Highly entangled quantum many-body systems

— SPT order in free fermion systems

Xiao-Gang Wen

https://canvas.mit.edu/courses /11339

Xiao-Gang Wen Highly entangled quantum many-body systems — SPT order in free fermion systems 1/43



Understand (classify) Chern insulators systematically

First, we try to systematically understand (classify) gapped 0+1D free
fermion system with U(1) symmetry (fermion number conservation).
e 0+1D free fermion system with U(1) symmetry is described by the
following many-body Hamiltonian
A=> M.elé,
ab

It is fully characterized by a N x N hermitian matrix M = M. So we
will concentrate on the matrix M. Eigenvalues of M are called the

single-body energy level.

e The many-body ground state has all the negative single-body energy
levels filled.

e Gapped — M has no zero eigenvalue.NSpace of 0+1D gapped free
fermion system with U(1) symmetry Cyp = space of hermitian matrices
with no zero eigenvalue.
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Classify gapped phases of 0+1D free fermions with U(1)

e Gapped phases of 0+1D free fermions with U(1) symmetry are labeled
by 70(Co) = disconnected parts of the space of hermitian matrices with
no zero eigenvalue.

e Let Cy = the space of hermitian matrices with eigenvalue +1. éo and
Co are homotopic equivalent (one can deform into the other without
closing gap, like “a point ~ a ball"): 7n(Co) = 7a(Co)

Gapped phases of 0+1D free fermions with U(1) symmetry are labeled
by 70(Co) = disconnected parts of the space of hermitian matrices with
eigenvalues +1.

- Hermitian matrices with eigenvalues 1 has a form
Un+m </(')7 (;m> ULm. Co = % x {(m,n)} where m = the
number of —1 eigenvalues and n = the number of +1 eigenvalues.

- For N = o0, mo(Co) = Z is labeled an integer.

Gapped phases of 041D free fermions with U(1) symmetry are
classified by integer Z. The number of the fermions in the ground
state. The result is also valid for interacting fermions.
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Classify gapped phases of 1 4 1D free fermions with U(1)

e Start with a large (universal) gapless system, such that other gapless
systems can be viewed as partially gapped systems.

e Find all different disconnected ways to gap the
universal gapless system. Kitaev arXiv:0901.2686 \

e Consider a gapless 1D free fermion ¢(k) = — sin k, which is gapless at
k = 0 (right movers) and k = 7 (left movers).
Double unit cell (half the Brillouin zone) — right movers and left
movers are both a k = 0.

- Continuum limit: Mope body = i0°0; (acting on ¢ = (Zl))
2

or ﬁmany_body = [ dx ¥'(x)io30xty(x) — 1D Dirac fermion

- Can be gapped by adding the mass term M;ne pody = 1030, + mol.

e Universal gapless system Monebody = io® @ 1,0, acting on v(x), a
2n-component wave function.

- Gap by mass term Mone-body = i03 @ 1,05 + M, where Mt = M,
o> [,M =—Mo>® I, and M has no zero eigenvalue
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The space of gapped 1 + 1D free fermions w/ U(1) symm.

is the space of the mass matrices that satisfy
ME=M, M2=1, ~M=—M A~l=oc3xl,
If i710x + Mgen has no zero eigenvalue, then we can deform Mge, =
Ma + fMc from f =1 to f = 0, without encounter zero eigenvalue.
e M must have n eigenvalues +1 and n eigenvalues —1.

The space of such M is %1

M = U (Uf @ O5)(0 @ 1n)(Un @ Up) Uan

e M also must satisfy 7'M = —~' M, the unitary rotations U(2n) and
U(n) x U(n) must also keep 7! invariant.
- Usy = U, @ U,z U(2n) = U(n) x U(n).
- U(n) x U(n) = 0 ® U,: U(n) x U(n) — U(n)
e The space of gapped 1+ 1D free fermion systems with U(1) symmetry
U(n) x U(n)
Ch=—7="—"-—"-+
U(n)
e mo[U(n)] = 0 — There is only one trivial phase for gapped 1+ 1D
free fermion systems with U(1) symmetry.

= U(n), n— oo.
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Gapped d + 1D free fermion systems with U(1) symmetry

o d + 1D gapless system Hope body = i7'0; + M (i =1, ,d)
e The gapping mass matrix satisfies

/W]L M, M2 =1, ’Y’M = - M (7')2 =1, (FYI) - (,-Y’)T7 V'Vj - =

-d=1. M =M M>=1, v M =M, +l=0c3®I,.
-d=2. Mi= I\/I M2—1 VM—f’yM
V=321, ?=0'®I,.
-d=3 M =wm, I\/l2—1 'y/\/l— —y'M,
V=022 ® 1, =0l @, ¥=0?203x I,

e For d =3, M has a form M = o2 ® M, and M satisfy

Mt =M, M2=1, v M = —3M, ¥ =3 ® I,

The space of d = 3 gapped sys. = the space of d = 1 gapped sys.

The d-dimensional gapped phases = the d + 2-dimensional gapped

phases, for free fermions with U(1) symmetry: Cy = Cy2

Symmetry || class | d =0 | 1 2 314|567
u(1) A Z O|Z QHstates | 0 | Z | 0| Z |0
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Edge excitations

e 2d bulk has even number of 2-component Direc fermions (R-L pairs)

A

Blvany oy — / x T (x) (1030 + 1010, + mo?)(x)

+ / Px Wi(x)(10%0 — 1070, + Mo?)¥(x)
e The Edge excitations are described by the low energy part
H = i0'0; + ma? (assuming M > |m|)
Two different ways of gapping m > 0 and m < 0
— n =1 state and n = 0 state. Edge is where m change sign.
e For one edge (1038X + ialay + ya2)1/12 = 105
Can be solved by 1»(x, y,t) = c(x, t)12(y), and

(00, v = (1, @5 7)) datn) =0

. 2
We find i) = (e~ 2,0) = idic = idic (k = —w left mover).
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The gapped phases of 441D free fermions with U(1) symm

Those phases are classified by Z (ie labeled by an integer n € 7)

Edge excitations for n = 1 phase
The bulk low-energy Hamiltonian: H = i7/0; + m?>, i=1,--- ,4
N=dl@o3, 2 =203, =03®03,7* =0 @0l,75 = 0¥ ® 02,
Two different ways of gapping m >0 and m <0 — n=0,1.
Edge is where m change sign.
o +Edge: [(30;12317'0x) + 00 @ 04 + x* 00 ® 02|1hg = 10:Y4.
Let 1ha(x', x*) = 1h2(x") @ o (x*) and (1010, + x*02)a(x*) = 0.
~ X4 2 . . .
We find 0] = (e~ "2,0) = 00 tn(x') = i0sbn(x')
— right-hand massless Weyl fermion
o —Edge: [(D_;_123 iv04) +0° ®0l0w — x*o® @ 0?1y = 1044,
Let 4(x’, x*) = tha(x") @ Po(x*) and (1019 — x*02)9a(x*) = 0.
~ )(4 2 . . .
We find 0] = (0, e~ 2" ) = —io/dibo(x’) = i9pba(x)
— left-hand massless Weyl fermion
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Is the handness of 34+1D Weyl fermion absolute?

- Right-hand Weyl fermion: ic'0,f = 10,4

- Left-hand Weyl fermion: —io'0, 15 = 105
To give Weyl fermion a mass —

- Massive Dirac fermion = Right-hand Weyl & Left-hand Weyl:

iocl ® 030X,-1/)4 + mo® @ 0214 = 10:04

In the standard model, each family (e, 1, qr, qg, b, V) has
7 right-hand Weyl fermions and 8 left-hand Weyl fermions, or
8 right-hand Weyl fermions and 7 left-hand Weyl fermions, or
15 right-hand Weyl fermions and 0 left-hand Weyl fermions.

e The transformation 1/} = i0%(¢)X)* changes io/0F = 10,05 to
ik — 10pk

—i(0')*0(¥5)* = 10:(v5)" = —i0'0ic?(vF)" = 10:io?(vf)*

Charge conjugation of right-hand Weyl fermion
= left-hand Weyl fermion
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341D massive Majorana fermion

e 1)y = 0 @ 0?(14)" and 1), satisfy the same massive Dirac equation
i0' @ 030, i1hs + mo® @ 024 = 10:14
i(c")* @ o390 1ps — mo® @ (02) ) = 10
io' ® 038)(,-1/74 + mo® @ 0%, = 10414
If we requires that 1), = 14, — massive 341D Majorana fermion.
e 341D massless Weyl fermion: 2 complex components
3+1D massive Dirac fermion: 4 complex components
3+1D massive Majorana fermion: 4 real = 2 complex components
e Rewrite the EOM of massive 341D Majorana fermion
the = (1/15%)» %L = 102(1/)5)*7 ¢§ = 7102(@%_)*
100, pR — imyph = 10.9F
—i0'05 + imypR = 10,45
which is i0'0,ipF + mo?(PF)* = 10,5,
The right-hand Weyl fermion gains a mass at the cost of U(1) symm.
breaking down to Z» (EOM not inv. under ¢)§ — ¢!?¢K). The
electrons in superconductor are Majorana ferions.
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U(1) anomaly: realize 3D massless Weyl fermion in 3D

e We can give a massless right-hand Weyl fermion a mass if we break the
U(1) symmetry down to Z». —

e Non-interacting 44+1D n = 1 insulator is trivial without the U(1)
symmetry, but non-trivial with the U(1) symmetry.

e For two gapped states of non-interating fermions, existance of a gapped
boundary <> existance of a deformation path without closing gap.

e A single 3+1D massless right-hand Weyl fermion with U(1) symmetry
is anomalous — cannot be realized on a 3+1D lattice if we preserve the
U(1) symmetry.

e Can realize 3+1D Massless left—hand Massive Majorana fermion
massless ri ght— hand Weyl fermion (supercoducting U(1)—>Z2)

Weyl fermion on a 4+1D n=1 insulator 4+1D n=1 insulator
3D lattice if we

Massless right—hand Massless right—hand
break the U(l) Weyl fermion Weyl fermion
symm. down to 72, U(1) symmetry anomaly, but no gravitational anomaly
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Put the chiral SO(10) GUT on lattice

e In the SO(10) GUT in 341D, we have 16 massless right-hand Weyl
fermion forming a 16-dim. spinner representation of SO(10).

- Is such GUT anomalous or not?

- Can we put puch such a chiral GUT on a 3+1D lattice?
(The long standing chiral fermion problem)

e We have seen that 16 massless right-hand Weyl fermion with U1°(1)
symmetry cannot be put on 3+1D lattice. But can be put on 3+1D
lattice if we reduce the symmetry to Z3°.

Can we put n massless d + 1D fermions with G symmetry on

d + 1D lattice? Wen arXiv:1305.1045
Yes if (1) there is a mass term that give all fermions a mass
(which may break the symmetry G down to Gy), and (2)
mn(G/Gy) =0 for n < d+2.

— We can put SU(10) GUT on 3+1D lattice.

e The above condition is only sufficient. What is a necessary and
sufficient condition?
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Spectrum: relation between spaces of gapped states of

non-interacting fermions in different dimensions

For two gapped states of non-interating fermions, existance of a gapped
boundary <+ existance of a deformation path without closing gap.

e Let M, be the space of gapped states of non-interacting fermions in
n-dimensional space. Let M,(a),a € mo(M,) be the " component.
Let o = 0 correspond to the trivial phase (the product states).

- The space of gapped boundaries of a trivial state is the space of
the based loops in M, with base point in M,(0) (which is the loop
space QM. Check Wiki) Gaiotto Johnson-Freyd, arXiv:1712.07950

- Physically, the space of gapped boundary of a trivial state is (or
homotopically equivalent to) the space of gapped states in one lower

dimension: QM,(0) ~ M1
- For loop space, we have 7, (QM) = 7);1(M). Thus the space M, of
the space of gapped states of non-interacting fermions satisfies
T(Mn) = mi(Mp—ky1) —  m0(My) =1(Mnys).

Xiao-Gang Wen Highly entangled quantum many-body systems — SPT order in free fermion systems 13 /43



Classify gapped phases of 0+1D free fermions

with no symmetry = Zf symmetry

e Fermion systems with no symmetry = Fermion system with Z2f
symmetry. They correspond to fermionic superconductors.

e 0+1D free fermion system with Z2f symmetry is described by the
following many-body Hamiltonian

N %):Mabé;réb+§;(; abCalp + h.c.) ;Aaﬁlnangnt#
& = w el e} = bap, {fla Mg} = 200, Al =—A A" = A

- To see thc? relateion between M and A, Iet. M= M?°+iMA and A = 0.
A=Y i(ﬁa,l M3y — fla2M3piib1) + i(ﬁa,l M1 + Nla2Mibi2) + #

ab
Let us write M = i(M” — iM°). We find that A is obtained by

replacing 1 by ¢® and i by —¢ in the bracket:
A= MA—(—e)aM° =@ MA +c@ M?
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- To see the relateion between A and A, let M =0 and A = AR + iA/

A i, . . . i, . . .
A=Y §(713,1A§b71b2 — a2 AR Nb1) + é(’fla,lAQbT}bJ + NapDbpin2) + h.c.

ab
i, . . . i, . . .
:Z Z(7la,1A§b7/b,2 — a2 Mb1) + Z(”Ia,lALb’f/bJ + a2 ALy 2).-
ab

Let us write A = i(A! — iAR). We find that A is obtained by replacing
1 by 0% and i by —¢ in the bracket:

A=c@ A - ()@ AR =@ Al + e @ AR

e The superconductor is fully characterized by a 2n x 2n anti-symmetric
real matrix A. We will concentrate on A. Non-zero eigenvalues of iA
appear in pairs +¢. Up to homotopic equivalence, we may assume
non-zero eigenvalues of iA to be +1.

e Gapped — A has no zero eigenvalue. Space of 0+1D gapped
non-interacting fermion systems with sz symmetry Rg Zhomotopic SPace
of anti-symmetric real matrix matrices with +i eigenvalues.
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The cIassifying space R

A = Op(2n) ) Oo 2n) where ¢ = <_01 é)
e 0 0
T 0 _ ~O(2n)
= O0(2n)Ouny | 0 ¢ Oy(mOoan) — Ro= Oy |nso0
e What is R) = 2") for n = 17 From {U(1)}1x1 = {cos@ + isinf} —
0 O

. cos) —sin0
{OU }2><2 - {cose—ssm@— <sin9 cos ) }replacei by 6.
cosf —sinf cosf sind
{0(2)}2x2 = { <sin9 cosf )det:17 (sin@ cos¢9)det:1 }

Setting 0 = 0, we find RJ = { <(1) (1)> , <é _01> } as a set of O's.

As a set of A’s, we have RY = { <(1) _01> : <_01 (1)> } = Zo

Xiao-Gang Wen Highly entangled quantum many-body systems — SPT order in free fermion systems 16 /43



Many-body picture of the classifying space R

_ P
e Fermion-number-parity: N, = &¢é, = w

— Pr = [1.(1 - 2Na) = [[.(—1f2a-172a) = (—1)" Hin:1 U
e Pr is always a symmetry for fermion system

[Pr, A] =0

We denote this symmetry as Z/, since P2 = id.
e Assume A is “diagonal”
+e O
A=| 0 =+ | = HA=d iffy + iflshls +--
2efe-1 2efe—1

RY = 7, corresponds to I5f = +1 ground states of A.
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The U’(1) symmetry for non-interacting fermion systems

o H commutes with the fermion-number operator

. L1 ele, —eel o
N = Z(C;Ca — 5) = Z(%) = 2 Zﬁ: Qaﬁnanﬁ
(03

a a
where Q=e®/, @*?=-1,*=Q,Q"' =—-Q=Q !, e=i0?
e The symmetry group {U"(1)} = {019’\7}. Z5 = {id, Ci”N} c Uf(1).

e [H, N] = 0 requires that
AQ = QA, Q%= —1.

e Such a real anti-symmetric matrix A has the form
A=0c"® M, +c® M, where M is real symmetric and M, real
antisymmetric. We can convert such a 2n x 2n real antisymmetric
matrix A into a n x n Hermitian matrix M = M + i M,, by replacing ¢
by i. This reduces the problem to the one that we discussed before
(with fermion number conservation).
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Z, symmetry: Z, X Z§ or Zf symmetry

e A Z, x ZI or Z[ transformation is generated by Ps and C.
(1) C? =id — 22 x 7f. (2) E2 =Py — Zf.
Note that ZJ C Z} or Z, x Z1.

o Matrix representation of C:
Cl\.ﬁ(xc/wr - C(MBﬁB? éT - 6717 77(1 - ﬁou {ﬁaaﬁﬂ} - 25&/3;

o (ChoCHt = Ch CT = Copflls = C* = C.
e C must be an orthogonal matrix C' = C~! to keep {fn, 75} = 2003
invariant.

e C2=5sc. W)sc=+—2ZoxZ5. (2)sc=— — Z{.
o A Zy x Z§ or Zf symmetry: CHC ! = H implies that A satisfies

CA=CA, C%>=s..
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U'(1) and Z, symmetries

o If we have both U’ (1) and Z, symmetries, then CNl = NC and

CQ =s5ucQC, syc=+.

- Uf(1) and Z; x Zf symmetry:
AQ=QA, AC=CA, Q*=-1,C>=1, CQ=QC.
Symmetry group G' = Uf(1) x 2.
- U'(1) and Z] symmetry:
AQ=QA, AC=CA, @R*=-1, C>°=-1, CQ=QC.

f f
Symmetry group G = v (?fxz“.
2
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U'(1) and Z, charge conjugation symmetries

e If we have Uf(1) and Z, charge conjugation symmetries, then
CN = —NC and

CQ =syc@RC, syc=—.
- U'(1) and Z, x ZJ charge conjugation symmetry:
AQ=QA, AC=CA @ =-1, C>=1, CQ=-QC.
Symmetry group G' = Uf(1) x 2.
Classification: We have Q =@ [, and C = ¢! @ I,,. For A to have

Uf(1) % Z> symmetry, A= % @ A, and no condition on A. Same as no
symmetry (or ZJ symmetry).

- U'(1) and Z] charge conjugation symmetry:
AQ= QA AC=CA Q>=-1,C>=-1, CQ=-QC.

Uf (1) zf
Z

Symmetry group G =

Xiao-Gang Wen Highly entangled quantum many-body systems — SPT order in free fermion systems 21 /43



Time-reversal symmetry

e The time-reversal transformation 7 is antiunitary: TiT-1=—i.In
terms of the Majorana fermions, we have (just like Z, symmetry C)

A A

Tﬁa Til - aﬁﬁﬁv TT - Tﬁl-
e For fermion systems, we may have 72 = (sT)N, st ==+. (s = — for
electrons). This implies that 72¢ 7T 2 = s7¢ and T2 = st.
e Symmetry group: (1) st =+ — Z/. (2)sr=— — Z/.

e The time-reversal invariance THT ' = H for H = %Zaﬁ Aasfails
implies that

TTAT=—A or AT = —TA, T2 = s7.

AT = —TA is different from the unitary Z, symmetry.

Xiao-Gang Wen
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Relations between U, C, and T

e The time-reversal transformation 7 and the U (1) transformation N
may have a nontrivial relation: TelNT-1 = esuritN

TNT-'=—syrN. This gives us

TQ = SUTQT.
(1) (conservation of 5% spin in XY magnets).

e , SyT = &£, or

-SUT:—F%U'(

spin

—SUT:*—>Uf

charge(1) (conservation of electric spin).

e The commutation relation between 7 and C has two choices:
TC = sﬁCCT, sTc = =+, we have
CT = STC TC.
e The commutation relation between N and C has two choices:
NC = sycCN, syc = =+, we have
CQ = Syc QC

- syt = — — C is a charge conjugation.
syt = + — C is not a charge conjugation.

Xiao-Gang Wen Highly entangled quantum many-body systems — SPT order in free fermion systems 23 /43



Summary of symmetry groups with U(1), C, and T

| Symmetry groups | Relations total 52 groups |

Gs.(C) () | 2=sl, sc=+.

Gs, (T) () | T2=sN, sy ==+

G (U, C) (4) CA2:5’CV, CNC-t =sycN, sc,suc = =+.

G (U, T) (4) | TelONT—1 = uriON T2 — N = 5,7 s7 = +.

Gsre (T,C) (8) | T2=sN, C2=sN, CT = (sM)TC, src,st,s5c = +.

Gsurstesue (U, T,C) | CNC-t =sycN, TelNT-1 = esuriolN 72 =W
(32) C? = SICV, CT = (sgc)f'é ST,SC,SUT, STC, Suc = +.

e Topological insulator Electrons with U”(1)-charge and T:

symmetry group G_ (U, T) =

(Uf(l)charge A Z4T)/Z2f

e Topo. S, superconductor Electrons with U’ (1)-spin and T:

symmetry group G (U, T) =

(Uf(l)Spin x Z])/Z§

e Topological T superconductor Electrons with T:

symmetry group G_(T) =
e Topological T superconductor Electrons with T:
symmetry group G (T) =

Xiao-Gang Wen

ZT

Z] (T = T x m-spin-rotation)
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Including the Zf FNP symmetry and fermionic symmetry

The fermion systems always has FNP Z2f symmetry. But for the
symmetry groups in the above list, some conatin Z2f and are complete;
some do not conatin Z{ and are incomplete.

| Symmetry groups | Total fermion symmetry groups G’ |
G (O) . O~Z. GO 2.
Gs(T) G (T) x Z2f, G_(T)D sz.
G (U, C) G (U, )0 7]
GU(U, T) G (U, T) > Z
Gre (T,C) G, (T,C)x Z}, others > Z
Georrese (U, T, C) | Gerseoc(UT, T,C) 5 ZL

If the full symmetry group is G = G, x ZJ, then the Z} is missing.

Symmetry of fermion systems is described by

122 56T G,—1

or by the full symmetry group G’ and its central Z2f subgroup:
(6".ZC 6
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Some 0d superconductors

e Superconductors with no symmetry (G = ZJ)
Classifying space R = space of real anti-symmetric matrices A with
eigenvalue +i (je with A> = —1).

e T superconductors with symmetry G_(T) = Z] = G*

TA=—AT, T?=-1
Classifying space R} = space of real anti-symmetric matrices A,
A? = —1, that anti commute with an orthogonal matrix that square to
-1

e T superconductors with symmetry G, (T) = 7] (G' = G (T) x Z})
TA=-AT, T?=1
Classifying space R = space of real anti-symmetric matrices A,

A? = —1, that anti commute with an orthogonal matrix that square to
1.
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Some 0d topological superconductors

e S,, T superconductors with G (U, T) = (U (1) x Z])/Z, = GT

QA=AQ, Q=c21, TA=—-AT, TQ=TQ, T>=-1, T=: Ty

-Ahasthefom A=c?@ M, +e@ M; = M= M, + iM, = MT.

TuM = —-MTy, Tiy=1.

Classifying space C; = space of hermitian matrix M, M? = 1, that
anti-commute with an unitary matrix whose square is 1.

In comparison

e Insulators with symmetry G* = Uf(1).
Classifying space Cy = space of hermitian matrix M, with M? = 1.

e The above Cy and C; agrees with our previous definition of classifying
space Cq4 using y-matrices.
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0d insulator with U’(1)-charge and time-reversal symm.

e Insulator with symmetry G~ (U, T) = (Uf(1) x Z,[)/ 2, = G*
QA=AQ, @>=—1, TA=—-AT, TQ=-TQ, T?>=—1.
piA=—Api, p1=T, p2=TQ, p1p2 = —p2p1, pi = p5 = —1.

Classifying space Rg = space of real anti-symmetric matrices A,

A? = —1, that anti commute with two anti-commuting orthogonal
matrices that square to —1.

o Insulator with symmetry G (U, T) = Uf(1)x z] = Gf
(Here time reversal is T = Tgjec X m-spin-rotation)
QA=AQ, @*=-1, TA= —-AT, TQ=-TQ, T?=1.
piA=—Api, pr=T, po=TQ, pipa = —p2p1, pi =p5=1.
Classifying space R = space of real anti-symmetric matrices A,

A? = —1, that anti commute with two anti-commuting orthogonal
matrices that square to 1.
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The classifying spaces RJ and R,

e Classifying space R} is formed by anti-symmetric real matrix A
satisfying (i,j=1,--- ,p+q)

piA - _APh A2 - _17
T —
Pi = P; 17 PiPj = —PiPj, /’:2|i:1,-~-,p =1, P:?‘i:p+l,~',p+q =-1
e Classifying space %, is formed by symmetric real matrix A satisfying
[),‘A = _Apf7 A2 = 17
pi =pit, pinj=—pipj, Pili=tp=1.
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Properties of the classifying spaces R}

q _ g+l
*R _RP—H

- From A ¢ Ry that satisfies

Api=—piA, A= -1, pipi+ pipjliz =0,
2 i=1,..p = 1, ﬁ%|i:p+1,..-,p+q = -1,
we can define

A=AR 0 pilict,. p=pi®0, ppi1=100",

- 3
Pili=p+141,....p+14q = Pi-1 ® 0, Pptitq+1 = D e.

g+1
We can check that A€ R

Api = —piA, A*= -1,  pipi+ pipjliz =0,

2 _ 2. _
Pi ‘i:l,‘..,erl =1, Pi ‘I:p+1+1,.“,p+l+q+1 = -1,
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Properties of the classifying spaces R}

-Fora Ac RqH, we always choose a basis such that
p+1 Yy

ppi1=1®@ 0, ppiiigr1 =1 @e. Then we have
A= AN ® (737 pi‘i:l,...,p - ﬁi & (737 Pp+1 = I ® 017

~ 3
Pili=p+1+1,...p+14q = Pi—1 R 0°, Pptitq+1 = R e.

We find A € Rj.
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Properties of the classifying spaces R} and R,

[ ] Rg g z?/q+2
- From A Rg that satisfies

Api = —piA, A= =1, Fipi+ pipjlizg = O,
pi=-1 p =5 ij=1-.q
we can define
A=A®e, pilict,.q=pi®c, per1=1®0", pgro=1®0>
We can check that A€ Rg2

Api = —piA, A =1, pipi+ pipjliz =0,
p12:1; p/T:prla Ia./:17q+2
- We can also show the reverse, by choosing a basis such that
pg+1 =1 ® o, pg+2 =1 ® o3,
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Clifford algebra C/(0, 8n)

16 dimensional real symmetric representation of Clifford algebra C/(0, 8):

M=, 0, ;= 1.
Yivj %7 ’,-7&,- Ll P
N=eRo R’ e, P=eQRoRe® o,
B=eQRo Qe 0, Hu=e®cexd?,
’)/5:€®01®01®€, 76:€®01®03®5,
’Y7:€®E®O'O®O'O, fygzal®ao®ao®ao,

where ¢ = i0?. Also v = 717273775767778 = 0° ® 00 ® 00 ® o°
anticommute with v;: 7y = —7;7, and 72 = 1.

e CI(0,16):

F,-FJ- + FJ-F,- = 0, r2 = 1.
i i=0,...,16

where I'j = v, @ 1,113 = v ®~; (32-dimensional representation).
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Properties of the classifying spaces R} and R,

9 _ 14
°RP_RP+8

From A € R that satisfies
Api = —piA, A= =1, Fipi+ Fipjlizg = O,
ﬁ?’izl,.‘-,p =1, ﬁ%|i:p+1,...7p+q = -1,
we can define
A=A®~, Pili=1,..p0 = Pi @7, pptili=1,8=1&i,
Pili=p+8+1,....p+8+q = Pi—8 D,
We can check that A € R} g
Api = —piA, A>=—1,  pipi+ pipjliz =0,

2 _ 2. _
Pili=1,..p+8 = 1, piliz=pres1,. pretg = —1,

e The above implies that R} = R} 5 = RITE,

Rp=TRgpioand R, = Rpys.
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Go to higher dimensions (complex cases)

e d-dimensional complex cases: H = [ d9x &f(y/i9; + M)e.
We consider symmetries that anti-commute with M and (7'10;):

MU =M, M>=1, Mp,=—p,M, pl=p" papb+ pppa= 20

T =
Since (v'10;)ps = —pa(7/10;), we have
NiPa = —paYis VI =i, ¥ =id, vij+ i = 265, 1M = —My;.
Thus the classifying space is Cpq 4.

If the symmetry commute with single-body Hamiltonian (matrix), we
can consider the common eigenspace, and “ignore” the symmetry.

e We can show that C, = Cpyo. Let M € C,, satisfying

MY =M, M?=1, Mp,=—pasM, papb~+ pppa = 20ap.
Let I\;l’_': M®U37 ﬁf :Pi®0'3a ﬁp-l—l - l®017 ﬁp+2 — /®U2-
Then M € Cpo.

e IQH states in 2D (1980):
m0(C2) = Z. vonKlitzing-Dorda-Pepper, PRL 45 494, (80)
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Go to higher dimensions (real cases)

e d-dimensional real cases: H = i [ d9% n"(y'0; + M)n, where
M=M=—-M", M>=—1, Mps=—psM, papp+ ppopa = 120,
Symmetry also requires (v'0;)pa = —pa(7'0;) —

Yipa = —paYis Vi =i, ViV + v = 2065, YiM = —M-;.
Classifying space = RZM =Rg—p—d+2-
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Go to higher dimensions (real cases)

e d-dimensional real cases: H = i [ d9% n"(y'0; + M)n, where
M=M"=—-M", M>=—1, Mps=—psM, paps+ popa = +26ap;
Symmetry also requires (v'0;)pa = —pa(7'0;) —

Yipa = —paYi, Vi =i, i+ = 265, M= —Mn;.

Classifying space = Rq+d = Rg—p—d+2-

- Topo. d + id/p+ ip SC |n2D (1999): g. &
R0+2 Ro — 71'0(7?,0) = L.
Senthil-Marston-Fisher cond—mat/9902062
Read-Green cond-mat/9906453

- Topological p-wave SC in 1D (2001):
R8+1 =Ri — 7T0(R1) =7
Kitaev cond-mat/0010440

- Topological insulator in 2D (2005):
R(2)+2 = RQ — ﬂo(Rg) = Z2.
Kane-Mele cond-mat/0506581

- Topological insulator in 3D (2006):
R(2)+3 = Rl — 71'0(7?,1) = Zz.
Moore-Balents cond-mat/0607314; Fu-Kane-Mele cond-mat/0607699
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Gapped phases of non-interacting fermions

Real cases (blue entries for interacting classification):

F T
Symm. T Uiz, £ T f
growp || UF(1) % 2T | 2] x Zf Z 24 R UL/ RS/ S suf@)xz]
cf Zy x| 4 ; 24 25 2
2
O(I+m) on Sp(T+m)
Rplfor d=0 70(/); gw) o(n) %((n)> ls},(:?;)) ‘SP(‘/)XX zpﬁm) Sp(n) Sup((nn)) g%
p= p=1 p=2 p= p=4 p=5 p=6 p=T
class Al BDI D DIlI All Cll C Cl
d=0 Z Zo Zy 0 Z 0 0 0
d=1 0 (Z,) Z (Zg) 7y (Za) Zy 0 z 0 0
d=2 0 0 7 (Z) Zy Zy 0 z 0
d= 0 0 0 Z Zy Zy 0 Z
d=4 Z 0 0 0 Z Zo 7o 0
d=5 0 A 0 0 0 Z Zy Zy
d=56 Zo 0 Z 0 0 0 Z Zo
d=7 Z Zy 0 Z 0 0 0 Z
. X insulator . spin
insulator supercond. supercond supercond. insulator w/ time spin singlet
Example w/ coplanar | w/ coplanar P ! w/ time w/ time reversal and singlet supercond.
spin order T spin order T (no symm.) reversal T | reversal T intersublattice supercond. w/ time
hopping reversal T

Ryu-Schnyder-Furusaki-Ludwig arXiv:0912.2157, Kitaev cond-mat/0010440

Complex cases:

Wen arXiv:1111.6341

[ Symm. group [ Cplfor =0 | class[p\d[O[1]2]3]4[5[6]7]

example ]
Ut supercond.
W Jdm ozl A | o |z|o|z]o|z|o|z|o] ("™ itk collinear
Z,{ (N X U(m) insulator spin order
Uf(l) X ZZT supercond. w/ real pairing
U(n) Alll| 1 |[O|Z|0|Z|O|Z|0O|Z and S, conserving
Z{ X ZZT spin-orbital coupling
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Classifying spaces R,

p mod 8 0 1 2 3 7 5 6 7
Ro || offesim <2 | O) | T | 5@ | sthespm <2 | Se(0) | T | ot
7o(Rp) Z A 7 0 7 0 0 0
m1(Rp) Zs Zs 0 Z 0 0 0 Z
m2(Rp) Z» 0 A 0 0 0 z Zs
73(Rp) 0 z 0 0 0 z Z> Z>
m4(Rp) A 0 0 0 Z Z» Z> 0
ms(Rp) 0 0 0 7 Za Za 0 7
m6(Rp) 0 0 Z Zo Z> 0 Z 0

m(R,,) 0 A Zn Z» 0 z 0 0

e Let My be the space of gapped d + 1D fermion systems. —

Then ./\/ld ~ Q/\/ld+1 — 7T,,_1(Md) = 7Tn(./\/ld+1)
QM is the loop space of M: the space of the based
loops in M. For example: point ~ 052, Z ~ QS*.

- Consider a 2D system H, that form a cylinder. As we go around the
cylinder, g goes around a loop in My. We may also view the cylinder as
a 1D system. Thus we obtain a map Q My, — M;.

e Myg~TRgpi2-d = Rp=QRp-1, mn— 1(Rp) = ma(Rp-1)
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Why classification is useful apart from deep understanding?

e K-theory classification is constructive, which allow us to constructive all
possible free-fermion gapped phases.

- An universal model for complex classes of topological phases of
non-interacting fermions Hone-body = V@ 1hid; + M, { ¥} = 26

- An universal model for real classes of top. phases of non-interacting
fermions Hone body = 1(7k @ 110 + AR), {7k, vk} = 20;

e Example in 2D: Fermion hopping on honeycomb lattice — two
2-component massless Dirac fermions (R,L pairs)

Hone-body = ot ® 0% +i0® ® 03(9y, complex case

= i(o' ® 0%, +0° ®0%0,). complex case

To obtain one-body Hamiltonian in Majorana basis, we replace 1 by ¢°
and i by —¢ in the above bracket, to obtain (see page 14 of this file)

Hone-body = 0° @ 0! @ 0%0, + 0° ® 0 ® 020, real case
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Why classification is useful apart from deep understanding?

n-layers of honeycomb lattice — 2n 2-component massless Dirac
fermions (n 4-component massless Dirac fermions)
H, =iocl®c®® 1,0+ ic° @ 0> @ 1,0 complex case
one-body — nUx nUy, p

Htﬁe—body = i(o—o ®We® JO ® Inax + (70 & Ul KeR /nay)7 real case

e Adding a proper mass term according to the K-theory classification —
a designed free-fermion gapped state.
Hone-body = ic'l @0 ® 1,0, +ic° @03 ® 10y, + M, complex case

HE ebody = 1(0° @ 0! © 0° @ Ih0k + 0% @ 0° @ 0 @ In0y, + AR), real case
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A continuum model for 2d top. insulator (U"(1) x Z / Z})

Choose n = 1:
Hc";e_body = i(ao @l @0+ @0 ® 038y +A), A=A"= —AT.
e U'(1)-symmetry Q = = ® ¢° @ 0¥, which satisfies
Qe @ ol ® 0P :ao®al®aoQ, Q' ® o3 o3 :ao®a3®a3Q,
QA= AQ, Q%= -1.
T-symmetry T = 0> @ e @ 0%

TUO®O'1®O'O:70'O®O'1®O'OT, TO'O®O'3®O'3:70'O®O'3®O'3T,
TA=-AT, T'=T7"' T?’=-1, TQ=-QT.
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A continuum model for 2d top. insulator (U"(1) x Z / Z})

e The conditions on A
Al @l 0o’ = -6 ®c! @A, A 0200 = -2 2 3A,
At ®e0%= -3 ®0e20%A, Ac®0®®@0% =2 0% ® oA,

- From the last relation: A = #0° @ ot @ 0¥ + #e @ " @ 0",
- Adding the first relation: A = #0° @ 03¢ @ 0¥ + #e ® 03° @ o”.
where 0% = ¢.
- Adding the second relation: A = #0° @ 0% @ o' + #0° @ e @ 093
+#e @03 Rl + He®e® 003
- Adding the conidtion AT = —A:
A=#0'003 e+ #0°e @0+ #0°Re @03+ #e 3 @ ol
- Adding the third relation — A must has a foom A = mo® @ 03 @ ¢
m > 0 is one phase and m < 0 is another phase (maybe since n = 1).

e We know the two phases are different, but we do not know which is
trivial and which is non-trivial. Within the field theory, we cannot know.
Only after adding lattice reularization, we can know.
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e A Dirac fermion realization of 2d topological insulator with symmetry
Uf(1) x z] /Z}, Majorana fermion basis:

HoRne—body - i(UO b2y Ul ® anx + UO ® 03 &® 038}/ + mO’O (= 0'3 (024 E)
Q:E®JO®UO, T=03®ec2d°
- Complex fermion basis (¢° — 1 and ¢ — —i for the first position):
ane—body = i(gl & O'Oax + 0'3 & 030y -+ m03 & 8)
Q=-ic"®s° T=2
The T action is explicit only in Majorana fermion basis.

Do we have an universal physical probe to detect all
non-interacting fermionic topological phases?

e Boundary states are universal physical probe that can detect all
topological phase, but not one-to-one.

Holographic principle of topological phases: Boundary completely
determine the bulk, but bulk does not determine the boundary.
The bulk = the anomaly of the boundary effective theory
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