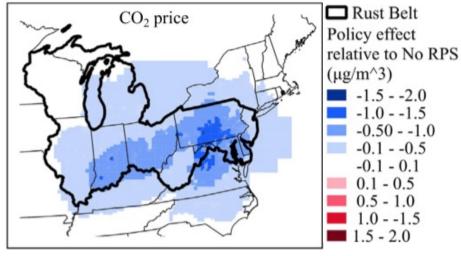
Introduction to Computational Science & Engineering (CSE)

16.0002 / 18.0002 / CSE.01

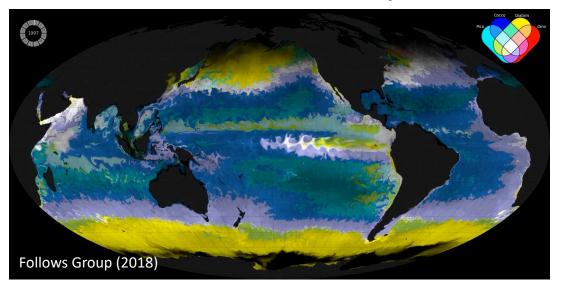
Lecture 1: Introduction Initial Value Problems

Raul Radovitzky (Aero/Astro), Laurent Demanet (Math/EAPS)

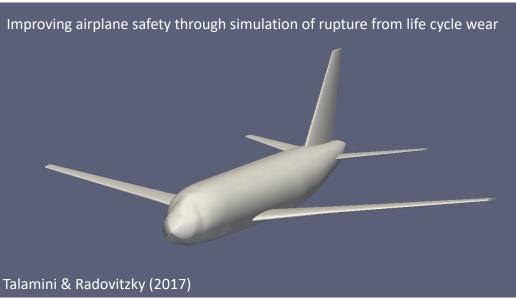
rS)

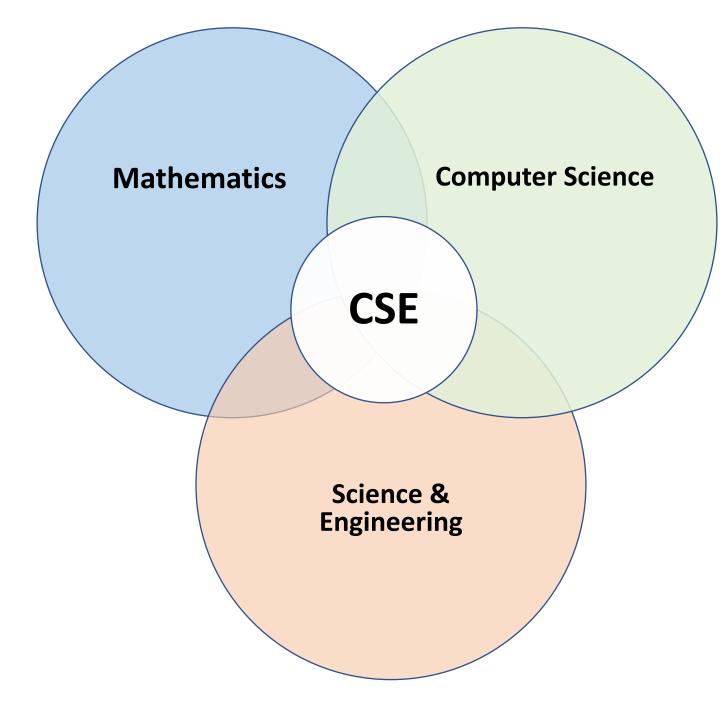

March 28, 2022

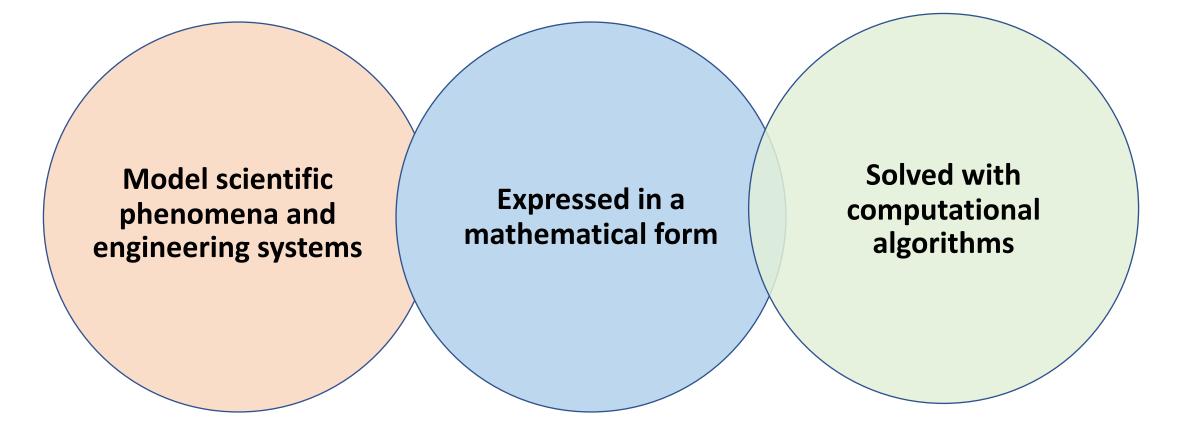
Scientific discovery


What is CSE?

The objective of CSE is to develop and apply computational methods for:


Decision-making for societal challenges


Selin Group (2019)


Innovation in engineering & technology

What is CSE?

What is CSE?

Intro to CSE: content overview

Science-based models of physical systems

- Time integration
- Linear system solution methods
- Nonlinear solution methods

Optimization Methods

- Formulation
- Gradient descent
- Convex optimization

Statistics and Inference Methods

 Monte Carlo methods including confidence intervals, sampling, standard error

"Simulation"

"Controlling & Designing"

"Decision-making"

This will not be a heavy theory course rather an intro to CSE-related algorithms and concepts

Intro to CSE: Psets & Check-offs

- 5 Programming Psets all with checkoffs
- 60% of grade (6% per pset, 6% per check-off)
- Pset partners: groups of up to 3 people (pset partners may submit the same code)
- We will have 3 late days for psets, after these are used, late psets will be given a zero grade.
- Check-offs will generally be spread over two-to-three days after pset is due and by appointment
- You must complete every pset and check-off (even if you have run out of late days). If not, you will receive an Incomplete.

Tentative Pset Topics (Due Dates)

- Pset 1: Martian lander (04/08)
- Pset 2: Geothermal home heating (04/15)
- Pset 3: Climate modeling (04/22)
- Pset 4: Cell tower placement (04/29)
- Pset 5: TBA, share your thoughts! (05/06)

Psets due at 5pm (assignment tab in canvas)

Intro to CSE: Microquizzes and Finger Exercises

- Microquizzes: 3 MQ
 - 30% of grade
 - Dates: 04/06, 04/20, 05/04 (30 mins, in class)
 - Lowest grade dropped
 - Combination of programming, short answer, multiple choice, etc.
 - Questions on MITx, enter code on auto-grader (Vocareum)
 - Contact us if the in-class laptop format is a problem
- Finger Exercises: 7 FE
 - 10% of grade
 - Assigned after lecture
 - Due before next lecture

MITx has the FE, the MQ, and the class notes

Accessible from Canvas, How-to guide

Combination of short programming, short answer, multiple choice, etc.

Monday	Tuesday	Wednesday	Thursday	Friday
03/28: Lec 1		03/30: Lec 2		
Intro, IVP,		FD, Forward Euler,		
Discretization		RK, accuracy, plotting		
(Laurent)		(Raul)		
		FE1 due		
04/04: Lec 3		04/06: Lec 4		PS1 due
Linear systems, matrix		Numpy arrays		Add date H4
notations and		Gaussian elimination		
operations (Laurent)		(Laurent)		
FE2 due		MQ1 in class		
04/11: Lec 5		04/13: Lec 6		PS2 due
Nonlinear systems		Stiffness, implicit		
Root-finding (Raul)		methods, BE,		
FE3 due		Trapezoidal method		
		(Raul)		
		FE4 due		
04/18: Patriot's day		04/20: Lec 7		PS3 due
		Intro optimization,		
		Objectives,		
		constraints, contour		
		plots (Raul)		
		MQ2 in class		
04/25: Lec 8	Drop date H4	04/27: Lec 9		PS4 due
Iterative	brop dute m	Probabilistic thinking		r o r duc
optimization, gradient		Simulation, MC		
descent, Newton's		sampling, UQ		
method		(Laurent)		
(Raul)		FE6 due		
FE5 due		1 Lo uuc		
05/02: Lec 10		05/04: Lec 11		PS5 due
Distributions,		More on distributions,		100 440
confidence intervals,		confidence intervals		
standard error, CLT		(Laurent)		
(Laurent)		MQ3 in class		
FE7 due		ingo in clubb		
05/09: Lec 12	Last day of classes		1	
examples of	Last day of classes			
probabilistic				
modeling, sources of				
uncertainties, Lorenz.				
(Raul)				

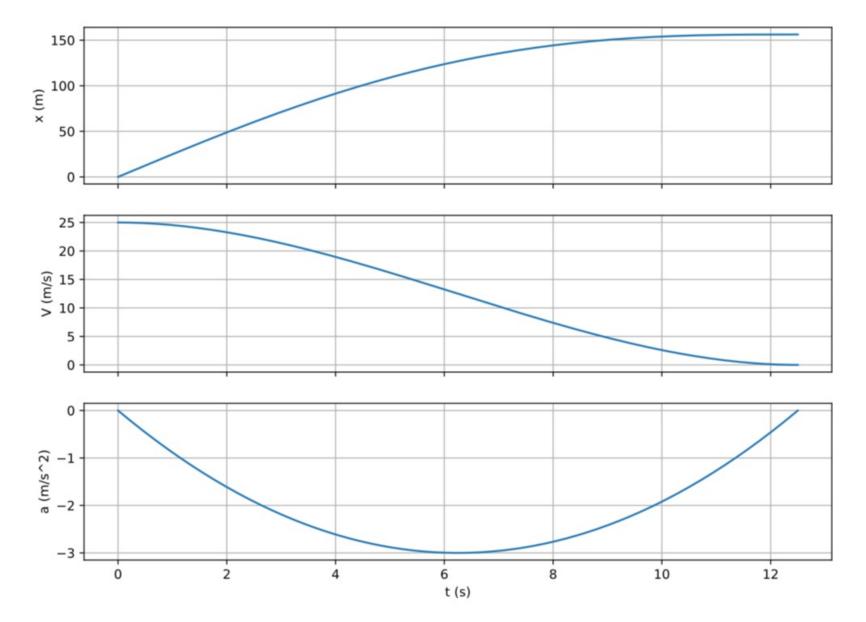
Staff and Office hours

- Instructors: Laurent Demanet and Raul Radovitzky
- Grad TA: Daniel Pickard
- Undergrad TA: Juliana Chew, Kevin James
- Check Canvas for our office hours. In person, or request a zoom
- Pset party: 7-9pm on Thursdays
- We do not plan to hold "recitations" but we will track Piazza and be prepared to offer examples during office hours

Other resources

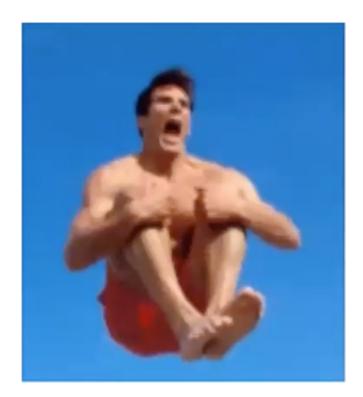
- Canvas site
 - Schedule
 - Syllabus with additional details
- Piazza:
 - Post your questions
 - Programming style guide
 - Plotting examples

If you ever have questions concerns:


Feel free to reach out to us at any time using:

email instructors

Or on Piazza


Or via Canvas

Deceleration of a car to rest

Terminal velocity

Cooling a cup of coffee (85 deg C to 50 deg C)

Predator-prey model (Lotka-Volterra)

