Highly entangled quantum many-body systems - SPT order in free fermion systems

Xiao-Gang Wen

https://canvas.mit.edu/courses/11339

Understand (classify) Chern insulators systematically

First, we try to systematically understand (classify) gapped $0+1 \mathrm{D}$ free fermion system with $U(1)$ symmetry (fermion number conservation).

- $0+1 \mathrm{D}$ free fermion system with $U(1)$ symmetry is described by the following many-body Hamiltonian

$$
\hat{H}=\sum_{a b} M_{a b} \hat{c}_{a}^{\dagger} \hat{c}_{b}
$$

It is fully characterized by a $N \times N$ hermitian matrix $M=M^{\dagger}$. So we will concentrate on the matrix M. Eigenvalues of M are called the single-body energy level.

- The many-body ground state has all the negative single-body energy levels filled.
- Gapped $\rightarrow M$ has no zero eigenvalue. Space of $0+1 D$ gapped free fermion system with $U(1)$ symmetry $\tilde{\mathcal{C}}_{0}=$ space of hermitian matrices with no zero eigenvalue.

Classify gapped phases of $0+1 \mathrm{D}$ free fermions with $U(1)$

- Gapped phases of $0+1 \mathrm{D}$ free fermions with $U(1)$ symmetry are labeled by $\pi_{0}\left(\tilde{C}_{0}\right)=$ disconnected parts of the space of hermitian matrices with no zero eigenvalue.
- Let $\mathcal{C}_{0}=$ the space of hermitian matrices with eigenvalue $\pm 1 . \tilde{\mathcal{C}}_{0}$ and \mathcal{C}_{0} are homotopic equivalent (one can deform into the other without closing gap, like "a point \sim a ball" $): \quad \pi_{n}\left(\tilde{\mathcal{C}}_{0}\right)=\pi_{n}\left(\mathcal{C}_{0}\right)$ Gapped phases of $0+1 \mathrm{D}$ free fermions with $U(1)$ symmetry are labeled by $\pi_{0}\left(\mathcal{C}_{0}\right)=$ disconnected parts of the space of hermitian matrices with eigenvalues ± 1.
- Hermitian matrices with eigenvalues ± 1 has a form
$U_{n+m}\left(\begin{array}{cc}I_{n} & 0 \\ 0 & -I_{m}\end{array}\right) U_{n+m}^{\dagger} . \mathcal{C}_{0}=\frac{U(m+n)}{U(m) \times U(n)} \times\{(m, n)\}$ where $m=$ the
number of -1 eigenvalues and $n=$ the number of +1 eigenvalues.
- For $N=\infty, \pi_{0}\left(\mathcal{C}_{0}\right)=\mathbb{Z}$ is labeled an integer.

Gapped phases of $0+1$ D free fermions with $U(1)$ symmetry are classified by integer \mathbb{Z}. The number of the fermions in the ground state. The result is also valid for interacting fermions.

Classify gapped phases of $1+1 \mathrm{D}$ free fermions with $U(1)$

- Start with a large (universal) gapless system, such that other gapless systems can be viewed as partially gapped systems.
- Find all different disconnected ways to gap the universal gapless system.

- Consider a gapless 1D free fermion $\epsilon(k)=-\sin k$, which is gapless at $k=0$ (right movers) and $k=\pi$ (left movers).
Double unit cell (half the Brillouin zone) \rightarrow right movers and left movers are both a $k=0$.
- Continuum limit: $M_{\text {one-body }}=\mathrm{i} \sigma^{3} \partial_{x}$ (acting on $\psi=\binom{\psi_{1}}{\psi_{2}}$) or $\hat{H}_{\text {many-body }}=\int \mathrm{d} x \psi^{\dagger}(x) \mathrm{i} \sigma^{3} \partial_{x} \psi(x) \rightarrow$ 1D Dirac fermion
- Can be gapped by adding the mass term $M_{\text {one-body }}=\mathrm{i} \sigma^{3} \partial_{x}+m \sigma^{1}$.
- Universal gapless system $M_{\text {one-body }}=\mathrm{i} \sigma^{3} \otimes I_{n} \partial_{x}$ acting on $\psi(x)$, a $2 n$-component wave function.
- Gap by mass term $M_{\text {one-body }}=\mathrm{i} \sigma^{3} \otimes I_{n} \partial_{x}+M$, where $M^{\dagger}=M$, $\sigma^{3} \otimes I_{n} M=-M \sigma^{3} \otimes I_{n}$ and M has no zero eigenvalue

The space of gapped $1+1 \mathrm{D}$ free fermions $w / U(1)$ symm.

is the space of the mass matrices that satisfy

$$
M^{\dagger}=M, \quad M^{2}=1, \quad \gamma^{1} M=-\gamma^{1} M, \quad \gamma^{1}=\sigma^{3} \otimes I_{n}
$$

If $\mathrm{i} \gamma_{1} \partial_{x}+M_{\text {gen }}$ has no zero eigenvalue, then we can deform $M_{\text {gen }}=$ $M_{A}+f M_{C}$ from $f=1$ to $f=0$, without encounter zero eigenvalue.

- M must have n eigenvalues +1 and n eigenvalues -1 .

The space of such M is $\frac{U(2 n)}{U(n) \times U(n)}$:

$$
M=U_{2 n}^{\dagger}\left(U_{n}^{\dagger} \oplus \tilde{U}_{n}^{\dagger}\right)\left(\sigma^{1} \otimes I_{n}\right)\left(U_{n} \oplus \tilde{U}_{n}\right) U_{2 n}
$$

- M also must satisfy $\gamma^{1} M=-\gamma^{1} M$, the unitary rotations $U(2 n)$ and $U(n) \times U(n)$ must also keep γ^{1} invariant.
- $U_{2 n}=U_{n} \oplus \tilde{U}_{n}: U(2 n) \rightarrow U(n) \times U(n)$.
- $U(n) \times U(n)=\sigma^{0} \otimes U_{n}: U(n) \times U(n) \rightarrow U(n)$
- The space of gapped $1+1 \mathrm{D}$ free fermion systems with $U(1)$ symmetry

$$
\mathcal{C}_{1}=\frac{U(n) \times U(n)}{U(n)}=U(n), \quad n \rightarrow \infty
$$

- $\pi_{0}[U(n)]=0 \rightarrow$ There is only one trivial phase for gapped $1+1 \mathbf{D}$ free fermion systems with $U(1)$ symmetry.

Gapped $d+1$ free fermion systems with $U(1)$ symmetry

- $d+1$ g gapless system $H_{\text {one-body }}=\mathrm{i} \gamma^{i} \partial_{i}+M(i=1, \cdots, d)$
- The gapping mass matrix satisfies
$M^{\dagger}=M, M^{2}=1, \gamma^{i} M=-\gamma^{i} M, \quad\left(\gamma^{i}\right)^{2}=1, \quad\left(\gamma^{i}\right)=\left(\gamma^{i}\right)^{\dagger}, \gamma^{i} \gamma^{j}=-\gamma^{j} \gamma^{i}$
$-d=1: \quad M^{\dagger}=M, M^{2}=1, \gamma^{1} M=-\gamma^{1} M, \quad \gamma^{1}=\sigma^{3} \otimes I_{n}$.
$-d=2: \quad M^{\dagger}=M, M^{2}=1, \gamma^{i} M=-\gamma^{i} M$, $\gamma^{1}=\sigma^{3} \otimes I_{n}, \gamma^{2}=\sigma^{1} \otimes I_{n}$.
$-d=3: \quad M^{\dagger}=M, M^{2}=1, \gamma^{i} M=-\gamma^{i} M$,

$$
\gamma^{1}=\sigma^{3} \otimes \sigma^{0} \otimes I_{n}, \gamma^{2}=\sigma^{1} \otimes \sigma^{0} \otimes I_{n}, \gamma^{3}=\sigma^{2} \otimes \sigma^{3} \otimes I_{n}
$$

- For $d=3, M$ has a form $M=\sigma^{2} \otimes \tilde{M}$, and \tilde{M} satisfy
$\tilde{M}^{\dagger}=M, \tilde{M}^{2}=1, \gamma^{3} \tilde{M}=-\gamma^{3} \tilde{M}, \gamma^{3}=\sigma^{3} \otimes I_{n}$.
The space of $d=3$ gapped sys. $=$ the space of $d=1$ gapped sys.
The d-dimensional gapped phases $=$ the $d+2$-dimensional gapped phases, for free fermions with $U(1)$ symmetry: $\mathcal{C}_{d}=\mathcal{C}_{d+2}$

Symmetry	class	$d=0$	1	2	3	4	5	6	7
$U(1)$	A	\mathbb{Z}	0	\mathbb{Z} IQH states	0	\mathbb{Z}	0	\mathbb{Z}	0

Edge excitations

- 2d bulk has even number of 2-component Direc fermions (R-L pairs)

$$
\begin{aligned}
\hat{H}_{\text {many-body }} & =\int \mathrm{d}^{2} \boldsymbol{x} \psi^{\dagger}(x)\left(\mathrm{i} \sigma^{3} \partial_{x}+\mathrm{i} \sigma^{1} \partial_{y}+m \sigma^{2}\right) \psi(x) \\
& +\int \mathrm{d}^{2} \boldsymbol{x} \psi^{\dagger}(x)\left(\mathrm{i} \sigma^{3} \partial_{x}-\mathrm{i} \sigma^{1} \partial_{y}+M \sigma^{2}\right) \Psi(x)
\end{aligned}
$$

- The Edge excitations are described by the low energy part $H=\mathrm{i} \sigma^{i} \partial_{i}+m \sigma^{2}$ (assuming $M \gg|m|$)
Two different ways of gapping $m>0$ and $m<0$
$\rightarrow n=1$ state and $n=0$ state. Edge is where m change sign.
- For one edge $\left(\mathrm{i} \sigma^{3} \partial_{x}+\mathrm{i} \sigma^{1} \partial_{y}+y \sigma^{2}\right) \psi_{\tilde{2}}=\mathrm{i} \partial_{t} \psi_{2}$

Can be solved by $\psi_{2}(x, y, t)=c(x, t) \tilde{\psi}_{2}(y)$, and $\left(\mathrm{i} \sigma^{1} \partial_{y}+y \sigma^{2}\right) \tilde{\psi}_{2}(y)=\left(\begin{array}{cc}0 & \mathrm{i}\left(\partial_{y}-y\right) \\ \mathrm{i}\left(\partial_{y}+y\right) & 0\end{array}\right) \tilde{\psi}_{2}(y)=0$.
We find $\tilde{\psi}_{2}^{\top}=\left(\mathrm{e}^{-\frac{y^{2}}{2}}, 0\right) \rightarrow \mathrm{i} \partial_{x} c=\mathrm{i} \partial_{t} c(k=-\omega$ left mover $)$.

- For the other edge $\left(\mathrm{i} \sigma^{3} \partial_{x}+\mathrm{i} \sigma^{1} \partial_{y}-y \sigma^{2}\right) \psi_{2}=\mathrm{i} \partial_{t} \psi_{2}$
\rightarrow right mover.

The gapped phases of $4+1 \mathrm{D}$ free fermions with $U(1)$ symm

Those phases are classified by \mathbb{Z} (ie labeled by an integer $n \in \mathbb{Z}$)
Edge excitations for $n=1$ phase
The bulk low-energy Hamiltonian: $H=\mathrm{i} \gamma^{i} \partial_{i}+m \gamma^{5}, \quad i=1, \cdots, 4$ $\gamma^{1}=\sigma^{1} \otimes \sigma^{3}, \gamma^{2}=\sigma^{2} \otimes \sigma^{3}, \gamma^{3}=\sigma^{3} \otimes \sigma^{3}, \gamma^{4}=\sigma^{0} \otimes \sigma^{1}, \gamma^{5}=\sigma^{0} \otimes \sigma^{2}$.
Two different ways of gapping $m>0$ and $m<0 \rightarrow n=0,1$.
Edge is where m change sign.

- +Edge: $\left[\left(\sum_{i=1,2,3} \mathrm{i} \gamma^{i} \partial_{x^{i}}\right)+\sigma^{0} \otimes \sigma^{1} \partial_{x^{4}}+x^{4} \sigma^{0} \otimes \sigma^{2}\right] \psi_{4}=\mathrm{i} \partial_{t} \psi_{4}$.

Let $\psi_{4}\left(x^{i}, x^{4}\right)=\psi_{2}\left(x^{i}\right) \otimes \tilde{\psi}_{2}\left(x^{4}\right)$ and $\left(\mathrm{i} \sigma^{1} \partial_{x^{4}}+x^{4} \sigma^{2}\right) \tilde{\psi}_{2}\left(x^{4}\right)=0$.
We find $\tilde{\psi}_{2}^{\top}=\left(\mathrm{e}^{-\frac{\left(x^{4}\right)^{2}}{2}}, 0\right) \rightarrow \mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}\left(x^{i}\right)=\mathrm{i} \partial_{t} \psi_{2}\left(x^{i}\right)$
\rightarrow right-hand massless Weyl fermion

- -Edge: $\left[\left(\sum_{i=1,2,3} \mathrm{i} \gamma^{i} \partial_{x^{i}}\right)+\sigma^{0} \otimes \sigma^{1} \partial_{x^{4}}-x^{4} \sigma^{0} \otimes \sigma^{2}\right] \psi_{4}=\mathrm{i} \partial_{t} \psi_{4}$. Let $\psi_{4}\left(x^{i}, x^{4}\right)=\psi_{2}\left(x^{i}\right) \otimes \tilde{\psi}_{2}\left(x^{4}\right)$ and $\left(\mathrm{i} \sigma^{1} \partial_{x^{4}}-x^{4} \sigma^{2}\right) \tilde{\psi}_{2}\left(x^{4}\right)=0$.
We find $\tilde{\psi}_{2}^{\top}=\left(0, \mathrm{e}^{-\frac{\left(x^{4}\right)^{2}}{2}}\right) \rightarrow-\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}\left(x^{i}\right)=\mathrm{i} \partial_{t} \psi_{2}\left(x^{i}\right)$
\rightarrow left-hand massless Weyl fermion

Is the handness of 3+1D Weyl fermion absolute?

- Right-hand Weyl fermion: $\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{R}=\mathrm{i} \partial_{t} \psi_{2}^{R}$
- Left-hand Weyl fermion: $-\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{L}=\mathrm{i} \partial_{t} \psi_{2}^{L}$

To give Weyl fermion a mass \rightarrow

- Massive Dirac fermion $=$ Right-hand Weyl \oplus Left-hand Weyl:

$$
\mathrm{i} \sigma^{i} \otimes \sigma^{3} \partial_{x^{i}} \psi_{4}+m \sigma^{0} \otimes \sigma^{2} \psi_{4}=\mathrm{i} \partial_{t} \psi_{4}
$$

In the standard model, each family $\left(e, \mu, q_{r}, q_{g}, q_{b}, \nu\right)$ has
7 right-hand Weyl fermions and 8 left-hand Weyl fermions, or 8 right-hand Weyl fermions and 7 left-hand Weyl fermions, or 15 right-hand Weyl fermions and 0 left-hand Weyl fermions.

- The transformation $\psi_{2}^{L}=\mathrm{i} \sigma^{2}\left(\psi_{2}^{R}\right)^{*}$ changes $\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{R}=\mathrm{i} \partial_{t} \psi_{2}^{R}$ to $-\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{L}=\mathrm{i} \partial_{t} \psi_{2}^{L}$.

$$
-\mathrm{i}\left(\sigma^{i}\right)^{*} \partial_{x^{i}}\left(\psi_{2}^{R}\right)^{*}=\mathrm{i} \partial_{t}\left(\psi_{2}^{R}\right)^{*} \rightarrow-\mathrm{i} \sigma^{i} \partial_{x^{i}} \mathrm{i} \sigma^{2}\left(\psi_{2}^{R}\right)^{*}=\mathrm{i} \partial_{t} \mathrm{i} \sigma^{2}\left(\psi_{2}^{R}\right)^{*}
$$

Charge conjugation of right-hand Weyl fermion = left-hand Weyl fermion

3+1D massive Majorana fermion

- $\bar{\psi}_{4}=\sigma^{2} \otimes \sigma^{2}\left(\psi_{4}\right)^{*}$ and ψ_{4} satisfy the same massive Dirac equation

$$
\begin{aligned}
\mathrm{i} \sigma^{i} \otimes \sigma^{3} \partial_{x^{i}} \psi_{4}+m \sigma^{0} \otimes \sigma^{2} \psi_{4} & =\mathrm{i} \partial_{t} \psi_{4} \\
\mathrm{i}\left(\sigma^{i}\right)^{*} \otimes \sigma^{3} \partial_{x^{i}} \psi_{4}^{*}-m \sigma^{0} \otimes\left(\sigma^{2}\right)^{*} \psi_{4}^{*} & =\mathrm{i} \partial_{t} \psi_{4}^{*} \\
\mathrm{i} \sigma^{i} \otimes \sigma^{3} \partial_{x^{i}} \bar{\psi}_{4}+m \sigma^{0} \otimes \sigma^{2} \bar{\psi}_{4} & =\mathrm{i} \partial_{t} \bar{\psi}_{4}
\end{aligned}
$$

If we requires that $\bar{\psi}_{4}=\psi_{4} \rightarrow$ massive 3+1D Majorana fermion.

- 3+1D massless Weyl fermion: 2 complex components

3+1D massive Dirac fermion: 4 complex components
$3+1 \mathrm{D}$ massive Majorana fermion: 4 real $=2$ complex components

- Rewrite the EOM of massive 3+1D Majorana fermion

$$
\begin{aligned}
& \psi_{4}=\left(\psi_{2}^{R}, \psi_{2}^{L}\right), \quad \psi_{2}^{L}=\mathrm{i} \sigma^{2}\left(\psi_{2}^{R}\right)^{*}, \quad \psi_{2}^{R}=-\mathrm{i} \sigma^{2}\left(\psi_{2}^{L}\right)^{*} \\
& \mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{R}-\mathrm{i} m \psi_{2}^{L}=\mathrm{i} \partial_{t} \psi_{2}^{R} \\
&-\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{L}+\mathrm{i} m \psi_{2}^{R}=\mathrm{i} \partial_{t} \psi_{2}^{L}
\end{aligned}
$$

which is $\mathrm{i} \sigma^{i} \partial_{x^{i}} \psi_{2}^{R}+m \sigma^{2}\left(\psi_{2}^{R}\right)^{*}=\mathrm{i} \partial_{t} \psi_{2}^{R}$.
The right-hand Weyl fermion gains a mass at the cost of $U(1)$ symm. breaking down to Z_{2} (EOM not inv. under $\psi_{2}^{R} \rightarrow \mathrm{e}^{\mathrm{i} \theta} \psi_{2}^{R}$). The electrons in superconductor are Majorana ferions.

$U(1)$ anomaly: realize 3D massless Weyl fermion in 3D

- We can give a massless right-hand Weyl fermion a mass if we break the $U(1)$ symmetry down to $Z_{2} . \rightarrow$
- Non-interacting 4+1D $n=1$ insulator is trivial without the $U(1)$ symmetry, but non-trivial with the $U(1)$ symmetry.
- For two gapped states of non-interating fermions, existance of a gapped boundary \leftrightarrow existance of a deformation path without closing gap.
- A single $3+1 \mathrm{D}$ massless right-hand Weyl fermion with $U(1)$ symmetry is anomalous \rightarrow cannot be realized on a 3+1D lattice if we preserve the $U(1)$ symmetry.
- Can realize $3+1$ D massless right-hand Weyl fermion on a 3D lattice if we break the $U(1)$ symm. down to Z_{2}

Massless left-hand Weyl fermion	Massive Majorana fermion (supercoducting U(1)->Z2)
$4+1 \mathrm{D}=1$ insulator	$4+1 \mathrm{D}=1$ insulator
Massless right-hand	Massless right-hand
Weyl fermion	Weyl fermion
$\mathrm{U}(1)$ symmetry anomaly	gravitational anomaly

Put the chiral SO(10) GUT on lattice

- In the $S O(10)$ GUT in $3+1 \mathrm{D}$, we have 16 massless right-hand Weyl fermion forming a $16-\mathrm{dim}$. spinner representation of $S O(10)$.
- Is such GUT anomalous or not?
- Can we put puch such a chiral GUT on a 3+1D lattice?
(The long standing chiral fermion problem)
- We have seen that 16 massless right-hand Weyl fermion with $U^{16}(1)$ symmetry cannot be put on $3+1$ D lattice. But can be put on 3+1D lattice if we reduce the symmetry to Z_{2}^{16}.
Can we put n massless $d+1$ Dermions with G symmetry on $d+1 \mathbf{D}$ lattice?
Yes if (1) there is a mass term that give all fermions a mass (which may break the symmetry G down to G_{ψ}), and (2) $\pi_{n}\left(G / G_{\Psi}\right)=0$ for $n \leq d+2$. \rightarrow We can put SU(10) GUT on 3+1D lattice.
- The above condition is only sufficient. What is a necessary and sufficient condition?

Spectrum: relation between spaces of gapped states of non-interacting fermions in different dimensions

For two gapped states of non-interating fermions, existance of a gapped boundary \leftrightarrow existance of a deformation path without closing gap.

- Let \mathcal{M}_{n} be the space of gapped states of non-interacting fermions in n-dimensional space. Let $\mathcal{M}_{n}(\alpha), \alpha \in \pi_{0}\left(\mathcal{M}_{n}\right)$ be the $\alpha^{\text {th }}$ component. Let $\alpha=0$ correspond to the trivial phase (the product states).
- The space of gapped boundaries of a trivial state is the space of the based loops in \mathcal{M}_{n} with base point in $\mathcal{M}_{n}(0)$ (which is the loop space $\Omega \mathcal{M}_{n}$. Check Wiki) Gaiotto Johnson-Freyd, arXiv:1712.07950
- Physically, the space of gapped boundary of a trivial state is (or homotopically equivalent to) the space of gapped states in one lower dimension:

$$
\Omega \mathcal{M}_{n}(0) \sim \mathcal{M}_{n-1}
$$

- For loop space, we have $\pi_{k}(\Omega \mathcal{M})=\pi_{k+1}(\mathcal{M})$. Thus the space \mathcal{M}_{n} of the space of gapped states of non-interacting fermions satisfies

$$
\pi_{k}\left(\mathcal{M}_{n}\right)=\pi_{l}\left(\mathcal{M}_{n-k+1}\right) \quad \rightarrow \quad \pi_{0}\left(\mathcal{M}_{n}\right)=\pi_{l}\left(\mathcal{M}_{n+1}\right)
$$

Classify gapped phases of $0+1 \mathrm{D}$ free fermions

 with no symmetry $=Z_{2}^{f}$ symmetry- Fermion systems with no symmetry $=$ Fermion system with Z_{2}^{f} symmetry. They correspond to fermionic superconductors.
- $0+1 \mathrm{D}$ free fermion system with Z_{2}^{f} symmetry is described by the following many-body Hamiltonian

$$
\begin{aligned}
& \hat{H}=\sum_{a b} M_{a b} \hat{c}_{a}^{\dagger} \hat{c}_{b}+\sum_{a b}\left(\frac{1}{2} \Delta_{a b} \hat{c}_{a} \hat{c}_{b}+\text { h.c. }\right)=\frac{1}{4} \sum_{\alpha, \beta} A_{\alpha \beta} \mathrm{i} \hat{\eta}_{\alpha} \hat{\eta}_{\beta}+\# \\
& \hat{c}_{a}=\frac{\hat{\eta}_{a, 1}+\mathrm{i} \hat{\eta}_{a, 2}}{2},\left\{\hat{c}_{a}^{\dagger}, \hat{c}_{b}\right\}=\delta_{a b},\left\{\hat{\eta}_{\alpha}, \hat{\eta}_{\beta}\right\}=2 \delta_{\alpha \beta}, \quad A^{\top}=-A, A^{*}=A .
\end{aligned}
$$

- To see the relateion between M and A, let $M=M^{S}+\mathrm{i} M^{A}$ and $\Delta=0$.

$$
\hat{H}=\sum_{a b} \frac{i}{4}\left(\hat{\eta}_{a, 1} M_{a b}^{S} \hat{\eta}_{b, 2}-\hat{\eta}_{a, 2} M_{a b}^{S} \hat{\eta}_{b, 1}\right)+\frac{i}{4}\left(\hat{\eta}_{a, 1} M_{a b}^{A} \hat{\eta}_{b, 1}+\hat{\eta}_{a, 2} M_{a b}^{A} \hat{\eta}_{b, 2}\right)+\#
$$

Let us write $M=\mathrm{i}\left(M^{A}-\mathrm{i} M^{S}\right)$. We find that A is obtained by replacing 1 by σ^{0} and i by $-\varepsilon$ in the bracket:

$$
A=\sigma^{0} \otimes M^{A}-(-\varepsilon) \otimes M^{S}=\sigma^{0} \otimes M^{A}+\varepsilon \otimes M^{S}
$$

- To see the relateion between Δ and A, let $M=0$ and $\Delta=\Delta^{R}+\mathrm{i} \Delta^{\prime}$

$$
\begin{aligned}
\hat{H} & =\sum_{a b} \frac{\mathrm{i}}{8}\left(\hat{\eta}_{a, 1} \Delta_{a b}^{R} \hat{\eta}_{b, 2}-\hat{\eta}_{a, 2} \Delta_{a b}^{R} \hat{\eta}_{b, 1}\right)+\frac{\mathrm{i}}{8}\left(\hat{\eta}_{a, 1} \Delta_{a b}^{\prime} \hat{\eta}_{b, 1}+\hat{\eta}_{a, 2} \Delta_{a b}^{\prime} \hat{\eta}_{b, 2}\right)+\text { h.c. } \\
& =\sum_{a b} \frac{\mathrm{i}}{4}\left(\hat{\eta}_{a, 1} \Delta_{a b}^{R} \hat{\eta}_{b, 2}-\hat{\eta}_{a, 2} \Delta_{a b}^{R} \hat{\eta}_{b, 1}\right)+\frac{\mathrm{i}}{4}\left(\hat{\eta}_{a, 1} \Delta_{a b}^{\prime} \hat{\eta}_{b, 1}+\hat{\eta}_{a, 2} \Delta_{a b}^{\prime} \hat{\eta}_{b, 2}\right) .
\end{aligned}
$$

Let us write $\Delta=\mathrm{i}\left(\Delta^{\prime}-\mathrm{i} \Delta^{R}\right)$. We find that A is obtained by replacing 1 by σ^{0} and i by $-\varepsilon$ in the bracket:

$$
A=\sigma^{0} \otimes \Delta^{\prime}-(-\varepsilon) \otimes \Delta^{R}=\sigma^{0} \otimes \Delta^{\prime}+\varepsilon \otimes \Delta^{R}
$$

- The superconductor is fully characterized by a $2 n \times 2 n$ anti-symmetric real matrix A. We will concentrate on A. Non-zero eigenvalues of i A appear in pairs $\pm \epsilon$. Up to homotopic equivalence, we may assume non-zero eigenvalues of $\mathrm{i} A$ to be ± 1.
- Gapped $\rightarrow A$ has no zero eigenvalue. Space of $0+1 D$ gapped non-interacting fermion systems with Z_{2}^{f} symmetry $\mathcal{R}_{0}^{0} \cong$ homotopic space of anti-symmetric real matrix matrices with $\pm \mathrm{i}$ eigenvalues.

The classifying space \mathcal{R}_{0}^{0}

$$
\begin{aligned}
A & =O_{O(2 n)}\left(\begin{array}{ccc}
\varepsilon & 0 & \cdots \\
0 & \varepsilon & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) O_{O(2 n)}^{\top} \quad \text { where } \varepsilon=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =O_{O(2 n)} O_{U(n)}\left(\begin{array}{ccc}
\varepsilon & 0 & \cdots \\
0 & \varepsilon & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) O_{U(n)}^{\top} O_{O(2 n)}^{\top} \rightarrow \mathcal{R}_{0}^{0}=\left.\frac{O_{O(2 n)}}{O_{U(n)}}\right|_{n \rightarrow \infty}
\end{aligned}
$$

- What is $\mathcal{R}_{0}^{0}=\frac{O_{O(2 n)}}{O_{U(n)}}$ for $n=1$? From $\{U(1)\}_{1 \times 1}=\{\cos \theta+\mathrm{i} \sin \theta\} \rightarrow$ $\left\{O_{U(1)}\right\}_{2 \times 2}=\left\{\cos \theta-\varepsilon \sin \theta=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\right\}_{\text {replace } i \text { by } \varepsilon}$. $\{O(2)\}_{2 \times 2}=\left\{\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)_{\text {det }=1},\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)_{\text {det }=-1}\right\}$ Setting $\theta=0$, we find $\mathcal{R}_{0}^{0}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$ as a set of O 's. As a set of A 's, we have $\mathcal{R}_{0}^{0}=\left\{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\}=\mathbb{Z}_{2}$

Many-body picture of the classifying space \mathcal{R}_{0}^{0}

- Fermion-number-parity: $\hat{N}_{a}=\hat{c}_{a}^{\dagger} \hat{c}_{a}=\frac{1+\mathrm{i} \hat{\eta}_{2 a-1} \hat{\eta}_{2 a}}{2}$
$\rightarrow \hat{P}_{f}=\prod_{a}\left(1-2 \hat{N}_{a}\right)=\prod_{a}\left(-\mathrm{i} \hat{\eta}_{2 a-1} \hat{\eta}_{2 a}\right)=(-\mathrm{i})^{n} \prod_{\alpha=1}^{2 n} \hat{\eta}_{\alpha}$
- \hat{P}_{f} is always a symmetry for fermion system

$$
\left[\hat{P}_{f}, \hat{H}\right]=0
$$

We denote this symmetry as Z_{2}^{f}, since $\hat{P}_{f}^{2}=\mathrm{id}$.

- Assume A is "diagonal"

$$
A=\left(\begin{array}{ccc}
\pm \varepsilon & 0 & \cdots \\
0 & \pm \varepsilon & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \quad \rightarrow \quad \hat{H}= \pm \underbrace{\mathrm{i} \hat{\eta}_{1} \hat{\eta}_{2}}_{2 \hat{c}_{1}^{\dagger} \hat{c}_{1}-1} \pm \underbrace{\mathrm{i} \hat{\eta}_{3} \hat{\eta}_{4}}_{2 \hat{c}_{2}^{\hat{\dagger}} \hat{c}_{2}-1}+\cdots
$$

$\mathcal{R}_{0}^{0}=\mathbb{Z}_{2}$ corresponds to $\hat{P}_{f}= \pm 1$ ground states of \hat{H}.

The $U^{f}(1)$ symmetry for non-interacting fermion systems

- \hat{H} commutes with the fermion-number operator

$$
\hat{N} \equiv \sum_{a}\left(\hat{c}_{a}^{\dagger} \hat{c}_{a}-\frac{1}{2}\right)=\sum_{a}\left(\frac{\hat{c}_{a}^{\dagger} \hat{c}_{a}-\hat{c}_{a} \hat{c}_{a}^{\dagger}}{2}\right)=\frac{i}{4} \sum_{\alpha \beta} Q_{\alpha \beta} \hat{\eta}_{\alpha} \hat{\eta}_{\beta}
$$

where $Q=\varepsilon \otimes I, Q^{2}=-1, Q^{*}=Q, Q^{\top}=-Q=Q^{-1}, \quad \varepsilon \equiv \mathrm{i} \sigma^{2}$.

- The symmetry group $\left\{U^{f}(1)\right\}=\left\{\mathrm{e}^{\mathrm{i} \theta \hat{N}}\right\} . Z_{2}^{f}=\left\{\right.$ id, $\left.\mathrm{e}^{\mathrm{i} \pi \hat{N}}\right\} \subset U^{f}(1)$.
- $[\hat{H}, \hat{N}]=0$ requires that

$$
A Q=Q A, \quad Q^{2}=-1
$$

- Such a real anti-symmetric matrix A has the form
$A=\sigma^{0} \otimes M_{a}+\varepsilon \otimes M_{s}$, where M_{s} is real symmetric and M_{a} real antisymmetric. We can convert such a $2 n \times 2 n$ real antisymmetric matrix A into a $n \times n$ Hermitian matrix $M=M_{s}+\mathrm{i} M_{a}$, by replacing ε by i. This reduces the problem to the one that we discussed before (with fermion number conservation).

Z_{2} symmetry: $Z_{2} \times Z_{2}^{f}$ or Z_{4}^{f} symmetry

- $A Z_{2} \times Z_{2}^{f}$ or Z_{4}^{f} transformation is generated by \hat{P}_{f} and \hat{C}. (1) $\hat{C}^{2}=$ id $\rightarrow Z_{2} \times Z_{2}^{f}$. (2) $\hat{C}^{2}=\hat{P}_{f} \rightarrow Z_{4}^{f}$.

Note that $Z_{2}^{f} \subset Z_{4}^{f}$ or $Z_{2} \times Z_{2}^{f}$.

- Matrix representation of \hat{C} :

$$
\hat{C} \hat{\eta}_{\alpha} \hat{C}^{\dagger}=C_{\alpha \beta} \hat{\eta}_{\beta}, \quad \hat{C}^{\dagger}=\hat{C}^{-1}, \quad \hat{\eta}_{\alpha}^{\dagger}=\hat{\eta}_{\alpha}, \quad\left\{\hat{\eta}_{\alpha}, \hat{\eta}_{\beta}\right\}=2 \delta_{\alpha \beta}
$$

- $\left(\hat{C} \hat{\eta}_{\alpha} \hat{C}^{\dagger}\right)^{\dagger}=\hat{C} \hat{\eta}_{\alpha} \hat{C}^{\dagger}=C_{\alpha \beta}^{*} \hat{\eta}_{\beta} \rightarrow C^{*}=C$.
- C must be an orthogonal matrix $C^{\top}=C^{-1}$ to keep $\left\{\hat{\eta}_{\alpha}, \hat{\eta}_{\beta}\right\}=2 \delta_{\alpha \beta}$ invariant.
- $C^{2}=s_{C}$. (1) $s_{C}=+\rightarrow Z_{2} \times Z_{2}^{f}$. (2) $s_{C}=-\rightarrow Z_{4}^{f}$.
- $\mathrm{A} Z_{2} \times Z_{2}^{f}$ or Z_{4}^{f} symmetry: $\hat{C} \hat{H} \hat{C}^{-1}=\hat{H}$ implies that A satisfies

$$
C A=C A, \quad C^{2}=s_{C}
$$

$U^{f}(1)$ and Z_{2} symmetries

- If we have both $U^{f}(1)$ and Z_{2} symmetries, then $\hat{C} \hat{N}=\hat{N} \hat{C}$ and

$$
C Q=s_{U C} Q C, \quad s_{U C}=+.
$$

- $U^{f}(1)$ and $Z_{2} \times Z_{2}^{f}$ symmetry:

$$
A Q=Q A, \quad A C=C A, \quad Q^{2}=-1, \quad C^{2}=1, \quad C Q=Q C
$$

Symmetry group $G^{f}=U^{f}(1) \times Z_{2}$.

- $U^{f}(1)$ and Z_{4}^{f} symmetry:

$$
A Q=Q A, \quad A C=C A, \quad Q^{2}=-1, C^{2}=-1, C Q=Q C
$$

Symmetry group $G^{f}=\frac{U^{f}(1) \times Z_{4}^{f}}{Z_{2}^{f}}$.

$U^{f}(1)$ and Z_{2} charge conjugation symmetries

- If we have $U^{f}(1)$ and Z_{2} charge conjugation symmetries, then $\hat{C} \hat{N}=-\hat{N} \hat{C}$ and

$$
C Q=s_{U C} Q C, \quad s_{U C}=-
$$

- $U^{f}(1)$ and $Z_{2} \times Z_{2}^{f}$ charge conjugation symmetry:

$$
A Q=Q A, \quad A C=C A, \quad Q^{2}=-1, \quad C^{2}=1, C Q=-Q C
$$

Symmetry group $G^{f}=U^{f}(1) \rtimes Z_{2}$.
Classification: We have $Q=\varepsilon \otimes I_{n}$ and $C=\sigma^{1} \otimes I_{n}$. For A to have $U^{f}(1) \rtimes Z_{2}$ symmetry, $A=\sigma^{0} \otimes \tilde{A}$, and no condition on \tilde{A}. Same as no symmetry (or Z_{2}^{f} symmetry).

- $U^{f}(1)$ and Z_{4}^{f} charge conjugation symmetry:

$$
A Q=Q A, \quad A C=C A, \quad Q^{2}=-1, \quad C^{2}=-1, \quad C Q=-Q C
$$

Symmetry group $G^{f}=\frac{U^{f}(1) \rtimes Z_{4}^{f}}{Z_{2}^{f}}$.

Time-reversal symmetry

- The time-reversal transformation \hat{T} is antiunitary: $\hat{T} \hat{T}^{-1}=-\mathrm{i}$. In terms of the Majorana fermions, we have (just like Z_{2} symmetry \hat{C})

$$
\hat{T} \hat{\eta}_{\alpha} \hat{T}^{-1}=T_{\alpha \beta} \hat{\eta}_{\beta}, \quad T^{\top}=T^{-1} .
$$

- For fermion systems, we may have $\hat{T}^{2}=\left(s_{T}\right)^{\hat{N}}, s_{T}= \pm$. $\left(s_{T}=-\right.$ for electrons). This implies that $\hat{T}^{2} \hat{c}_{i} \hat{T}^{-2}=s_{T} \hat{c}_{i}$ and $T^{2}=s_{T}$.
- Symmetry group:
(1) $s_{T}=+\rightarrow Z_{2}^{T}$.
(2) $s_{T}=-\rightarrow Z_{4}^{T}$.
- The time-reversal invariance $\hat{T} \hat{H} \hat{T}^{-1}=\hat{H}$ for $\hat{H}=\frac{i}{2} \sum_{\alpha \beta} A_{\alpha \beta} \hat{\eta}_{\alpha} \hat{\eta}_{\beta}$ implies that

$$
T^{\top} A T=-A \quad \text { or } \quad A T=-T A, \quad T^{2}=s_{T}
$$

$A T=-T A$ is different from the unitary Z_{2} symmetry.

Relations between U, C, and T

- The time-reversal transformation \hat{T} and the $U^{f}(1)$ transformation \hat{N} may have a nontrivial relation: $\hat{T} \mathrm{e}^{\mathrm{i} \theta \hat{N}} \hat{T}^{-1}=\mathrm{e}^{\text {SUT } i \theta \hat{N}}$, SUT $= \pm$, or $\hat{T} \hat{N} \hat{T}^{-1}=-$ sut $^{\prime} \hat{N}$. This gives us

$$
T Q=s_{U T} Q T
$$

- $s_{U T}=+\rightarrow U_{\text {spin }}^{f}(1)$ (conservation of S^{z} spin in XY magnets).
- sut $=-\rightarrow U_{\text {charge }}^{f}(1)$ (conservation of electric spin).
- The commutation relation between \hat{T} and \hat{C} has two choices: $\hat{T} \hat{C}=s_{T C}^{\hat{N}} \hat{C} \hat{T}, s_{T C}= \pm$, we have

$$
C T=s_{T C} T C .
$$

- The commutation relation between \hat{N} and \hat{C} has two choices: $\hat{N} \hat{C}=s_{U C} \hat{C} \hat{N}$, sUC $= \pm$, we have

$$
C Q=s_{u C} Q C .
$$

- $s_{U T}=-\rightarrow C$ is a charge conjugation.
sUt $=+\rightarrow C$ is not a charge conjugation.

Summary of symmetry groups with $U^{f}(1), C$, and T

Symmetry groups	Relations total 52 groups
$G_{s_{C}}(C) \quad(2)$	$\hat{C}^{2}=s_{C}^{\hat{N}}, \quad s_{C}= \pm$.
$G_{S T}(T) \quad$ (2)	$\hat{T}^{2}=s_{T}^{N}, \quad s_{T}= \pm$.
$G_{S_{C}}^{\text {suc }}(U, C)$	$\hat{C}^{2}=s_{C}^{\hat{N}}, \quad \hat{C} \hat{N} \hat{C}^{-1}=s_{U C} \hat{N}, s_{C}, s_{U C}= \pm$.
$G_{s T}^{S U T}(U, T)$	$\hat{T} \mathrm{e}^{\mathrm{i} \theta \hat{N} \hat{T}} \hat{T}^{-1}=\mathrm{e}^{\text {SUT } \mathrm{i} \theta \hat{N}}, \hat{T}^{2}=s_{T}^{\hat{N}}, \quad s_{U T}, s_{T}= \pm$.
$G_{S_{T S C}^{s T C}}^{s T C}(T, C) \quad$ (8)	$\hat{T}^{2}=s_{T}^{\hat{N}}, \hat{C}^{2}=s_{C}^{\hat{N}}, \hat{C} \hat{T}=\left(s_{T C}^{N}\right) \hat{T} \hat{C}, s_{T C}, s_{T}, s_{C}= \pm$.
$G_{S_{T} s_{C} S_{C T} S_{S U C}}(U, T, C)$	$\begin{align*} & \hat{C} \hat{N} \hat{C}^{-1}=s_{U C} \hat{N}, \hat{T} \mathrm{e}^{\mathrm{i} \theta \hat{N} \hat{N}}{ }^{-1}=\mathrm{e}^{s_{U T} \mathrm{i} \theta \hat{N}}, \quad \hat{T}^{2}=s_{T}^{\hat{N}}, \\ & \hat{C}^{2}=s_{C}^{N}, \hat{C} \hat{T}=\left(s_{T C}\right) \hat{T} \hat{C}, \quad s_{T}, s_{C}, s_{U T}, s_{T C}, s_{U C}= \pm . \tag{32} \end{align*}$

- Topological insulator Electrons with $U^{f}(1)$-charge and T : symmetry group $G_{-}^{-}(U, T)=\left(U^{f}(1)_{\text {charge }} \rtimes Z_{4}^{T}\right) / Z_{2}^{f}$
- Topo. S_{z} superconductor Electrons with $U^{f}(1)$-spin and T : symmetry group $G_{-}^{+}(U, T)=\left(U^{f}(1)_{\text {spin }} \times Z_{4}^{T}\right) / Z_{2}^{f}$
- Topological T superconductor Electrons with T :
symmetry group $G_{-}(T)=Z_{4}^{T}$
- Topological \tilde{T} superconductor Electrons with \tilde{T} : symmetry group $G_{+}(T)=Z_{2}^{T}(\tilde{T}=T \times \pi$-spin-rotation)

Including the Z_{2}^{f} FNP symmetry and fermionic symmetry

The fermion systems always has FNP Z_{2}^{f} symmetry. But for the symmetry groups in the above list, some conatin Z_{2}^{f} and are complete; some do not conatin Z_{2}^{f} and are incomplete.

Symmetry groups	Total fermion symmetry groups G^{f}
$G_{s_{C}}(C)$	$G_{+}(C) \times Z_{2}^{f}, \quad G_{-}(C) \supset Z_{2}^{f}$.
$G_{S_{T}}(T)$	$G_{+}(T) \times Z_{2}^{f}, \quad G_{-}(T) \supset Z_{2}^{f}$.
$G_{s c}^{\text {SUC }}(U, C)$	$G_{s c}^{\text {SUC }}\left(U^{f}, C\right) \supset Z_{2}^{f}$
$G_{S_{T}}^{\text {SUT }}(U, T)$	$G_{s T}^{\text {SUT }}\left(U^{f}, T\right) \supset Z_{2}^{f}$
	$G_{++}^{+}(T, C) \times Z_{2}^{f}$, others $\supset Z_{2}^{f}$
	$G_{S_{T T C}}^{S_{\text {UT }} S_{T} S^{\text {SUC }}}\left(U^{f}, T, C\right) \supset Z_{2}^{f}$

If the full symmetry group is $G^{f}=G_{b} \times Z_{2}^{f}$, then the Z_{2}^{f} is missing.
Symmetry of fermion systems is described by

$$
1 \rightarrow Z_{2}^{f} \rightarrow G^{f} \rightarrow G_{b} \rightarrow 1
$$

or by the full symmetry group G^{f} and its central Z_{2}^{f} subgroup:

$$
\left(G^{f}, Z_{2}^{f} \stackrel{\text { cen }}{\subset} G^{f}\right)
$$

Some Od superconductors

- Superconductors with no symmetry $\left(G^{f}=Z_{2}^{f}\right)$

Classifying space $\mathcal{R}_{0}^{0}=$ space of real anti-symmetric matrices A with eigenvalue $\pm \mathrm{i}$ (ie with $A^{2}=-1$).

- T superconductors with symmetry $G_{-}(T)=Z_{4}^{T}=G^{f}$

$$
T A=-A T, \quad T^{2}=-1
$$

Classifying space $\mathcal{R}_{0}^{1}=$ space of real anti-symmetric matrices A, $A^{2}=-1$, that anti commute with an orthogonal matrix that square to -1 .

- \tilde{T} superconductors with symmetry $G_{+}(T)=Z_{2}^{T}\left(G^{f}=G_{+}(T) \times Z_{2}^{f}\right)$

$$
T A=-A T, \quad T^{2}=1
$$

Classifying space $\mathcal{R}_{1}^{0}=$ space of real anti-symmetric matrices A, $A^{2}=-1$, that anti commute with an orthogonal matrix that square to 1.

Some Od topological superconductors

- S_{z}, T superconductors with $G_{-}^{+}(U, T)=\left(U^{f}(1) \times Z_{4}^{T}\right) / Z_{2}=G^{f}$

$$
Q A=A Q, Q=\varepsilon \otimes I, T A=-A T, T Q=T Q, \quad T^{2}=-1, T=\varepsilon \otimes T_{M}
$$

- A has the form $A=\sigma^{0} \otimes M_{a}+\varepsilon \otimes M_{s} \rightarrow M=M_{s}+\mathrm{i} M_{a}=M^{\dagger}$.

$$
T_{M} M=-M T_{M}, \quad T_{M}^{2}=1
$$

Classifying space $\mathcal{C}_{1}=$ space of hermitian matrix $M, M^{2}=1$, that anti-commute with an unitary matrix whose square is 1 .
In comparison

- Insulators with symmetry $G^{f}=U^{f}(1)$.

Classifying space $\mathcal{C}_{0}=$ space of hermitian matrix M, with $M^{2}=1$.

- The above \mathcal{C}_{0} and \mathcal{C}_{1} agrees with our previous definition of classifying space \mathcal{C}_{d} using γ-matrices.

Od insulator with $U^{f}(1)$-charge and time-reversal symm.

- Insulator with symmetry $G_{-}^{-}(U, T)=\left(U^{f}(1) \rtimes Z_{4}^{T}\right) / Z_{2}=G^{f}$

$$
\begin{aligned}
& Q A=A Q, Q^{2}=-1, T A=-A T, T Q=-T Q, T^{2}=-1 \\
& \rho_{i} A=-A \rho_{i}, \rho_{1}=T, \rho_{2}=T Q, \rho_{1} \rho_{2}=-\rho_{2} \rho_{1}, \rho_{1}^{2}=\rho_{2}^{2}=-1
\end{aligned}
$$

Classifying space $\mathcal{R}_{0}^{2}=$ space of real anti-symmetric matrices A, $A^{2}=-1$, that anti commute with two anti-commuting orthogonal matrices that square to -1 .

- Insulator with symmetry $G_{-}^{+}(U, T)=U^{f}(1) \rtimes Z_{2}^{T}=G^{f}$ (Here time reversal is $\tilde{T}=T_{\text {elec }} \times \pi$-spin-rotation)

$$
\begin{aligned}
& Q A=A Q, Q^{2}=-1, T A=-A T, T Q=-T Q, T^{2}=1 \\
& \rho_{i} A=-A \rho_{i}, \rho_{1}=T, \quad \rho_{2}=T Q, \rho_{1} \rho_{2}=-\rho_{2} \rho_{1}, \quad \rho_{1}^{2}=\rho_{2}^{2}=1
\end{aligned}
$$

Classifying space $\mathcal{R}_{2}^{0}=$ space of real anti-symmetric matrices A, $A^{2}=-1$, that anti commute with two anti-commuting orthogonal matrices that square to 1 .

The classifying spaces \mathcal{R}_{p}^{q} and \mathcal{R}_{p}

- Classifying space \mathcal{R}_{p}^{q} is formed by anti-symmetric real matrix A satisfying ($i, j=1, \cdots, p+q$)

$$
\begin{aligned}
& \rho_{i} A=-A \rho_{i}, \quad A^{2}=-1 \\
& \rho_{i}^{\top}=\rho_{i}^{-1}, \quad \rho_{i} \rho_{j}=-\rho_{i} \rho_{j},\left.\quad \rho_{i}^{2}\right|_{i=1, \cdots, p}=1,\left.\quad \rho_{i}^{2}\right|_{i=p+1, \cdots, p+q}=-1 .
\end{aligned}
$$

- Classifying space \mathcal{R}_{p} is formed by symmetric real matrix A satisfying

$$
\begin{aligned}
& \rho_{i} A=-A \rho_{i}, \quad A^{2}=1 \\
& \rho_{i}^{\top}=\rho_{i}^{-1}, \quad \rho_{i} \rho_{j}=-\rho_{i} \rho_{j},\left.\quad \rho_{i}^{2}\right|_{i=1, \cdots, p}=1
\end{aligned}
$$

Properties of the classifying spaces \mathcal{R}_{p}^{q}

- $\mathcal{R}_{p}^{q}=\mathcal{R}_{p+1}^{q+1}$
- From $\tilde{A} \in R_{p}^{q}$ that satisfies

$$
\begin{aligned}
& \tilde{A} \tilde{\rho}_{i}=-\tilde{\rho}_{i} \tilde{A}, \quad \tilde{A}^{2}=-1, \quad \tilde{\rho}_{j} \tilde{\rho}_{i}+\left.\tilde{\rho}_{i} \tilde{\rho}_{j}\right|_{i \neq j}=0, \\
& \left.\tilde{\rho}_{i}^{2}\right|_{i=1, \ldots, p}=1,\left.\quad \tilde{\rho}_{i}^{2}\right|_{i=p+1, \ldots, p+q}=-1,
\end{aligned}
$$

we can define

$$
\begin{aligned}
A=\tilde{A} \otimes \sigma^{3}, & \left.\rho_{i}\right|_{i=1, \ldots, p}=\tilde{\rho}_{i} \otimes \sigma^{3}, \quad \rho_{p+1}=I \otimes \sigma^{1} \\
& \left.\rho_{i}\right|_{i=p+1+1, \ldots, p+1+q}=\tilde{\rho}_{i-1} \otimes \sigma^{3}, \quad \rho_{p+1+q+1}=I \otimes \varepsilon
\end{aligned}
$$

We can check that $A \in \mathcal{R}_{p+1}^{q+1}$

$$
\begin{aligned}
& A \rho_{i}=-\rho_{i} A, \quad A^{2}=-1, \quad \rho_{j} \rho_{i}+\left.\rho_{i} \rho_{j}\right|_{i \neq j}=0 \\
& \left.\rho_{i}^{2}\right|_{i=1, \ldots, p+1}=1,\left.\quad \rho_{i}^{2}\right|_{i=p+1+1, \ldots, p+1+q+1}=-1
\end{aligned}
$$

Properties of the classifying spaces \mathcal{R}_{p}^{q}

- For a $A \in \mathcal{R}_{p+1}^{q+1}$, we always choose a basis such that $\rho_{p+1}=I \otimes \sigma^{1}, \rho_{p+1+q+1}=I \otimes \varepsilon$. Then we have

$$
\begin{aligned}
A=\tilde{A} \otimes \sigma^{3}, & \left.\rho_{i}\right|_{i=1, \ldots, p}=\tilde{\rho}_{i} \otimes \sigma^{3}, \quad \rho_{p+1}=I \otimes \sigma^{1} \\
& \left.\rho_{i}\right|_{i=p+1+1, \ldots, p+1+q}=\tilde{\rho}_{i-1} \otimes \sigma^{3}, \quad \rho_{p+1+q+1}=I \otimes \varepsilon
\end{aligned}
$$

We find $\tilde{A} \in \mathcal{R}_{p}^{q}$.

Properties of the classifying spaces \mathcal{R}_{p}^{q} and \mathcal{R}_{p}

- $\mathcal{R}_{0}^{q}=\mathcal{R}_{q+2}$
- From $\tilde{A} \in R_{0}^{q}$ that satisfies

$$
\begin{aligned}
& \tilde{A} \tilde{\rho}_{i}=-\tilde{\rho}_{i} \tilde{A}, \quad \tilde{A}^{2}=-1, \quad \tilde{\rho}_{j} \tilde{\rho}_{i}+\left.\tilde{\rho}_{i} \tilde{\rho}_{j}\right|_{i \neq j}=0, \\
& \tilde{\rho}_{i}^{2}=-1, \quad \tilde{\rho}_{i}^{\top}=\tilde{\rho}_{i}^{-1} \quad i, j=1, \cdots, q
\end{aligned}
$$

we can define

$$
A=\tilde{A} \otimes \varepsilon,\left.\quad \rho_{i}\right|_{i=1, \ldots, q}=\tilde{\rho}_{i} \otimes \varepsilon, \quad \rho_{q+1}=I \otimes \sigma^{1}, \quad \rho_{q+2}=I \otimes \sigma^{3}
$$

We can check that $A \in \mathcal{R}_{q+2}$

$$
\begin{aligned}
& A \rho_{i}=-\rho_{i} A, \quad A^{2}=1, \quad \rho_{j} \rho_{i}+\left.\rho_{i} \rho_{j}\right|_{i \neq j}=0, \\
& \rho_{i}^{2}=1, \quad \rho_{i}^{\top}=\rho_{i}^{-1}, \quad i, j=1, \cdots, q+2
\end{aligned}
$$

- We can also show the reverse, by choosing a basis such that $\rho_{q+1}=I \otimes \sigma^{1}, \rho_{q+2}=I \otimes \sigma^{3}$.

Clifford algebra $C I(0,8 n)$

16 dimensional real symmetric representation of Clifford algebra $\mathrm{Cl}(0,8)$:

$$
\begin{array}{ll}
\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=\left.\right|_{i \neq j} 0, & \gamma_{i}^{2}=\left.\right|_{i=0, \ldots, 8} 1 . \\
\gamma_{1}=\varepsilon \otimes \sigma^{3} \otimes \sigma^{0} \otimes \varepsilon, & \gamma_{2}=\varepsilon \otimes \sigma^{3} \otimes \varepsilon \otimes \sigma^{1}, \\
\gamma_{3}=\varepsilon \otimes \sigma^{3} \otimes \varepsilon \otimes \sigma^{3}, & \gamma_{4}=\varepsilon \otimes \sigma^{1} \otimes \varepsilon \otimes \sigma^{0}, \\
\gamma_{5}=\varepsilon \otimes \sigma^{1} \otimes \sigma^{1} \otimes \varepsilon, & \gamma_{6}=\varepsilon \otimes \sigma^{1} \otimes \sigma^{3} \otimes \varepsilon, \\
\gamma_{7}=\varepsilon \otimes \varepsilon \otimes \sigma^{0} \otimes \sigma^{0}, & \gamma_{8}=\sigma^{1} \otimes \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{0},
\end{array}
$$

where $\varepsilon=\mathrm{i} \sigma^{2}$. Also $\gamma=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} \gamma_{6} \gamma_{7} \gamma_{8}=\sigma^{3} \otimes \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{0}$ anticommute with $\gamma_{i}: \gamma \gamma_{i}=-\gamma_{i} \gamma$, and $\gamma^{2}=1$.

- CI $(0,16)$:

$$
\Gamma_{i} \Gamma_{j}+\Gamma_{j} \Gamma_{i}=\left.\right|_{i \neq j} 0, \quad \Gamma_{i}^{2}=\left.\right|_{i=0, \ldots, 16} 1
$$

where $\Gamma_{i}=\gamma_{i} \otimes 1, \Gamma_{i+8}=\gamma \otimes \gamma_{i}$ (32-dimensional representation).

Properties of the classifying spaces \mathcal{R}_{p}^{q} and \mathcal{R}_{p}

- $\mathcal{R}_{p}^{q}=\mathcal{R}_{p+8}^{q}$

From $\tilde{A} \in R_{p}^{q}$ that satisfies

$$
\begin{aligned}
& \tilde{A}_{\tilde{i}}=-\tilde{\rho}_{i} \tilde{A}, \quad \tilde{A}^{2}=-1, \quad \tilde{\rho}_{j} \tilde{\rho}_{i}+\left.\tilde{\rho}_{i} \tilde{\rho}_{j}\right|_{i \neq j}=0, \\
& \left.\tilde{\rho}_{i}^{2}\right|_{i=1, \ldots, p}=1,\left.\quad \tilde{\rho}_{i}^{2}\right|_{i=p+1, \ldots, p+q}=-1,
\end{aligned}
$$

we can define

$$
\begin{array}{cl}
A=\tilde{A} \otimes \gamma, & \left.\rho_{i}\right|_{i=1, \ldots, p}=\tilde{\rho}_{i} \otimes \gamma,\left.\quad \rho_{p+i}\right|_{i=1, \cdots, 8}=I \otimes \gamma_{i}, \\
& \left.\rho_{i}\right|_{i=p+8+1, \ldots, p+8+q}=\tilde{\rho}_{i-8} \otimes \gamma,
\end{array}
$$

We can check that $A \in \mathcal{R}_{p+8}^{q}$

$$
\begin{aligned}
& A \rho_{i}=-\rho_{i} A, \quad A^{2}=-1, \quad \rho_{j} \rho_{i}+\left.\rho_{i} \rho_{j}\right|_{i \neq j}=0, \\
& \left.\rho_{i}^{2}\right|_{i=1, \ldots, p+8}=1,\left.\quad \rho_{i}^{2}\right|_{i=p+8+1, \ldots, p+8+q}=-1,
\end{aligned}
$$

- The above implies that $\mathcal{R}_{p}^{q}=\mathcal{R}_{p+8}^{q}=\mathcal{R}_{p}^{q+8}$. $\mathcal{R}_{p}^{q}=\mathcal{R}_{q-p+2}$ and $\mathcal{R}_{p}=\mathcal{R}_{p+8}$.

Go to higher dimensions (complex cases)

- d-dimensional complex cases: $\hat{H}=\int \mathrm{d}^{d} \boldsymbol{x} \hat{c}^{\dagger}\left(\gamma^{i} \mathrm{i} \partial_{i}+M\right) \hat{c}$.

We consider symmetries that anti-commute with M and $\left(\gamma^{i} \mathrm{i} \partial_{i}\right)$:

$$
M^{\dagger}=M, \quad M^{2}=1, \quad M \rho_{a}=-\rho_{a} M, \quad \rho_{a}^{\dagger}=\rho_{a}^{-1}, \quad \rho_{a} \rho_{b}+\rho_{b} \rho_{a}=2 \delta_{a b}
$$

Since $\left(\gamma^{i} i \partial_{i}\right) \rho_{a}=-\rho_{a}\left(\gamma^{i} i \partial_{i}\right)$, we have

$$
\gamma_{i} \rho_{a}=-\rho_{a} \gamma_{i}, \quad \gamma_{i}^{\dagger}=\gamma_{i}, \quad \gamma_{i}^{2}=\text { id }, \quad \gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=2 \delta_{i j}, \quad \gamma_{i} M=-M \gamma_{i}
$$

Thus the classifying space is \mathcal{C}_{p+d}.
If the symmetry commute with single-body Hamiltonian (matrix), we can consider the common eigenspace, and "ignore" the symmetry.

- We can show that $\mathcal{C}_{p}=\mathcal{C}_{p+2}$. Let $\tilde{M} \in \mathcal{C}_{p}$, satisfying

$$
M^{\dagger}=M, \quad M^{2}=1, \quad M \rho_{a}=-\rho_{a} M, \quad \rho_{a} \rho_{b}+\rho_{b} \rho_{a}=2 \delta_{a b}
$$

Let $\tilde{M}=M \otimes \sigma^{3}, \tilde{\rho}_{i}=\rho_{i} \otimes \sigma^{3}, \tilde{\rho}_{p+1}=l \otimes \sigma^{1}, \tilde{\rho}_{p+2}=l \otimes \sigma^{2}$. Then $\tilde{M} \in \mathcal{C}_{p+2}$.

- IQH states in 2D (1980):
$\pi_{0}\left(\mathcal{C}_{2}\right)=\mathbb{Z}$. vonKlitzing-Dorda-Pepper, PRL 45 494, (80)

Go to higher dimensions (real cases)

- d-dimensional real cases: $\hat{H}=\mathrm{i} \int \mathrm{d}^{d} x \eta^{\top}\left(\gamma^{i} \partial_{i}+M\right) \eta$, where $M=M^{*}=-M^{\top}, \quad M^{2}=-1, \quad M \rho_{a}=-\rho_{a} M, \quad \rho_{a} \rho_{b}+\rho_{b} \rho_{a}= \pm 2 \delta_{a b} ;$ Symmetry also requires $\left(\gamma^{i} \partial_{i}\right) \rho_{a}=-\rho_{a}\left(\gamma^{i} \partial_{i}\right) \rightarrow$ $\gamma_{i} \rho_{a}=-\rho_{a} \gamma_{i}, \quad \gamma_{i}^{\top}=\gamma_{i}, \quad \gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=2 \delta_{i j}, \quad \gamma_{i} M=-M \gamma_{i}$. Classifying space $=\mathcal{R}_{p+d}^{q}=\mathcal{R}_{q-p-d+2}$.

Go to higher dimensions (real cases)

- d-dimensional real cases: $\hat{H}=\mathrm{i} \int \mathrm{d}^{d} \boldsymbol{x} \eta^{\top}\left(\gamma^{i} \partial_{i}+M\right) \eta$, where $M=M^{*}=-M^{\top}, \quad M^{2}=-1, \quad M \rho_{a}=-\rho_{a} M, \quad \rho_{a} \rho_{b}+\rho_{b} \rho_{a}= \pm 2 \delta_{a b} ;$
Symmetry also requires $\left(\gamma^{i} \partial_{i}\right) \rho_{a}=-\rho_{a}\left(\gamma^{i} \partial_{i}\right) \rightarrow$ $\gamma_{i} \rho_{a}=-\rho_{a} \gamma_{i}, \quad \gamma_{i}^{\top}=\gamma_{i}, \quad \gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=2 \delta_{i j}, \quad \gamma_{i} M=-M \gamma_{i}$.
Classifying space $=\mathcal{R}_{p+d}^{q}=\mathcal{R}_{q-p-d+2}$.
- Topo. $d+\mathrm{i} d / p+\mathrm{i} p \mathrm{SC}$ in 2D (1999): $\mathcal{R}_{0+2}^{0}=\mathcal{R}_{0} \rightarrow \pi_{0}\left(\mathcal{R}_{0}\right)=\mathbb{Z}$.

Senthil-Marston-Fisher cond-mat/9902062
Read-Green cond-mat/9906453

- Topological p-wave SC in 1D (2001): $\mathcal{R}_{0+1}^{0}=\mathcal{R}_{1} \rightarrow \pi_{0}\left(\mathcal{R}_{1}\right)=\mathbb{Z}_{2}$.
Kitaev cond-mat/0010440
- Topological insulator in 2D (2005): $\mathcal{R}_{0+2}^{2}=\mathcal{R}_{2} \rightarrow \pi_{0}\left(\mathcal{R}_{2}\right)=\mathbb{Z}_{2}$.
Kane-Mele cond-mat/0506581
- Topological insulator in 3D (2006): $\mathcal{R}_{0+3}^{2}=\mathcal{R}_{1} \rightarrow \pi_{0}\left(\mathcal{R}_{1}\right)=\mathbb{Z}_{2}$.
 Moore-Balents cond-mat/0607314; Fu-Kane-Mele cond-mat/0607699

Gapped phases of non-interacting fermions

Real cases (blue entries for interacting classification):

Symm. group G^{f}	$U^{f}(1) \rtimes Z_{2}^{T}$	$\mathbb{Z}_{2}^{T} \times Z_{2}^{f}$	z_{2}^{f}	Z_{4}^{T} $Z_{4}^{T} \times Z_{2}$	$\begin{gathered} \frac{u^{f}(1) \rtimes Z_{4}^{T}}{Z_{2}} \\ \frac{Z_{4}^{f} \rtimes Z_{4}^{T}}{Z_{2}} \end{gathered}$	$\frac{U^{f}(1) \rtimes z_{4}^{T} \times z_{4}^{f}}{z_{2}^{2}}$	$S U^{f}(2)$	$\frac{S U^{f}(2) \times Z_{4}^{T}}{Z_{2}}$
$\left.\mathcal{R}_{p}\right\|_{\text {for } d=0}$	$\begin{gathered} \frac{O(I+m)}{O(I) \times O(m)} \\ \times \mathbb{Z} \end{gathered}$	$O(n)$	$\frac{O(2 n)}{U(n)}$	$\frac{U(2 n)}{S p(n)}$	$\begin{aligned} & \frac{S p(l+m)}{S p(I) \times S p(m)} \\ & \times \mathbb{Z} \end{aligned}$	$S p(n)$	$\frac{S p(n)}{U(n)}$	$\frac{U(n)}{O(n)}$
	$p=0$	$p=1$	$p=2$	$p=3$	$p=4$	$p=5$	$p=6$	$p=7$
class	AI	BDI	D	DIII	All	CII	C	Cl
$d=0$	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0
$d=1$	$0\left(\mathbb{Z}_{2}\right)$	$\mathbb{Z}\left(\mathbb{Z}_{8}\right)$	$\mathbb{Z}_{2}\left(\mathbb{Z}_{2}\right)$	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0
$d=2$	0	0	$\mathbb{Z}(\mathbb{Z})$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0
$d=3$	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}
$d=4$	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0
$d=5$	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$d=6$	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}
$d=7$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0	\mathbb{Z}
Example	insulator w/ coplanar spin order \tilde{T}	supercond. w/ coplanar spin order \tilde{T}	supercond. (no symm.)	supercond. w/ time reversal T	insulator w/ time reversal T	insulator w/ time reversal and intersublattice hopping	spin singlet supercond.	spin singlet supercond. w/ time reversal T

Ryu-Schnyder-Furusaki-Ludwig arXiv:0912.2157, Kitaev cond-mat/0010440

Complex cases:

Wen arXiv:1111.6341
$\left.\begin{array}{|c||c|c|c|c|c|c|c|c|c|c|c|c|}\hline \text { Symm. group } & \left.\mathcal{C}_{p}\right|_{\text {for } d=0} & \text { class } & p \backslash d & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { example } \\ \hline \hline U^{f}(1) & \frac{U(I+m)}{U(I) \times U(m)} \times \mathbb{Z} & \text { A } & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & \begin{array}{c}\text { (Chern) } \\ \text { insulator }\end{array} \\ Z_{4}^{f}\end{array} \quad \begin{array}{c}\text { supercond. } \\ \text { with collinear } \\ \text { spin order }\end{array}\right]$.

Classifying spaces \mathcal{R}_{p}

$p \bmod 8$	0	1	2	3	4	5	6	7
\mathcal{R}_{p}	$\frac{O(1+m)}{O(n) \times O(m)} \times \mathbb{Z}$	$O(n)$	$\frac{O(2 n)}{U(n)}$	$\frac{U(2 n)}{S p(n)}$	$\frac{S p(1+m)}{S p(() \times S p(m)} \times \mathbb{Z}$	$S p(n)$	$\frac{S p(n)}{U(n)}$	$\frac{U(n)}{O(n)}$
$\pi_{0}\left(R_{p}\right)$	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0
$\pi_{1}\left(R_{p}\right)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0	\mathbb{Z}
$\pi_{2}\left(R_{p}\right)$	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}
$\pi_{3}\left(R_{p}\right)$	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\pi_{4}\left(R_{p}\right)$	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0
$\pi_{5}\left(R_{p}\right)$	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}
$\pi_{6}\left(R_{p}\right)$	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0
$\pi_{7}\left(R_{p}\right)$	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0

- Let \mathcal{M}_{d} be the space of gapped $d+1 \mathrm{D}$ fermion systems.

Then $\mathcal{M}_{d} \sim \Omega \mathcal{M}_{d+1} \rightarrow \pi_{n-1}\left(\mathcal{M}_{d}\right)=\pi_{n}\left(\mathcal{M}_{d+1}\right)$
$\Omega \mathcal{M}$ is the loop space of \mathcal{M} : the space of the based loops in \mathcal{M}. For example: point $\sim \Omega S^{2}, Z \sim \Omega S^{1}$.

- Consider a 2D system H_{g} that form a cylinder. As we go around the cylinder, g goes around a loop in \mathcal{M}_{2}. We may also view the cylinder as a 1D system. Thus we obtain a map $\Omega \mathcal{M}_{2} \rightarrow \mathcal{M}_{1}$.
- $\mathcal{M}_{d} \sim \mathcal{R}_{q-p+2-d} \rightarrow \mathcal{R}_{p}=\Omega \mathcal{R}_{p-1}, \pi_{n-1}\left(\mathcal{R}_{p}\right)=\pi_{n}\left(\mathcal{R}_{p-1}\right)$

Why classification is useful apart from deep understanding?

- K-theory classification is constructive, which allow us to constructive all possible free-fermion gapped phases.
- An universal model for complex classes of topological phases of non-interacting fermions $H_{\text {one-body }}=\gamma^{i} \otimes I_{n} \mathrm{i} \partial_{i}+M,\left\{\gamma^{i}, \gamma^{j}\right\}=2 \delta_{i j}$
- An universal model for real classes of top. phases of non-interacting fermions $H_{\text {one-body }}=\mathrm{i}\left(\gamma_{R}^{i} \otimes I_{n} \partial_{i}+A_{R}\right),\left\{\gamma_{R}^{i}, \gamma_{R}^{j}\right\}=2 \delta_{i j}$
- Example in 2D: Fermion hopping on honeycomb lattice \rightarrow two 2-component massless Dirac fermions (R, L pairs)

$$
\begin{aligned}
H_{\text {one-body }} & =\mathrm{i} \sigma^{1} \otimes \sigma^{0} \partial_{x}+\mathrm{i} \sigma^{3} \otimes \sigma^{3} \partial_{y}, & & \text { complex case } \\
& =\mathrm{i}\left(\sigma^{1} \otimes \sigma^{0} \partial_{x}+\sigma^{3} \otimes \sigma^{3} \partial_{y}\right) . & & \text { complex case }
\end{aligned}
$$

To obtain one-body Hamiltonian in Majorana basis, we replace 1 by σ^{0} and i by $-\varepsilon$ in the above bracket, to obtain (see page 14 of this file)

$$
H_{\text {one-body }}=\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} \partial_{x}+\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} \partial_{y .} \quad \text { real case }
$$

Why classification is useful apart from deep understanding?

n-layers of honeycomb lattice $\rightarrow 2 n$ 2-component massless Dirac fermions ($n 4$-component massless Dirac fermions)

$$
\begin{aligned}
& H_{\text {one-body }}=\mathrm{i} \sigma^{1} \otimes \sigma^{0} \otimes I_{n} \partial_{x}+\mathrm{i} \sigma^{3} \otimes \sigma^{3} \otimes I_{n} \partial_{y}, \quad \text { complex case } \\
& H_{\text {one-body }}^{R}=\mathrm{i}\left(\sigma^{0} \otimes \varepsilon \otimes \sigma^{0} \otimes I_{n} \partial_{x}+\sigma^{0} \otimes \sigma^{1} \otimes \varepsilon \otimes I_{n} \partial_{y}\right), \quad \text { real case }
\end{aligned}
$$

- Adding a proper mass term according to the K-theory classification \rightarrow a designed free-fermion gapped state.

$$
\begin{aligned}
& H_{\text {one-body }}=\mathrm{i} \sigma^{1} \otimes \sigma^{0} \otimes I_{n} \partial_{x}+\mathrm{i} \sigma^{3} \otimes \sigma^{3} \otimes I_{n} \partial_{y}+M, \quad \text { complex case } \\
& H_{\text {one-body }}^{R}=\mathrm{i}\left(\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} \otimes I_{n} \partial_{x}+\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} \otimes I_{n} \partial_{y}+A_{R}\right), \text { real case }
\end{aligned}
$$

A continuum model for 2d top. insulator $\left(U^{f}(1) \rtimes Z_{4}^{T} / Z_{2}^{f}\right)$

Choose $n=1$:
$H_{\text {one-body }}^{R}=\mathrm{i}\left(\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} \partial_{x}+\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} \partial_{y}+A\right), \quad A=A^{*}=-A^{\top}$.

- $U^{f}(1)$-symmetry $Q=\varepsilon \otimes \sigma^{0} \otimes \sigma^{0}$, which satisfies

$$
\begin{aligned}
Q \sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} & =\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} Q, \quad Q \sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3}=\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} Q \\
Q A & =A Q, \quad Q^{2}=-1
\end{aligned}
$$

T-symmetry $T=\sigma^{3} \otimes \varepsilon \otimes \sigma^{0}$:
$T \sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0}=-\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} T, \quad T \sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3}=-\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} T$, $T A=-A T, \quad T^{\top}=T^{-1}, \quad T^{2}=-1, \quad T Q=-Q T$.

A continuum model for 2d top. insulator $\left(U^{f}(1) \rtimes Z_{4}^{T} / Z_{2}^{f}\right)$

- The conditions on A

$$
\begin{aligned}
A \sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} & =-\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} A, \quad A \sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3}=-\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} A, \\
A \sigma^{3} \otimes \varepsilon \otimes \sigma^{0} & =-\sigma^{3} \otimes \varepsilon \otimes \sigma^{0} A, \quad A \varepsilon \otimes \sigma^{0} \otimes \sigma^{0}=\varepsilon \otimes \sigma^{0} \otimes \sigma^{0} A
\end{aligned}
$$

- From the last relation: $A=\# \sigma^{0} \otimes \sigma^{\mu} \otimes \sigma^{\nu}+\# \varepsilon \otimes \sigma^{\mu} \otimes \sigma^{\nu}$.
- Adding the first relation: $A=\# \sigma^{0} \otimes \sigma^{3, \varepsilon} \otimes \sigma^{\nu}+\# \varepsilon \otimes \sigma^{3, \varepsilon} \otimes \sigma^{\nu}$. where $\sigma^{\varepsilon}=\varepsilon$.
- Adding the second relation: $A=\# \sigma^{0} \otimes \sigma^{3} \otimes \sigma^{1, \varepsilon}+\# \sigma^{0} \otimes \varepsilon \otimes \sigma^{0,3}$ $+\# \varepsilon \otimes \sigma^{3} \otimes \sigma^{1, \epsilon}+\# \varepsilon \otimes \varepsilon \otimes \sigma^{0,3}$.
- Adding the conidtion $A^{\top}=-A$:

$$
A=\# \sigma^{0} \otimes \sigma^{3} \otimes \varepsilon+\# \sigma^{0} \otimes \varepsilon \otimes \sigma^{0}+\# \sigma^{0} \otimes \varepsilon \otimes \sigma^{3}+\# \varepsilon \otimes \sigma^{3} \otimes \sigma^{1}
$$

- Adding the third relation $\rightarrow A$ must has a form $A=m \sigma^{0} \otimes \sigma^{3} \otimes \varepsilon$ $m>0$ is one phase and $m<0$ is another phase (maybe since $n=1$).
- We know the two phases are different, but we do not know which is trivial and which is non-trivial. Within the field theory, we cannot know. Only after adding lattice reularization, we can know.
- A Dirac fermion realization of 2d topological insulator with symmetry $U^{f}(1) \rtimes Z_{4}^{T} / Z_{2}^{f}$, Majorana fermion basis:

$$
\begin{aligned}
H_{\text {one-body }}^{R} & =\mathrm{i}\left(\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0} \partial_{x}+\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{3} \partial_{y}+m \sigma^{0} \otimes \sigma^{3} \otimes \varepsilon\right) \\
Q & =\varepsilon \otimes \sigma^{0} \otimes \sigma^{0}, \quad T=\sigma^{3} \otimes \varepsilon \otimes \sigma^{0} .
\end{aligned}
$$

- Complex fermion basis ($\sigma^{0} \rightarrow 1$ and $\varepsilon \rightarrow$-i for the first position):

$$
\begin{aligned}
H_{\text {one-body }}^{R} & =\mathrm{i}\left(\sigma^{1} \otimes \sigma^{0} \partial_{x}+\sigma^{3} \otimes \sigma^{3} \partial_{y}+m \sigma^{3} \otimes \varepsilon\right) \\
Q & =-\mathrm{i} \sigma^{0} \otimes \sigma^{0}, \quad T=?
\end{aligned}
$$

The T action is explicit only in Majorana fermion basis.

Do we have an universal physical probe to detect all non-interacting fermionic topological phases?

- Boundary states are universal physical probe that can detect all topological phase, but not one-to-one.
Holographic principle of topological phases: Boundary completely determine the bulk, but bulk does not determine the boundary. The bulk = the anomaly of the boundary effective theory

