebra C/(0,8):

$$\gamma_{i}\gamma_{j} + \gamma_{j}\gamma_{i} = \Big|_{i \neq j} 0, \qquad \gamma_{i}^{2} = \Big|_{i=0,\dots,8} 1.$$

$$\gamma_{1} = \varepsilon \otimes \sigma^{3} \otimes \sigma^{0} \otimes \varepsilon, \qquad \gamma_{2} = \varepsilon \otimes \sigma^{3} \otimes \varepsilon \otimes \sigma^{1},$$

$$\gamma_{3} = \varepsilon \otimes \sigma^{3} \otimes \varepsilon \otimes \sigma^{3}, \qquad \gamma_{4} = \varepsilon \otimes \sigma^{1} \otimes \varepsilon \otimes \sigma^{0},$$

$$\gamma_{5} = \varepsilon \otimes \sigma^{1} \otimes \sigma^{1} \otimes \varepsilon, \qquad \gamma_{6} = \varepsilon \otimes \sigma^{1} \otimes \sigma^{3} \otimes \varepsilon,$$

$$\gamma_{7} = \varepsilon \otimes \varepsilon \otimes \sigma^{0} \otimes \sigma^{0}, \qquad \gamma_{8} = \sigma^{1} \otimes \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{0},$$

where $\varepsilon = i\sigma^2$. Also $\gamma = \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5 \gamma_6 \gamma_7 \gamma_8 = \sigma^3 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0$ anticommute with γ_i : $\gamma \gamma_i = -\gamma_i \gamma$, and $\gamma^2 = 1$.

• *CI*(0, 16):

$$\Gamma_i\Gamma_j + \Gamma_j\Gamma_i = \Big|_{i\neq i} 0, \qquad \Gamma_i^2 = \Big|_{i=0,\dots,16} 1.$$

where $\Gamma_i = \gamma_i \otimes 1$, $\Gamma_{i+8} = \gamma \otimes \gamma_i$ (32-dimensional representation).

Properties of the classifying spaces \mathcal{R}^q_p and \mathcal{R}_p

• $\mathcal{R}_p^q = \mathcal{R}_{p+8}^q$ From $\tilde{A} \in \mathcal{R}_p^q$ that satisfies

$$\begin{split} \tilde{A}\tilde{\rho}_i &= -\tilde{\rho}_i \tilde{A}, \quad \tilde{A}^2 = -1, \qquad \tilde{\rho}_j \tilde{\rho}_i + \tilde{\rho}_i \tilde{\rho}_j|_{i \neq j} = 0, \\ \tilde{\rho}_i^2|_{i=1,\dots,p} &= 1, \quad \tilde{\rho}_i^2|_{i=p+1,\dots,p+q} = -1, \end{split}$$

we can define

$$A = \tilde{A} \otimes \gamma, \quad \rho_i|_{i=1,\dots,p} = \tilde{\rho}_i \otimes \gamma, \quad \rho_{p+i}|_{i=1,\dots,8} = I \otimes \gamma_i,$$
$$\rho_i|_{i=p+8+1,\dots,p+8+q} = \tilde{\rho}_{i-8} \otimes \gamma,$$

We can check that $A \in \mathcal{R}^q_{p+8}$

$$A\rho_i = -\rho_i A, \quad A^2 = -1, \quad \rho_j \rho_i + \rho_i \rho_j|_{i \neq j} = 0,$$

 $\rho_i^2|_{i=1,\dots,p+8} = 1, \quad \rho_i^2|_{i=p+8+1,\dots,p+8+q} = -1,$

• The above implies that $\mathcal{R}_p^q = \mathcal{R}_{p+8}^q = \mathcal{R}_p^{q+8}$. $\mathcal{R}_p^q = \mathcal{R}_{q-p+2}$ and $\mathcal{R}_p = \mathcal{R}_{p+8}$.

Go to higher dimensions (complex cases)

• d-dimensional complex cases: $\hat{H} = \int d^d x \ \hat{c}^{\dagger} (\gamma^i i \partial_i + M) \hat{c}$. We consider symmetries that anti-commute with M and $(\gamma^i i \partial_i)$:

$$M^{\dagger}=M,~M^2=1,~M\rho_{a}=-\rho_{a}M,~\rho_{a}^{\dagger}=\rho_{a}^{-1},~\rho_{a}\rho_{b}+\rho_{b}\rho_{a}=2\delta_{ab};$$

Since
$$(\gamma^i i \partial_i) \rho_a = -\rho_a (\gamma^i i \partial_i)$$
, we have

$$\gamma_i \rho_a = -\rho_a \gamma_i, \quad \gamma_i^{\dagger} = \gamma_i, \quad \gamma_i^2 = \mathrm{id}, \quad \gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij}, \quad \gamma_i M = -M \gamma_i.$$

Thus the classifying space is C_{p+d} .

If the symmetry commute with single-body Hamiltonian (matrix), we can consider the common eigenspace, and "ignore" the symmetry.

• We can show that $C_p = C_{p+2}$. Let $\tilde{M} \in C_p$, satisfying $M^{\dagger} = M$, $M^2 = 1$, $M\rho_a = -\rho_a M$, $\rho_a \rho_b + \rho_b \rho_a = 2\delta_{ab}$.

Let
$$\tilde{M} = M \otimes \sigma^3$$
, $\tilde{\rho}_i = \rho_i \otimes \sigma^3$, $\tilde{\rho}_{p+1} = I \otimes \sigma^1$, $\tilde{\rho}_{p+2} = I \otimes \sigma^2$.
Then $\tilde{M} \in \mathcal{C}_{p+2}$.

• IQH states in 2D (1980):

 $\pi_0(\mathcal{C}_2) = \mathbb{Z}$. vonKlitzing-Dorda-Pepper, PRL **45** 494, (80)

Go to higher dimensions (real cases)

• *d*-dimensional real cases: $\hat{H} = i \int d^d x \ \eta^\top (\gamma^i \partial_i + M) \eta$, where $M = M^* = -M^\top$, $M^2 = -1$, $M\rho_a = -\rho_a M$, $\rho_a \rho_b + \rho_b \rho_a = \pm 2\delta_{ab}$; Symmetry also requires $(\gamma^i \partial_i) \rho_a = -\rho_a (\gamma^i \partial_i) \rightarrow \gamma_i \rho_a = -\rho_a \gamma_i$, $\gamma_i^\top = \gamma_i$, $\gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij}$, $\gamma_i M = -M\gamma_i$. Classifying space $= \mathcal{R}_{p+d}^q = \mathcal{R}_{q-p-d+2}$.

Go to higher dimensions (real cases)

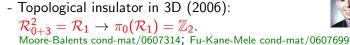
• *d*-dimensional real cases: $\hat{H} = i \int d^d x \, \eta^{\top} (\gamma^i \partial_i + M) \eta$, where $M = M^* = -M^{\top}, \quad M^2 = -1, \quad M \rho_a = -\rho_a M, \quad \rho_a \rho_b + \rho_b \rho_a = \pm 2\delta_{ab};$ Symmetry also requires $(\gamma^i \partial_i) \rho_a = -\rho_a (\gamma^i \partial_i) \rightarrow \gamma_i \rho_a = -\rho_a \gamma_i, \quad \gamma_i^{\top} = \gamma_i, \quad \gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij}, \quad \gamma_i M = -M \gamma_i.$ Classifying space $= \mathcal{R}_{p+d}^q = \mathcal{R}_{q-p-d+2}$.

- Topo. d + id/p + ip SC in 2D (1999): $\mathcal{R}^0_{0+2} = \mathcal{R}_0 \rightarrow \pi_0(\mathcal{R}_0) = \mathbb{Z}$. Senthil-Marston-Fisher cond-mat/9902062

- Topological *p*-wave SC in 1D (2001): $\mathcal{R}_{0+1}^0 = \mathcal{R}_1 \to \pi_0(\mathcal{R}_1) = \mathbb{Z}_2.$ Kitaev cond-mat/0010440
- Topological insulator in 2D (2005):
 - $\mathcal{R}_{0+2}^2 = \mathcal{R}_2 \to \pi_0(\mathcal{R}_2) = \mathbb{Z}_2.$

Kane-Mele cond-mat/0506581

Read-Green cond-mat/9906453



Gapped phases of non-interacting fermions

Real cases (blue entries for interacting classification):

				U				
Symm. group G^f	$U^f(1) \rtimes Z_2^T$	$\mathbb{Z}_2^T \times \mathbb{Z}_2^f$	Z_2^f	$Z_4^T \\ Z_4^T \times Z_2$	$\frac{U^f(1) \rtimes Z_4^T}{Z_2}$ $\frac{Z_4^f \rtimes Z_4^T}{Z_2}$	$\frac{U^f(1) \rtimes Z_4^T \times Z_4^f}{Z_2^2}$	SU ^f (2)	$\frac{SU^f(2) \times Z_4^T}{Z_2}$
$\mathcal{R}_p _{\text{for }d=0}$	$\begin{array}{c c} O(I+m) \\ \hline O(I) \times O(m) \\ \times \mathbb{Z} \end{array}$	O(n)	$\frac{O(2n)}{U(n)}$	$\frac{U(2n)}{Sp(n)}$	$\frac{Sp(I+m)}{Sp(I)\times Sp(m)} \times \mathbb{Z}$	Sp(n)	$\frac{Sp(n)}{U(n)}$	$\frac{U(n)}{O(n)}$
	p = 0	p=1	p=2	p=3	p = 4	p = 5	p = 6	p = 7
class	Al	BDI	D	DIII	All	CII	С	CI
d = 0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0
d = 1	0 (Z ₂)	\mathbb{Z} (\mathbb{Z}_8)	\mathbb{Z}_2 (\mathbb{Z}_2)	\mathbb{Z}_2	0	\mathbb{Z}	0	0
d=2	0	0	\mathbb{Z} (\mathbb{Z})	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0
d=3	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}
d = 4	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0
d = 5	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2 \mathbb{Z}	$egin{array}{c} \mathbb{Z}_2 \ \mathbb{Z}_2 \end{array}$
d = 6	\mathbb{Z}_2 \mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2
d = 7	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}
Example	insulator w/ coplanar spin order \tilde{T}	supercond. w/ coplanar spin order \tilde{T}	supercond. (no symm.)	supercond. w/ time reversal <i>T</i>	insulator w/ time reversal <i>T</i>	insulator w/ time reversal and intersublattice hopping	spin singlet supercond.	spin singlet supercond. w/ time reversal <i>T</i>

Ryu-Schnyder-Furusaki-Ludwig arXiv:0912.2157, Kitaev cond-mat/0010440 Wen arXiv:1111 6341

Complex cases:

•	cr cases.												VVCII diviv.1	-
	Symm. group	$C_p _{\text{for }d=0}$	class	$p \setminus d$	0	1	2	3	4	5	6	7	example]
	$U^f(1)$ Z_4^f	$\frac{U(l+m)}{U(l)\times U(m)}\times\mathbb{Z}$	А	0	Z	0	\mathbb{Z}	0	Z	0	\mathbb{Z}	0	(Chern) supercond. with collinear spin order	
	$U^f(1) \times Z_2^T$ $Z_1^f \times Z_2^T$	U(n)	AIII	1	0	Z	0	Z	0	Z	0	\mathbb{Z}	supercond. w/ real pairing and S _z conserving spin-orbital coupling	

Classifying spaces \mathcal{R}_p

<i>p</i> mod 8	0	1	2	3	4	5	6	7
\mathcal{R}_p	$\frac{O(l+m)}{O(l)\times O(m)} \times \mathbb{Z}$	<i>O</i> (<i>n</i>)	$\frac{O(2n)}{U(n)}$	$\frac{U(2n)}{Sp(n)}$	$\frac{Sp(l+m)}{Sp(l)\times Sp(m)} \times \mathbb{Z}$	Sp(n)	$\frac{Sp(n)}{U(n)}$	$\frac{U(n)}{O(n)}$
$\pi_0(R_p)$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	$\mathbb Z$	0	0	0
$\pi_1(R_p)$	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}
$\pi_2(R_p)$	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2
$\pi_3(R_p)$	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
$\pi_4(R_p)$	\mathbb{Z}	0	0	0	$\mathbb Z$	\mathbb{Z}_2	\mathbb{Z}_2	0
$\pi_5(R_p)$	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}
$\pi_6(R_p)$	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0
$\pi_7(R_p)$	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0

• Let \mathcal{M}_d be the space of gapped d+1D fermion systems. Then $\mathcal{M}_d \sim \Omega \mathcal{M}_{d+1} \to \pi_{n-1}(\mathcal{M}_d) = \pi_n(\mathcal{M}_{d+1})$

 $\Omega \mathcal{M}$ is the loop space of \mathcal{M} : the space of the based

loops in \mathcal{M} . For example: point $\sim \Omega S^2$, $Z \sim \Omega S^1$.

- Consider a 2D system H_g that form a cylinder. As we go around the cylinder, g goes around a loop in \mathcal{M}_2 . We may also view the cylinder as a 1D system. Thus we obtain a map $\Omega \mathcal{M}_2 \to \mathcal{M}_1$.
- $\mathcal{M}_d \sim \mathcal{R}_{q-p+2-d} \to \mathcal{R}_p = \Omega \mathcal{R}_{p-1}, \ \pi_{n-1}(\mathcal{R}_p) = \pi_n(\mathcal{R}_{p-1})$

Why classification is useful apart from deep understanding?

- K-theory classification is constructive, which allow us to constructive all
 possible free-fermion gapped phases.
- An universal model for complex classes of topological phases of non-interacting fermions $H_{\text{one-body}} = \gamma^i \otimes I_n i \partial_i + M$, $\{\gamma^i, \gamma^j\} = 2\delta_{ij}$
- An universal model for real classes of top. phases of non-interacting fermions $H_{\text{one-body}} = \mathrm{i}(\gamma_R^i \otimes I_n \partial_i + A_R), \ \{\gamma_R^i, \gamma_R^j\} = 2\delta_{ij}$
- Example in 2D: Fermion hopping on honeycomb lattice \rightarrow two 2-component massless Dirac fermions (R,L pairs)

$$\begin{split} H_{\text{one-body}} &= \mathrm{i} \sigma^1 \otimes \sigma^0 \partial_x + \mathrm{i} \sigma^3 \otimes \sigma^3 \partial_y, \quad \text{complex case} \\ &= \mathrm{i} (\sigma^1 \otimes \sigma^0 \partial_x + \sigma^3 \otimes \sigma^3 \partial_y). \quad \text{complex case} \end{split}$$

To obtain one-body Hamiltonian in Majorana basis, we replace 1 by σ^0 and i by $-\varepsilon$ in the above bracket, to obtain (see page 14 of this file)

$$H_{\text{one-body}} = \sigma^0 \otimes \sigma^1 \otimes \sigma^0 \partial_x + \sigma^0 \otimes \sigma^3 \otimes \sigma^3 \partial_y$$
. real case

Why classification is useful apart from deep understanding?

n-layers of honeycomb lattice $\rightarrow 2n$ 2-component massless Dirac fermions (*n* 4-component massless Dirac fermions)

$$\begin{split} & \mathcal{H}_{\text{one-body}} = \mathrm{i} \sigma^1 \otimes \sigma^0 \otimes \mathcal{I}_n \partial_x + \mathrm{i} \sigma^3 \otimes \sigma^3 \otimes \mathcal{I}_n \partial_y, \quad \text{complex case} \\ & \mathcal{H}^R_{\text{one-body}} = \mathrm{i} \big(\sigma^0 \otimes \varepsilon \otimes \sigma^0 \otimes \mathcal{I}_n \partial_x + \sigma^0 \otimes \sigma^1 \otimes \varepsilon \otimes \mathcal{I}_n \partial_y \big), \quad \text{real case} \end{split}$$

Adding a proper mass term according to the K-theory classification →
 a designed free-fermion gapped state.

$$\begin{split} & \mathcal{H}_{\text{one-body}} = \mathrm{i}\,\sigma^1 \otimes \sigma^0 \otimes \mathit{I}_{\mathit{n}}\partial_{\mathit{x}} + \mathrm{i}\,\sigma^3 \otimes \sigma^3 \otimes \mathit{I}_{\mathit{n}}\partial_{\mathit{y}} + \mathit{M}, \quad \text{complex case} \\ & \mathcal{H}^{\mathit{R}}_{\text{one-body}} = \mathrm{i}\,(\sigma^0 \otimes \sigma^1 \otimes \sigma^0 \otimes \mathit{I}_{\mathit{n}}\partial_{\mathit{x}} + \sigma^0 \otimes \sigma^3 \otimes \sigma^3 \otimes \mathit{I}_{\mathit{n}}\partial_{\mathit{y}} + \mathit{A}_{\mathit{R}}), \text{ real case} \end{split}$$

A continuum model for 2d top. insulator $(U^f(1) \rtimes Z_4^T/Z_2^f)$

Choose n = 1:

$$H_{\mathsf{one-body}}^R = \mathrm{i}(\sigma^0 \otimes \sigma^1 \otimes \sigma^0 \partial_x + \sigma^0 \otimes \sigma^3 \otimes \sigma^3 \partial_y + A), \quad A = A^* = -A^\top.$$

• $U^f(1)$ -symmetry $Q = \varepsilon \otimes \sigma^0 \otimes \sigma^0$, which satisfies

$$\begin{split} Q\sigma^0\otimes\sigma^1\otimes\sigma^0&=\sigma^0\otimes\sigma^1\otimes\sigma^0Q,\quad Q\sigma^0\otimes\sigma^3\otimes\sigma^3&=\sigma^0\otimes\sigma^3\otimes\sigma^3Q,\\ QA&=AQ,\quad Q^2&=-1. \end{split}$$

T-symmetry $T = \sigma^3 \otimes \varepsilon \otimes \sigma^0$:

$$\begin{split} T\sigma^0\otimes\sigma^1\otimes\sigma^0 &= -\sigma^0\otimes\sigma^1\otimes\sigma^0T, \quad T\sigma^0\otimes\sigma^3\otimes\sigma^3 = -\sigma^0\otimes\sigma^3\otimes\sigma^3T, \\ TA &= -AT, \quad T^\top = T^{-1}, \quad T^2 = -1, \quad TQ = -QT. \end{split}$$

A continuum model for 2d top. insulator $(U^f(1) times Z_4^T/Z_2^f)$

The conditions on A

$$A\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} = -\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0}A, \quad A\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} = -\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3}A,$$
$$A\sigma^{3} \otimes \varepsilon \otimes \sigma^{0} = -\sigma^{3} \otimes \varepsilon \otimes \sigma^{0}A, \quad A\varepsilon \otimes \sigma^{0} \otimes \sigma^{0} = \varepsilon \otimes \sigma^{0} \otimes \sigma^{0}A,$$

- From the last relation: $A = \#\sigma^0 \otimes \sigma^\mu \otimes \sigma^\nu + \#\varepsilon \otimes \sigma^\mu \otimes \sigma^\nu$.
- Adding the first relation: $A = \#\sigma^0 \otimes \sigma^{3,\varepsilon} \otimes \sigma^{\nu} + \#\varepsilon \otimes \sigma^{3,\varepsilon} \otimes \sigma^{\nu}$. where $\sigma^{\varepsilon} = \varepsilon$.
- Adding the second relation: $A = \#\sigma^0 \otimes \sigma^3 \otimes \sigma^{1,\varepsilon} + \#\sigma^0 \otimes \varepsilon \otimes \sigma^{0,3} + \#\varepsilon \otimes \sigma^3 \otimes \sigma^{1,\epsilon} + \#\varepsilon \otimes \varepsilon \otimes \sigma^{0,3}$.
- Adding the conidtion $A^{\top} = -A$:
 - $A = \#\sigma^0 \otimes \sigma^3 \otimes \varepsilon + \#\sigma^0 \otimes \varepsilon \otimes \sigma^0 + \#\sigma^0 \otimes \varepsilon \otimes \sigma^3 + \#\varepsilon \otimes \sigma^3 \otimes \sigma^1.$
- Adding the third relation $\to A$ must has a form $A = m\sigma^0 \otimes \sigma^3 \otimes \varepsilon$ m > 0 is one phase and m < 0 is another phase (maybe since n = 1).
- We know the two phases are different, but we do not know which is trivial and which is non-trivial. Within the field theory, we cannot know.
 Only after adding lattice reularization, we can know.

 A Dirac fermion realization of 2d topological insulator with symmetry $U^f(1) \times Z_1^T/Z_2^f$, Majorana fermion basis:

$$H_{\mathsf{one-body}}^R = \mathrm{i}(\sigma^0 \otimes \sigma^1 \otimes \sigma^0 \partial_x + \sigma^0 \otimes \sigma^3 \otimes \sigma^3 \partial_y + m\sigma^0 \otimes \sigma^3 \otimes \varepsilon)$$
$$Q = \varepsilon \otimes \sigma^0 \otimes \sigma^0, \quad T = \sigma^3 \otimes \varepsilon \otimes \sigma^0.$$

- Complex fermion basis ($\sigma^0 \to 1$ and $\varepsilon \to -i$ for the first position):

$$\begin{split} H^R_{\text{one-body}} &= \mathrm{i} \big(\sigma^1 \otimes \sigma^0 \partial_x + \sigma^3 \otimes \sigma^3 \partial_y + m \sigma^3 \otimes \varepsilon \big) \\ Q &= -\mathrm{i} \sigma^0 \otimes \sigma^0, \quad T = ?. \end{split}$$

The T action is explicit only in Majorana fermion basis.

Do we have an universal physical probe to detect all non-interacting fermionic topological phases?

 Boundary states are universal physical probe that can detect all topological phase, but not one-to-one.

Holographic principle of topological phases: Boundary completely determine the bulk, but bulk does not determine the boundary.

The bulk = the anomaly of the boundary effective theory