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Preface

Good additional references are

• Burden and Faires, Introduction to numerical analysis

• Suli and Mayers, Introduction to numerical analysis

• Trefethen, Spectral methods in Matlab

as well as the pdf notes on numerical analysis by John Neu.
If the text points you to some external reference for further study, the

latter is generally not part of the material for the class.
Work in progress!
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Chapter 1

Series and sequences

Throughout these notes we’ll keep running into Taylor series and Fourier se-
ries. It’s important to understand what is meant by convergence of series be-
fore getting to numerical analysis proper. These notes are self-contained, but
two good extra references for this chapter are Tao, Analysis I; and Dahlquist
and Bjorck, Numerical methods.

A sequence is a possibly infinite collection of numbers lined up in some
order:

a1, a2, a3, . . .

A series is a possibly infinite sum:

a1 + a2 + a3 + . . .

We’ll consider real numbers for the time being, but the generalization to
complex numbers is a nice exercise which mostly consists in replacing each
occurrence of an absolute value by a modulus.

The questions we address in this chapter are:

• What is the meaning of an infinite sum?

• Is this meaning ever ambiguous?

• How can we show convergence vs. divergence?

• When can we use the usual rules for finite sums in the infinite case?
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1.1 Convergence vs. divergence

We view infinite sums as limits of partial sums. Since partial sums are
sequences, let us first review convergence of sequences.

Definition 1. A sequence (aj)
∞
j=0 is said to be ε-close to a number b if there

exists a number N ≥ 0 (it can be very large), such that for all n ≥ N ,

|aj − b| ≤ ε.

A sequence (aj)
∞
j=0 is said to converge to b if it is ε-close to b for all ε > 0

(however small). We then write aj → b, or limj→∞ aj = b.

If a sequence does not converge we say that it diverges. Unbounded
sequences, i.e., sequences that contain arbitrarily large numbers, always di-
verge. (So we never say “converges to infinity”, although it’s fine to say
“diverges to infinity”.)

Examples:

• e−n → 0 as n→∞, and convergence is very fast.

• n/(n+ 2)→ 1 as n→∞, and convergence is rather slow.

• (−1)n is bounded, but does not converge.

• log(n) → ∞ as n → ∞, so the sequence diverges. For a proof that
log(n) takes on arbitrarily large values, fix any large integer m. Does
there exist an n such that log(n) ≥ m? Yes, it suffices to take n ≥ em.

Definition 2. Consider a sequence (aj)
∞
j=0. We define the N-th partial sum

SN as

SN = a0 + a1 + . . .+ aN =
N∑
j=0

aj.

We say that the series
∑

j aj converges if the sequence of partial sums SN
converges to some number b as N →∞. We then write

∑∞
j=0 aj = b.

Again, if a series does not converge we say that it diverges.



1.1. CONVERGENCE VS. DIVERGENCE 7

Example 1. Consider
∑∞

j=0 2−j, i.e.,

1 +
1

2
+

1

4
+

1

8
+ . . . .

This series converges to the limit 2. To prove this, consider the partial sum

SN =
N∑
j=0

2−j.

Let us show by induction that SN = 2 − 2−N . The base case N = 0 is true
since 2−0 = 2−2−0. For the induction case, assume SN = 2−2−N . We then
write

SN+1 = SN + 2−(N+1) = (2− 2−N) + 2−(N+1) = 2− 2−(N+1),

the desired conclusion.

Example 2. The previous example was the x = 1/2 special case of the so-
called geometric series

1 + x+ x2 + x3 + . . .

WIth a similar argument, we obtain the limit as

∞∑
j=0

xj =
1

1− x
,

provided the condition |x| < 1 holds. This expression can also be seen as the
Taylor expansion of 1/(1−x), centered at zero, and with radius of convergence
1.

Example 3. Consider the so-called harmonic series

1 +
1

2
+

1

3
+

1

4
+ . . . .

This series diverges. To see this, let us show that the N partial sum is
comparable to log(N). We use the integral test

SN =
N∑
j=1

1

j
≥
∫ N+1

1

1

x
dx.

(Insert picture here)
The latter integral is log(N+1), which diverges as a sequence. The partial

sums, which are larger, must therefore also diverge.
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Example 4. Consider
∞∑
j=1

1

nq
,

for some q > 0. As a function of q, this is the Riemann zeta function ζ(q).
(A fascinating object for number theorists.)

We’ve seen above that q = 1 leads to divergence. A similar integral test
would show that the series converges when q > 1, while it diverges when
q ≤ 1.

We now switch to a finer understanding of convergence: certain series are
absolutely convergent, while others are conditionally convergent. This will
affect what type of algebraic manipulations can be done on them.

Definition 3. A series
∑∞

j=0 aj is said to be absolutely convergent if
∑∞

j=0 |aj|
converges. If a series is not absolutely convergent, but nevertheless converges,
we say that it is conditionally convergent.

The subtlety with conditional convergence is that alternating plus and
minus signs may lead to convergence because of cancelations when summing
consecutive terms.

Example 5. Consider

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . .

This series is not absolutely convergent, because it reduces to the harmonic
series when absolute values of the terms are taken. It is nevertheless con-
vergent, hence conditionally convergent, as the following argument shows.
Assume N is even, and let

SN =
N∑
j=1

(−1)j

j
.

Terms can be grouped 2-by-2 to obtain, for j ≥ 1,

1

j
− 1

j + 1
=

1

j(j + 1)
.
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A fortiori, 1
j(j+1)

≤ 1
j2

, so

SN ≤
N−1∑

j=1,3,5,...

1

j2
,

which we know converges. If on the other hand N is odd, then SN = SN−1 +
1

N+1
. Both terms SN and 1/(N + 1) are converging sequences, so their sum

converges as well. This proves convergence.
Note that the series converges to

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = log(2).

This is the special case x = 1 in the Taylor expansion of log(1 + x) about
x = 0.

In passing, without proof, here is a useful test to check convergence of
alternating series.

Theorem 1. (Alternating series test) Consider the series

∞∑
j=0

(−1)jaj,

where aj > 0. If (aj) converges to zero (as a sequence), then the series is
convergent.

The main problem with conditionally convergent series is that if the terms
are rearranged, then the series may converge to a different limit. The “safe
zone” for handling infinite sums as if they were finite is when convergence is
absolute.

Theorem 2. Let f : Z+ 7→ Z+ be a bijection, i.e., f is a rearrangement of the
nonnegative integers. Consider a series

∑∞
j=0 aj. If this series is absolutely

convergent, then
∞∑
j=0

aj =
∞∑
j=0

af(j).

Here is what usually happens when the assumption of absolute conver-
gence is not satisfied.
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Example 6. Consider again

1

3
− 1

4
+

1

5
− 1

6
+ . . .

which as we have seen equals log(2)− (1− 1/2) = log(2)− 1/2 = .193147 . . ..
We can rearrange the terms of the series by assigning two negative terms for
each positive term:

1

3
− 1

4
− 1

6
+

1

5
− 1

8
− 1

10
+

1

7
+ . . .

This series is also convergent, but happens to converge to (log(2) − 1)/2 =
−.153426 . . ..

Other operations that can be safely performed on absolutely convergent
series are passing absolute values inside the sum, and exchanging sums.
Again, complications arise if the series is only conditionally convergent. (See
Tao, Analysis I, for counter-examples.)

Theorem 3. The following operations are legitimate for absolutely conver-
gent series.

• Passing absolute values inside sums:

|
∞∑
j=0

aj| ≤
∞∑
j=0

|aj|.

• Swapping sums:
∞∑
j=0

∞∑
k=0

aj,k =
∞∑
k=0

∞∑
j=0

aj,k

Note in passing that the same is true for integrals of unbounded integrands
or integrals over unbounded domains: they need to be absolutely convergent
(integrability of the absolute value of the function) for the integral swap to be
legitimate. This is the content of Fubini’s theorem. Again, there are striking
counter-examples when the integrals are not absolutely convergent and the
swap doesn’t work (See Tao, Analysis I).
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1.2 The big-O notation

Here are a few useful pieces of notation for comparing growth or decay of
sequences, used extensively by numerical analysts. They are called the big-
O, little-o, and big-Theta notations. Big-O is used much more often than
the other two. They occur when comparing decay rates of truncation errors,
and runtimes of algorithms.

Definition 4. Consider two nonzero sequences fn and gn for n = 0, 1, 2, . . ..
We write fn = O(gn) when there exists C > 0 such that |fn| ≤ C|gn|.
We write fn = o(gn) when fn/gn → 0 as n→∞.
We write fn = Θ(gn) when fn = O(gn) and gn = O(fn).

Examples:

• fn = n2 and gn = n3: we have n2 = O(n3) and n2 = o(n3) but
n2 6= Θ(n3).

• fn = n
n+2

and gn = n
n−3 : we have fn = O(gn) and fn = Θ(gn), but

fn 6= o(gn).

• Exponentials always dominate polynomials: na = o(ebn) whenever a >
0 and b > 0.

• Conversely, e−bn = o(n−a).

Out loud, we can read the expression fn = O(gn) as “fn is on the order
of gn”.

The same notations can be used to compare sequences indexed by a pa-
rameter that goes to zero, such as (typically) the grid spacing h. The defini-
tion above is simply adapted by letting h→ 0 rather than n→∞.

Examples:

• f(h) = h2 and g(h) = h3: this time we have g(h) = O(f(h)) and
g(h) = o(f(h)) when the limit of interest is h→ 0.

• Powers of h don’t converge to zero nearly as fast as this exponential:
ea/h = o(hb) whatever a > 0 and b > 0.

Similarly, we may wish to compare functions f and g of a continuous
variable x as either x→∞ or x→ 0; the definition is again modified in the
obvious way. Whenever a O(·) or o(·) is written, some underlying limit is
understood.
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Chapter 2

Integrals as sums and
derivatives as differences

We now switch to the simplest methods for integrating or differentiating a
function from its function samples. A careful study of Taylor expansions
reveals how accurate the constructions are.

2.1 Numerical integration

Consider a function f – we’ll specify which assumptions we need to make
about it in a minute. Let us reformulate the integral∫ 1

0

f(x) dx

by breaking up the interval [a, b] into subintervals [xj−1, xj], with xj = jh,
h = 1/N , and

0 = x0 < x1 < . . . < xN = 1.

Together, the (xj) are called a Cartesian grid. Still without approximation,
we can write ∫ 1

0

f(x) dx =
N∑
j=1

∫ xj

xj−1

f(x) dx.

A quadrature is obtained when integrals are approximated by quantities that
depend only on the samples f(xj) of f on the grid xj. For instance, we can

13
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approximate the integral over [xj−1, xj] by the signed area of the rectangle
of height f(xj−1) and width h:∫ xj

xj−1

f(x) dx ' hf(xj−1).

Putting the terms back together, we obtain the rectangle method :∫ 1

0

f(x) dx ' h
N∑
j=1

f(xj−1). (2.1)

(Insert picture here)
To understand the accuracy of this approximation, we need a detour

through Taylor expansions. Given a very smooth function f(x), it sometimes
makes sense to write an expansion around the point x = a, as

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 +

1

3!
f ′′′(a)(x− a)3 + . . .

As a compact series, this would be written as

f(x) =
∞∑
n=0

1

n!
f (n)(a)(x− a)n,

where n! = n · (n− 1) · . . . 2 · 1 is the factorial of n. The word “sometimes” is
important: the formula above requires the function to be infinitely differen-
tiable, and even still, we would need to make sure that the series converges
(by means of the analysis of the previous chapter). The radius of conver-
gence of the Taylor expansion is the largest R such that, for all x such that
|x− a| < R, the series converges.

It is also possible to truncate a Taylor series after N terms, as

f(x) =
N−1∑
n=0

1

n!
f (n)(a)(x− a)n +

1

N !
f (N)(y)(x− a)N , (2.2)

where y is some number between x and a. The formula does not specify what
the number y is; only that there exists one such that the remainder takes
the form of the last term. In spite of the fact that y is unspecified, this is a
much more useful form of Taylor expansion than the infinite series:
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• We often only care about the size of the remainder, and write inequal-
ities such as

| 1

N !
f (N)(y)(x− a)N | ≤ 1

N !

(
max
z∈[x,a]

|f (N)(z)|
)
|x− a|N ,

or, for short,
1

N !
f (N)(y)(x− a)N = O(|x− a|N),

where all the “constants” are hidden in the O. So, the remainder is
on the order of |x − a|N . The limit implicit in the O notation is here
(x− a)→ 0.

• The finite-N formula is valid whenever the function is N times differ-
entiable, not infinitely differentiable! In fact, the Taylor series itself
may diverge, but equation (2.2) is still valid.

In order to study the problem of approximating
∫ xj
xj−1

f(x) dx, let us ex-

pand f in a (short, truncated) Taylor series near x = xj−1:

f(x) = f(xj−1) + f ′(y(x))(x− xj−1),

where y(x) ∈ [xj−1, x]. We’ve written y(x) to highlight that it depends on x.
This works as long as f has one derivative. Integrating on both sides, and
recognizing that f(xj−1) is constant with respect to x, we get∫ xj

xj−1

f(x) dx = hf(xj−1) +

∫ xj

xj−1

f ′(y(x))(x− xj−1) dx.

We don’t know much about y(x), but we can certainly write the inequality
(recall that xj − xj−1 = h)

|
∫ xj

xj−1

f ′(y(x))(x−xj−1) dx| ≤ max
y∈[xj−1,xj ]

|f ′(y)|h
∫ xj

xj−1

1 dx = h2 max
y∈[xj−1,xj ]

|f ′(y)|.

So long as f is differentiable, we have∫ xj

xj−1

f(x) dx = hf(xj−1) +O(h2),
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where the derivative of f hides in the O sign. The integral over [0, 1] has N
such terms, so when they are added up the error compounds to N ·O(h2) =
O(h) (because h = 1/N). Thus we have just proved that∫ 1

0

f(x) dx = h

N∑
j=1

f(xj−1) +O(h).

The error is on the order of the grid spacing h itself, so we say the method
is first-order accurate (because the exponent of h is one.)

Choosing the (signed) height of each rectangle from the left endpoint xj−1
does not sound like the most accurate thing to do. Evaluating the function
instead at xj−1/2 = (j − 1/2)h is a better idea, called the midpoint method.
It is possible to show that∫ 1

0

f(x) dx = h
N∑
j=1

f(xj−1/2) +O(h2),

provided the function f is twice differentiable (because f ′′ hides in the O
sign). The accuracy is improved, since h2 gets much smaller than h as h→ 0.
We say the midpoint method is second-order accurate.

Another solution to getting order-2 accuracy is to consider trapezoids
instead of rectangles for the interval [xj−1, xj]. The area of the trapezoid
spanned by the 4 points (xj−1, 0); (xj−1, f(xj−1)); (xj, f(xj)); (xj, 0) is h(f(xj−1)+
f(xj))/2. This gives rise to the so-called trapezoidal method, or trapezoidal
rule.

(Insert picture here)
Let us compare this quantity to the integral of f over the same interval.

Consider the truncated Taylor expansions

f(x) = f(xj−1) + f ′(xj−1)(x− xj−1) +O(h2),

f(xj) = f(xj−1) + f ′(xj−1)h+O(h2),

where the second derivative of f appears in the O sign. Integrating the first
relation gives ∫ xj

xj−1

f(x) dx = hf(xj−1) +
h2

2
f ′(xj−1) +O(h3).
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The area of the trapezoid, on the other hand, is (using the second Taylor
relation)

h

2
(f(xj−1) + f(xj)) = hf(xj−1) +

h2

2
f ′(xj−1) +O(h3).

Those two equations agree, except for the terms O(h3) which usually differ
in the two expressions. Hence∫ xj

xj−1

f(x) dx =
h

2
(f(xj−1) + f(xj)) +O(h3).

We can now sum over j (notice that all the terms appear twice, except
for the endpoints) to obtain∫ 1

0

f(x) dx =
h

2
f(0) + h

N−1∑
j=1

f(xj) +
h

2
f(1) +O(h2).

The trapezoidal rule is second-order accurate. All it took is a modification
of the end terms to obtain O(h2) accuracy in place of O(h).

Example: f(x) = x2 in [0, 1]. We have
∫ 1

0
x2 dx = 1/3.

• For the rectangle rule with N = 4 and h = 1/4, consider the gridpoints
x = 0, 1/4, 1/2, 3/4, and 1. Each rectangle has height f(xj−1) where
xj−1 is the left endpoint. We have∫ 1

0

x2 dx ' 1

4

[
0 +

1

42
+

1

22
+

32

42

]
=

14

64
= .2188...

This is quite far (O(h), as we know) from 1/3.

• For the trapezoidal rule, consider the same grid. We now also consider
the grid point at x = 1, but the contribution of both x = 0 and x = 1
is halved.∫ 1

0

x2 dx =
1

4

[
1

2
· 0 +

1

42
+

1

22
+

32

42
+

1

2
· 1
]

=
22

64
= .3438...

This is much closer (O(h2) as a matter of fact) from 1/3.

We’ll return to the topic of numerical integration later, after we cover
polynomial interpolation.
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2.2 Numerical differentiation

The simplest idea for computing an approximation to the derivative u′(xj)
of a function u from the samples uj = u(xj) is to form finite difference ratios.
On an equispaced grid xj = jh, the natural candidates are:

• the one-sided, forward and backward differences

∆+uj =
uj+1 − uj

h
, ∆− =

uj − uj−1
h

,

• and the two-sided centered difference

∆0uj =
uj+1 − uj−1

2h
.

Let us justify the accuracy of these difference quotients at approximating
derivatives, as h → 0. The analysis will depend on the smoothness of the
underlying function u.

Assume without loss of generality that xj−1 = −h, xj = 0, and xj+1 = h.
For the forward difference, we can use a Taylor expansion about zero to get

u(h) = u(0) + hu′(0) +
h2

2
u′′(y), y ∈ [0, h].

When substituted in the formula for the forward difference, we get

u(h)− u(0)

h
= u′(0) +

h

2
u′′(y).

The error is a O(h) as soon as the function has two bounded derivatives. We
say that the forward difference is a method of order one. The analysis for
the backward difference is very similar.

For the centered difference, we now use two Taylor expansions about zero,
for u(h) and u(−h), that we write up to order 3:

u(±h) = u(0)± hu′(0) +
h2

2
u′′(0)± h3

6
u′′′(y±),

with y± either in [0, h] or [−h, 0] depending on the choice of sign. Subtract
u(−h) from u(h) to get (the h2 terms cancel out)

u(h)− u(−h)

2h
= u′(0) +

h2

12
(u′′′(y+) + u′′′(y−)).
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The error is now O(h2) provided u is three times differentiable, hence the
method is of order 2.

The simplest choice for the second derivative is the centered second dif-
ference

∆2uj =
uj+1 − 2uj + uj−1

h2
.

It turns out that ∆2 = ∆+∆− = ∆−∆+, i.e., the three-point formula for the
second difference can be obtained by calculating the forward difference of the
backward difference, or vice-versa. ∆2 is second-order accurate: the error is
O(h2). To see this, write the Taylor expansions around x = 0 to fourth order:

u(±h) = u(0)± hu′(0) +
h2

2
u′′(0)± h3

6
u′′′(0) +

h4

24
u′′′′(y±).

with y± either in [0, h] or [−h, 0] depending on the choice of sign. The odd
terms all cancel out when calculating the second difference, and what is left
is

uj+1 − 2uj + uj−1
h2

= u′′(0) +
h2

24
(u′′′′(y+) + u′′′′(y−)).

So the method is O(h2), but only when u is four times differentiable.
Example: f(x) = x2 again. We get f ′(x) = 2x and f ′′(x) = 2.

∆+f(x) =
(x+ h)2 − x2

h
=

2xh+ h2

h
= 2x+ h.

∆−f(x) =
x2 − (x− h)2

h
=

2xh− h2

h
= 2x− h.

∆0f(x) =
(x+ h)2 − (x− h)2

2h
=

4xh

2h
= 2x.

∆2f(x) =
(x+ h)2 − 2x2 + (x− h)2

h2
=

2h2

h2
= 2.

The error is manifestly h for the forward difference, and −h for the backward
difference (both are O(h).) Coincidentally, the error is zero for ∆0 and ∆2:
centered differences differentiate parabolas exactly. This is an exception:
finite differences are never exact in general. Of course, 0 = O(h2) so there’s
no contradiction.

When u has less differentiability than is required by the remainder in the
Taylor expansions, it may happen that the difference schemes may have lower
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order than advertised. This happens in numerical simulations of some differ-
ential equations where the solution is discontinuous, e.g., in fluid dynamics
(interfaces between phases).

Sometimes, points on the left or on the right of xj are not available
because we are at one of the edges of the grid. In that case one should use
a one-sided difference formula (such as the backward or forward difference.)
You can find tables of high-order one-sided formulas for the first, second, and
higher derivatives online.

The more systematic way of deriving finite difference formulas is by dif-
ferentiating a polynomial interpolant. We return to the topics of integration
and differentiation in the next chapter.



Chapter 3

Interpolation

Interpolation is the problem of fitting a smooth curve through a given set of
points, generally as the graph of a function. It is useful at least in data analy-
sis (interpolation is a form of regression), industrial design, signal processing
(digital-to-analog conversion) and in numerical analysis. It is one of those
important recurring concepts in applied mathematics. In this chapter, we
will immediately put interpolation to use to formulate high-order quadrature
and differentiation rules.

3.1 Polynomial interpolation

Given N + 1 points xj ∈ R, 0 ≤ j ≤ N , and sample values yj = f(xj) of
a function at these points, the polynomial interpolation problem consists in
finding a polynomial pN(x) of degree N which reproduces those values:

yj = pN(xj), j = 0, . . . , N.

In other words the graph of the polynomial should pass through the points
(xj, yj). A degree-N polynomial can be written as pN(x) =

∑N
n=0 anx

n for
some coefficients a0, . . . , aN . For interpolation, the number of degrees of
freedom (N + 1 coefficients) in the polynomial matches the number of points
where the function should be fit. If the degree of the polynomial is strictly
less than N , we cannot in general pass it through the points (xj, yj). We
can still try to pass a polynomial (e.g., a line) in the “best approximate
manner”, but this is a problem in approximation rather than interpolation;
we will return to it later in the chapter on least-squares.

21
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Let us first see how the interpolation problem can be solved numerically
in a direct way. Use the expression of pN into the interpolating equations
yj = pN(xj):

N∑
n=0

anx
n
j = yj, j = 0, . . . , N.

In these N + 1 equations indexed by j, the unknowns are the coefficients
a0, . . . , aN . We are in presence of a linear system

V a = y, ⇔
N∑
n=0

Vjnan = yj,

with V the so-called Vandermonde matrix, Vjn = xnj , i.e.,

V =


1 x0 · · · xN0
1 x1 · · · xN1
...

...
...

1 xN · · · xNN

 .

We can then use a numerical software like Matlab to construct the vector of
abscissas xj, the right-hand-side of values yj, the V matrix, and numerically
solve the system with an instruction like a = V \y (in Matlab). This gives
us the coefficients of the desired polynomial. The polynomial can now be
plotted in between the grid points xj (on a finer grid), in order to display
the interpolant.

Historically, mathematicians such as Lagrange and Newton did not have
access to computers to display interpolants, so they found explicit (and el-
egant) formulas for the coefficients of the interpolation polynomial. It not
only simplified computations for them, but also allowed them to understand
the error of polynomial interpolation, i.e., the difference f(x) − pN(x). Let
us spend a bit of time retracing their steps. (They were concerned with
applications such as fitting curves to celestial trajectories.)

We’ll define the interpolation error from the uniform (L∞) norm of the
difference f − pN :

‖f − pN‖∞ := max
x
|f(x)− pN(x)|,

where the maximum is taken over the interval [x0, xN ].
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Call PN the space of real-valued degree-N polynomials:

PN = {
N∑
n=0

anx
n : an ∈ R}.

Lagrange’s solution to the problem of polynomial interpolation is based
on the following construction.

Lemma 1. (Lagrange elementary polynomials) Let {xj, j = 0, . . . , N} be a
collection of disjoint numbers. For each k = 0, . . . , N , there exists a unique
degree-N polynomial Lk(x) such that

Lk(xj) = δjk =

{
1 if j = k;
0 if j 6= k.

Proof. Fix k. Lk has roots at xj for j 6= k, so Lk must be of the form1

Lk(x) = C
∏
j 6=k

(x− xj).

Evaluating this expression at x = xk, we get

1 = C
∏
j 6=k

(xk − xj) ⇒ C =
1∏

j 6=k(xk − xj)
.

Hence the only possible expression for Lk is

Lk(x) =

∏
j 6=k(x− xj)∏
j 6=k(xk − xj)

.

These elementary polynomials form a basis (in the sense of linear algebra)
for expanding any polynomial interpolant pN .

1That’s because, if we fix j, we can divide Lk(x) by (x − xj), j 6= k. We obtain
Lk(x) = (x − xj)q(x) + r(x), where r(x) is a remainder of lower order than x − xj , i.e.,
a constant. Since Lk(xj) = 0 we must have r(x) = 0. Hence (x − xj) must be a factor
of Lk(x). The same is true of any (x − xj) for j 6= k. There are N such factors, which
exhausts the degree N . The only remaining degree of freedom in Lk is the multiplicative
constant.
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Theorem 4. (Lagrange interpolation theorem)
Let {xj, j = 0, . . . , N} be a collection of disjoint real numbers. Let {yj, j =

0, . . . , N} be a collection of real numbers. Then there exists a unique pN ∈ PN
such that

pN(xj) = yj, j = 0, . . . , N.

Its expression is

pN(x) =
N∑
k=0

ykLk(x), (3.1)

where Lk(x) are the Lagrange elementary polynomials.

Proof. The justification that (3.1) interpolates is obvious:

pN(xj) =
N∑
k=0

ykLk(xj) =
N∑
k=0

ykδjk = yj.

It remains to see that pN is the unique interpolating polynomial. For this
purpose, assume that both pN and qN take on the value yj at xj. Then
rN = pN − qN is a polynomial of degree N that has a root at each of the
N +1 points x0, . . . , xN . The fundamental theorem of algebra, however, says
that a nonzero polynomial of degree N can only have N (complex) roots.
Therefore, the only way for rN to have N + 1 roots is that it is the zero
polynomial. So pN = qN .

By definition,

pN(x) =
N∑
k=0

f(xk)Lk(x)

is called the Lagrange interpolation polynomial of f at xj.

Example 7. Linear interpolation through (x1, y1) and (x2, y2):

L1(x) =
x− x2
x1 − x2

, L2(x) =
x− x1
x2 − x1

,

p1(x) = y1L1(x) + y2L2(x)

=
y2 − y1
x2 − x1

x+
y1x2 − y2x1
x2 − x1

= y1 +
y2 − y1
x2 − x1

(x− x1).
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Example 8. (Example (6.1) in Suli-Mayers) Consider f(x) = ex, and inter-
polate it by a parabola (N = 2) from three samples at x0 = −1, x1 = 0, x2 = 1.
We build

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

1

2
x(x− 1)

Similarly,

L1(x) = 1− x2, L2(x) =
1

2
x(x+ 1).

So the quadratic interpolant is

p2(x) = e−1L0(x) + e0L1(x) + e1L2(x),

= 1 + sinh(1)x+ (cosh(1)− 1)x2,

' 1 + 1.1752x+ 0.5431x2.

Another polynomial that approximates ex reasonably well on [−1, 1] is the
Taylor expansion about x = 0:

t2(x) = 1 + x+
x2

2
.

Manifestly, p2 is not very different from t2.
(Insert picture here)

Let us now move on to the main result concerning the interpolation error
of smooth functions.

Theorem 5. Let f ∈ CN+1[a, b] for some N > 0, and let {xj : j = 0, . . . , N}
be a collection of disjoint reals in [a, b]. Consider pN the Lagrange interpola-
tion polynomial of f at xj. Then for every x ∈ [a, b] there exists ξ(x) ∈ [a, b]
such that

f(x)− pN(x) =
f (N+1)(ξ(x))

(N + 1)!
πN+1(x),

where

πN+1(x) =
N+1∏
j=1

(x− xj).

An estimate on the interpolation error follows directly from this theorem.
Set

MN+1 = max
x∈[a,b]

|f (N+1)(x)|
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(which is well defined since f (N+1) is continuous by assumption, hence reaches
its lower and upper bounds.) Then

|f(x)− pN(x)| ≤ MN+1

(N + 1)!
|πN+1(x)|

In particular, we see that the interpolation error is zero when x = xj for
some j, as it should be.

Let us now prove the theorem.

Proof. (Can be found in Suli-Mayers, Chapter 6)

In conclusion, the interpolation error:

• depends on the smoothness of f via the high-order derivative f (N+1);

• has a factor 1/(N + 1)! that decays fast as the order N →∞;

• and is directly proportional to the value of πN+1(x), indicating that the
interpolant may be better in some places than others.

The natural follow-up question is that of convergence: can we always
expect convergence of the polynomial interpolant as N → ∞? In other
words, does the factor 1/(N + 1)! always win over the other two factors?

Unfortunately, the answer is no in general. There are examples of very
smooth (analytic) functions for which polynomial interpolation diverges, par-
ticularly so near the boundaries of the interplation interval. This behavior
is called the Runge phenomenon, and is usually illustrated by means of the
following example.

Example 9. (Runge phenomenon) Let f(x) for x ∈ [−5, 5]. Interpolate it
at equispaced points xj = 10j/N , where j = −N/2, . . . , N/2 and N is even.
It is easy to check numerically that the interpolant diverges near the edges of
[−5, 5], as N → ∞. See Trefethen’s textbook on page 44 for an illustration
of the Runge phenomenon.

(Figure here)

If we had done the same numerical experiment for x ∈ [−1, 1], the inter-
polant would have converged. This shows that the size of the interval matters.
Intuitively, there is divergence when the size of the interval is larger than the
”features”, or characteristic length scale, of the function (here the width of
the bump near the origin.)
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The analytical reason for the divergence in the example above is due in
no small part to the very large values taken on by πN+1(x) far away from the
origin — in contrast to the relatively small values it takes on near the origin.
This is a problem intrinsic to equispaced grids. We will be more quantitative
about this issue in the section on Chebyshev interpolants, where a remedy
involving non-equispaced grid points will be explained.

As a conclusion, polynomial interpolants can be good for small N , and
on small intervals, but may fail to converge (quite dramatically) when the
interpolation interval is large.

3.2 Polynomial rules for integration

In this section, we return to the problem of approximating
∫ b
a
u(x)dx by

a weighted sum of samples u(xj), also called a quadrature. The plan is
to form interpolants of the data, integrate those interpolants, and deduce
corresponding quadrature formulas. We can formulate rules of arbitrarily
high order this way, although in practice we almost never go beyond order 4
with polynomial rules.

3.2.1 Polynomial rules

Without loss of generality, consider the local interpolants of u(x) formed near
the origin, with x0 = 0, x1 = h and x−1 = −h. The rectangle rule does not
belong in this section: it is not formed from an interpolant.

• The trapezoidal rule, where we approximate u(x) by a line joining
(0, u(x0)) and (h, u(x1)) in [0, h]. We need 2 derivatives to control the
error:

u(x) = p1(x) +
u′′(ξ(x))

2
x(x− h),

p1(x) = u(0)L0(x) + u(h)L1(x),

L0(x) =
h− x
h

, L1(x) =
x

h
,∫ h

0

L0(x)dx =

∫ h

0

L1(x)dx = h/2, (areas of triangles)∫ h

0

|u
′′(ξ(x))

2
x(x− h)| dx ≤ C max

ξ
|u′′(ξ)|h3.
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The result is ∫ h

0

u(x) dx = h

(
u(0) + u(h)

2

)
+O(h3).

As we have seen, the terms combine as∫ 1

0

u(x) dx =
h

2
u(x0) + h

N−1∑
j=1

u(xj−1) +
h

2
u(xN) +O(h2).

• Simpson’s rule, where we approximate u(x) by a parabola through
(−h, u(x−1)), (0, u(x0)), and (h, u(x1)) in [−h, h]. We need three deriva-
tives to control the error:

u(x) = p2(x) +
u′′′(ξ(x))

6
(x+ h)x(x− h),

p2(x) = u(−h)L−1(x) + u(0)L0(x) + u(h)L1(x),

L−1(x) =
x(x− h)

2h2
, L0(x) =

(x+ h)(x− h)

−h2
, L1(x) =

(x+ h)x

2h2
,∫ h

−h
L−1(x)dx =

∫ h

−h
L1(x)dx = h/3,

∫ h

−h
L0(x)dx = 4h/3,∫ h

−h
|u
′′′(ξ(x))

6
(x+ h)x(x− h)| dx ≤ C max

ξ
|u′′′(ξ)|h4.

The result is∫ h

−h
u(x) dx = h

(
u(−h) + 4u(0) + u(h)

3

)
+O(h4).

The composite Simpson’s rule is obtained by using this approximation
on [0, 2h] ∪ [2h, 4h] ∪ . . . [1− 2h, 1], adding the terms, and recognizing
that the samples at 2nh (except 0 and 1) are represented twice.∫ 1

0

u(x)dx =
h

3
(u(0) + 4u(h) + 2u(2h) + 4u(3h) + . . .

+2u(1− 2h) + 4u(1− h) + u(1)) +O(h3).

It turns out that the error is in fact O(h5) on [−h, h], and O(h4) on
[0, 1], as a homework question invites to prove. For this, we need u to
be four times differentiable (the constant in front of h5 involves u′′′′.)
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The higher-order variants of polynomial rules, called Newton-Cotes rules,
are not very interesting because the Runge phenomenon kicks in again. Also,
the weights (like 1,4,2,4,2, etc.) become negative, which leads to unacceptable
error magnification if the samples of u are not known exactly.

Piecewise spline interpolation is not a good choice for numerical integra-
tion either, because of the two leftover degrees of freedom, whose arbitrary
choice affects the accuracy of quadrature in an unacceptable manner. (We’ll
study splines in a later section.)

We’ll return to (useful!) integration rules of arbitrarily high order in the
scope of spectral methods.

3.3 Polynomial rules for differentiation

A systematic way of deriving finite difference formulas of higher order is to
view them as derivatives of a polynomial interpolant passing through a small
number of points neighboring xj. For instance (again we use −h, 0, h as
reference points without loss of generality):

• The forward difference at 0 is obtained from the line joining (0, u(0))
and (h, u(h)):

p1(x) = u(0)L0(x) + u(h)L1(x),

L0(x) =
h− x
h

, L1(x) =
x

h
,

p′1(0) =
u(h)− u(0)

h
.

We already know that u′(0)− p′1(0) = O(h).

• The centered difference at 0 is obtained from the line joining (−h, u(−h))
and (h, u(h)) (a simple exercise), but it is also obtained from differen-
tiating the parabola passing through the points (−h, u(−h)), (0, u(0)),
and (h, u(h)). Indeed,

p2(x) = u(−h)L−1(x) + u(0)L0(x) + u(h)L1(x),

L−1(x) =
x(x− h)

2h2
, L0(x) =

(x+ h)(x− h)

−h2
, L1(x) =

(x+ h)x

2h2
,

p′2(x) = u(−h)
2x− h

2h2
+ u(0)

2x

−h2
+ u(h)

2x+ h

2h2
,
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p′2(0) =
u(h)− u(−h)

2h
.

We already know that u′(0)− p′2(0) = O(h2).

• Other examples can be considered, such as the centered second differ-
ence (-1 2 -1), the one-sided first difference (-3 4 -1), etc.

Differentiating one-sided interpolation polynomials is a good way to ob-
tain one-sided difference formulas, which comes in handy at the boundaries
of the computational domain. The following result establishes that the order
of the finite difference formula matches the order of the polynomial being
differentiated.

Theorem 6. Let f ∈ CN+1[a, b], {xj, j = 0, . . . , N} some disjoint points,
and pN the corresponding interpolation polynomial. Then

f ′(x)− p′N(x) =
f (N+1)(ξ)

N !
π∗N(x),

for some ξ ∈ [a, b], and where π∗N(x) = (x − η1) . . . (x − ηN) for some ηj ∈
[xj−1, xj].

The proof of this result is an application of Rolle’s theorem that we leave
out. (It is not simply a matter of differentiating the error formula for poly-
nomial interpolation, because we have no guarantee on dξ/dx.)

A consequence of this theorem is that the error in computing the deriva-
tive is a O(hN) (which comes from a bound on the product π∗N(x).)

It is interesting to notice, at least empirically, that the Runge’s phe-
nomenon is absent when the derivative is evaluated at the center of the
interval over which the interpolant is built.

3.4 Piecewise polynomial interpolation

The idea of piecewise polynomial interpolation, also called spline interpola-
tion, is to subdivide the interval [a, b] into a large number of subintervals
[xj−1, xj], and to use low-degree polynomials over each subintervals. This
helps avoiding the Runge phenomenon. The price to pay is that the inter-
polant is no longer a C∞ function – instead, we lose differentiability at the
junctions between subintervals, where the polynomials are made to match.
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If we use polynomials of order n, then the interpolant is piecewise C∞,
and overall Ck, with k ≤ n− 1. We could not expect to have k = n, because
it would imply that the polynomials are identical over each subinterval. We’ll
see two examples: linear splines when n = 1, and cubic splines when n = 3.
(We have seen in the homework why it is a bad idea to choose n = 2.)

3.4.1 Linear splines

We wish to interpolate a continuous function f(x) of x ∈ [a, b], from the
knowledge of f(xj) at some points xj, j = 0, . . . , N , not necessarily equis-
paced. Assume that x0 = a and xN = b. The piecewise linear interpolant
is build by tracing a straight line between the points (xj−1, f(xj−1)) and
(xj, f(xj))); for j = 1, . . . , N the formula is simply

sL(x) =
xj − x
xj − xj−1

f(xj−1) +
x− xj−1
xj − xj−1

f(xj), x ∈ [xj−1, xj].

In this case we see that sL(x) is a continuous function of x, but that its
derivative is not continuous at the junction points, or nodes xj.

If the function is at least twice differentiable, then piecewise linear inter-
polation has second-order accuracy, i.e., an error O(h2).

Theorem 7. Let f ∈ C2[a, b], and let h = maxj=1,...,N(xj − xj−1) be the grid
diameter. Then

‖f − sL‖L∞[a,b] ≤
h2

8
‖f ′′‖L∞[a,b].

Proof. Let x ∈ [xj−1, xj] for some j = 1, . . . , N . We can apply the basic result
of accuracy of polynomial interpolation with n = 1: there exists ξ ∈ [xj−1, xj]
such that

f(x)− sL(x) =
1

2
f ′′(ξ) (x− xj−1)(x− xj), x ∈ [xj−1, xj].

Let hj = xj − xj−1. It is easy to check that the product (x − xj−1)(x − xj)
takes its maximum value at the midpoint

xj−1+xj
2

, and that the value is h2j/4.
We then have

|f(x)− sL(x)| ≤
h2j
8

max
ξ∈[xj−1,xj ]

|f ′′(ξ)|, x ∈ [xj−1, xj].

The conclusion follows by taking a maximum over j.
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We can express any piecewise linear interpolant as a superposition of
“tent” basis functions φk(x):

sL(x) =
∑
k

ckφk(x),

where φk(x) is the piecewise linear function equal to 1 at x = xk, and equal
to zero at all the other grid points xj, j 6= k. Or in short, φk(xj) = δjk. On
an equispaced grid xj = jh, an explicit formula is

φk(x) =
1

h
S(1)(x− xk),

where
S(1)(x) = x+ − 2(x− h)+ + (x− 2h)+,

and where x+ denotes the positive part of x (i.e., x if x ≥ 0, and zero if
x < 0.)

Observe that we can simply take ck = f(xk) above. The situation will be
more complicated when we pass to higher-order polynomials.

3.4.2 Cubic splines

Let us now consider the case n = 3 of an interpolant which is a third-order
polynomial, i.e., a cubic, on each subinterval. The most we can ask is that the
value of the interpolant, its derivative, and its second derivative be continuous
at the junction points xj.

Definition 5. (Interpolating cubic spline) Let f ∈ C[a, b], and {xj, j =
0, . . . , N} ⊂ [a, b]. An interpolating cubic spline is a function s(x) such that

1. s(xj) = f(xj);

2. s(x) is a polynomial of degree 3 over each segment [xj−1, xj];

3. s(x) is globally C2, i.e., at each junction point xj, we have the relations

s(x−j ) = s(x+j ), s′(x−j ) = s′(x+j ), s′′(x−j ) = s′′(x+j ),

where the notations s(x−j ) and s(x+j ) refer to the adequate limits on the
left and on the right.
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Let us count the degrees of freedom. A cubic polynomial has 4 coefficients.
There are N + 1 points, hence N subintervals, for a total of 4N numbers to
be specified.

The interpolating conditions s(xj) = f(xj) specify two degrees of freedom
per polynomial: one value at the left endpoint xj−1, and one value at the right
endpoint xj. That’s 2N conditions. Continuity of s(x) follows automatically.
The continuity conditions on s′, s′′ are imposed only at the interior grid points
xj for j = 1, . . . , N − 1, so this gives rise to 2(N − 1) additional conditions,
for a total of 4N − 2 equations.

There is a mismatch between the number of unknowns (4N) and the
number of conditions (4N−2). Two more degrees of freedom are required to
completely specify a cubic spline interpolant, hence the precaution to write
“an” interpolant in the definition above, and not “the” interpolant.

The most widespread choices for fixing these two degrees of freedom are:

• Natural splines:
s′′(x0) = s′′(xN) = 0.

If s(x) measures the displacement of a beam, a condition of vanishing
second derivative corresponds to a free end.

• Clamped spline:

s′(x0) = p0, s′(xN) = pN ,

where p0 and pN are specified values that depend on the particular
application. If s(x) measures the displacement of a beam, a condition
of vanishing derivative corresponds to a horizontal clamped end.

• Periodic spline: assuming that s(x0) = s(xN), then we also impose

s′(x0) = s′(xN), s′′(x0) = s′′(xN).

Let us now explain the algorithm most often used for determining a cubic
spline interpolant, i.e., the 4N coefficients of the N cubic polynomials, from
the knowledge of f(xj). Let us consider the natural spline.

It is advantageous to write a system of equations for the second derivatives
at the grid points, that we denote σj = s′′(xj). Because s(x) is piecewise
cubic, we know that s′′(x) is piecewise linear. Let hj = xj − xj−1. We can
write

s′′(x) =
xj − x
hj

σj−1 +
x− xj−1

hj
σj, x ∈ [xj−1, xj].
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Hence

s(x) =
(xj − x)3

6hj
σj−1 +

(x− xj−1)3

6hj
σj + αj(x− xj−1) + βj(xj − x).

We could have written ax + b for the effect of the integration constants in
the equation above, but writing it in terms of αj and βj makes the algebra
that follows simpler. The two interpolation conditions for [xj−1, xj] can be
written

s(xj−1) = f(xj−1) ⇒ f(xj−1) =
σj−1h

2
j

6
+ hjβj,

s(xj) = f(xj) ⇒ f(xj) =
σjh

2
j

6
+ hjαj.

One then isolates αj, βj in this equation; substitutes those values in the
equation for s(x); and evaluates the relation s′(x−j ) = s′(x+j ). Given that
σ0 = σN = 0, we end up with a system of N − 1 equations in the N − 1
unknowns σ1, . . . , σN . Skipping the algebra, the end result is

hjσj−1 + 2(hj+1+hj)σj + hj+1σj+1 = 6

(
f(xj+1)− f(xj)

hj+1

− f(xj)− f(xj−1)

hj

)
.

We are in presence of a tridiagonal system for σj. It can be solved efficiently
with Gaussian elimination, yielding a LU decomposition with bidiagonal
factors. Unlike in the case of linear splines, there is no way around the fact
that a linear system needs to be solved.

Notice that the tridiagonal matrix of the system above is diagonally dom-
inant (each diagonal element is strictly greater than the sum of the other
elements on the same row, in absolute value), hence it is always invertible.

One can check that the interpolation for cubic splines is O(h4) well away
from the endpoints. This requires an analysis that is too involved for the
present set of notes.

Finally, like in the linear case, let us consider the question of expanding
a cubic spline interpolant as a superposition of basis functions

s(x) =
∑
k

ckφk(x).

There are many ways of choosing the functions φk(x), so let us specify that
they should have as small a support as possible, that they should have the
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same smoothness C2 as s(x) itself, and that they should be translates of each
other when the grid xj is equispaced with spacing h.

The only solution to this problem is the cubic B-spline. Around any
interior grid point xk, is supported in the interval [xk−2, xk+2], and is given
by the formula

φk(x) =
1

4h3
S(3)(x− xk−2),

where

S(3)(x) = x3+ − 4(x− h)3+ + 6(x− 2h)3+ − 4(x− 3h)3+ + (x− 4h)3+,

and where x+ is the positive part of x. One can check that φk(x) takes the
value 1 at xk, 1/4 at xk±1, zero outside of [xk−2, xk+2], and is C2 at each
junction. It is a bell-shaped curve. it is an interesting exercise to check that
it can be obtained as the convolution of two “tent” basis functions of linear
interpolation:

S(3)(x) = cS(1)(x) ∗ S(1)(x),

where c is some constant, and the symbol ∗ denotes convolution:

f ∗ g(x) =

∫
R
f(y)g(x− y) dy.

Now with cubic B-splines, we cannot put ck = f(xk) anymore, since
φk(xj) 6= δjk. The particular values of ck are the result of solving a lin-
ear system, as mentioned above. Again, there is no way around solving a
linear system. In particular, if f(xk) changes at one point, or if we add a
datum point (xk, fk), then the update requires re-computing the whole inter-
polant. Changing one point has ripple effects throughout the whole interval
[a, b]. This behavior is ultimately due to the more significant overlap between
neighboring φk in the cubic case than in the linear case.
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Chapter 4

Nonlinear equations

4.1 Root finding

Consider the problem of solving any nonlinear relation g(x) = h(x) in the
real variable x. We rephrase this problem as one of finding the zero (root)
of a function, here f(x) = g(x)− h(x). The minimal assumption we need on
f, g, h is that they’re continuous.

We have at our disposal any number of evaluations of f and its derivative
f ′.

1. Method 1: bisection. The bisection methods starts from two points
a0 and b0 such that

f(a0) > 0, and f(b0) < 0.

Because f is continous, there must exist a root in the interval [a0, b0].
At stage k, assume that we have obtained an interval [ak, bk] such that
the same sign properties hold: f(ak) > 0 and f(bk) < 0. The bisection
method consists in subdividing the interval [ak, bk] in two and discard
the half in which there may not be a root. Let mk = (ak + bk)/2.

• If f(mk) < 0, then it is the interval [ak,mk] which is of interest.
We put ak+1 = ak and bk+1 = mk.

• If f(mk) > 0, then it is the interval [mk, bk] which is of interest.
We put ak+1 = mk and bk+1 = bk.

• If f(mk) = 0, then mk is a root and we stop the algorithm.

37
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In practice, this iteration is stopped once f(mk) gets small enough. Let
x∗ be the unknown root. The error obeys

|x∗ −mk| ≤ |bk − ak| = 2−k|b0 − a0|.

Every step of the bisection discovers a new correct digit in the binary
expansion of x∗.

The advantage of the bisection method is that it is guaranteed to con-
verge to a root, by construction. On the other hand, convergence is
rather show compared to the next 2 methods we now present. If there
are several roots, the bisection method will converge toward one of them
(we may not have no control over which root the method chooses.)

2. Method 2: Newton-Raphson. This method is very important: it is
the basis of most optimization solvers in science and engineering. Let
us first present the Newton-Raphson method for solving a single scalar
equation f(x) = 0.

Newton’s method fits a tangent line to the point (xn, f(xn)) on the
graph of f , and defines xn+1 at the intersection of this tangent line
with the x axis. We have

0 = f(xn) + (xn+1 − xn)f ′(xn),

from which we isolate

xn+1 = xn −
f(xn)

f ′(xn)
.

For instance, we can find the decimal expansion of
√

2 by finding the
positive root of f(x) = x2 − 2. The iteration reads

xn+1 = xn −
x2n − 2

2xn
=
xn
2

+
1

xn
.

Starting with x0 = 1, we get x1 = 3
2

= 1.5, x2 = 17
12

= 1.4167...,

x3 = 577
408

= 1.4142157... The true value of
√

2 is 1.4142135...

Convergence is very fast, when it occurs. Assume that f ′′ is continuous,
and that f ′(x) 6= 0 in some neighborhood of the root x∗ (large enough
so that all our iterates stay in this neighborhood.) Put εn = xn − x∗.
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Then we can perform a Taylor expansion of f around xn, and evaluate
it at x = x∗:

0 = f(x∗) = f(xn) + (x∗ − xn)f ′(xn) +
1

2
(x∗ − xn)2f ′′(ξ),

for some ξ ∈ int(xn, x
∗) (the notation int refers to the interval generated

by xn and x∗, i.e., either [xn, x
∗] or [x∗, xn].) We also have the equation

defining xn+1:
0 = f(xn) + (xn+1 − xn)f ′(xn).

Subtracting those 2 equations, we get

0 = −εn+1f
′(xn) +

1

2
ε2nf

′′(ξ),

εn+1 =
1

2

f ′′(ξ)

f ′(xn)
ε2n.

Our assumptions ensure that the ratio f ′′(ξ)
f ′(xn)

exists and converges to

some limit (f ′′(x∗)/f ′(x∗)) as n→∞. Hence the sequence is bounded
uniformly in n, and we can write

|εn+1| ≤ Cε2n,

where C > 0 is some number (which depends on f but not on n.) It
follows that

|εn| ≤
1

C
(Cε0)

2k .

We say the method “converges quadratically” because the exponent of
εn is 2. The number of correct digits is squared at each iteration. In
contrast, the bisection method only converges linearly. We also some-
times refer to “linear convergence” as first-order convergence, although
the meaning of the expression is completely different from what is was
in the previous chapters.

Convergence is ensured as soon as the starting point x0 is close enough
to the (unknown) root x∗, in the sense that |Cε0| < 1, so that (Cε0)

2k →
0 as k → ∞. If the condition |Cε0| < 1 is not satisfied, Newton’s
method may very well diverge. For instance, we expect problems when
the derivative is very small: following the tangent can take us to a
region very far away from the root. An example of a function f(x) for
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which Newton’s method diverges is atan(x), when x0 is chosen to be
too far from the origin.

On the plus side, Newton’s method is fast. On the minus side, Newton’s
method only converges to a root only when you’re already quite close
to it.

3. Method 3: the secant method.

If we do not know the derivative, we cannot set up Newton’s method,
but we can approximate it by replacing the derivative by (let fn =
f(xn))

f [xn−1, xn] =
fn − fn−1
xn − xn−1

.

Hence we define xn+1 by

xn+1 = xn −
fn

f [xn−1, xn]
.

The geometrical idea is to replace the tangent line at xn by the secant
line supported by xn−1 and xn. The secant method requires two points
x0 and x1 as starting guesses.

Notice that at each step, only one evaluation of f is necessary, because
f(xn−1) is already known from the previous iteration. If we were to form
a finite difference approximation of the derivative with a very small grid
step h, we may be more accurate but that requires two evaluations of
f rather than one.

Let us check the convergence properties of the secant method. The
line joining the two points (xn−1, fn−1) and (xn, fn) is the degree-1
interpolant in the interval [xn−1, xn]:

p(x) = fn + f [xn−1, xn](x− xn).

Outside of this interval, it is an extrapolant. Regardless of whether
x ∈ [xn−1, xn] or not, the difference between p and f is known from a
theorem we saw in the previous chapter:

f(x)− p(x) =
1

2
f ′′(ξ)(x− xn)(x− xn−1),
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where ξ is in the smallest interval containing x, xn−1, and xn. Evaluat-
ing this relation at the root x = x∗, we get

0 = fn + f [xn−1, xn](x∗ − xn) +
1

2
f ′′(ξ)(x∗ − xn)(x∗ − xn−1).

On the other hand the definition of xn+1 gives

0 = fn + f [xn−1, xn](xn+1 − xn).

Subtracting these two equations we get

εn+1 =
1

2

f ′′(ξ)

f [xn−1, xn]
εnεn−1.

Again, thanks to the same assumptions on f as in Newton’s method,
the ratio f ′′(ξ)

f [xn−1,xn]
has a finite limit as n → ∞, hence is bounded by

some number C > 0. We get

|εn+1| ≤ C|εn||εn−1|.

The decay of εn is somewhere between first (linear) and second (quadratic)
order. To obtain a more precise rate of decay, we guess that the in-
equality above should be reducible to the form |εn| ≤ C|εn−1|p for some
p. Using this equation and |εn+1| ≤ C|εn|p above, we get

|εn−1|p
2 ≤ C|εn−1|p|εn−1|.

The exponents match on the left and the right provided p2 = p + 1,
which has for positive solution

p =
1 +
√

5

2
. (a number sometimes called the golden ratio).

We check that p = 1.618..., a number between 1 and 2, Hence the secant
method is faster than bisection, but slower than Newton’s method.
The secant method inherits the problem of Newton’s method: it only
converges when the starting guesses x0 and x1 are sufficiently close to
the root.
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We can also set up Newton’s method in several dimensions. A system of
nonlinear equations is of the form

fi(x1, . . . , xn) = 0, i = 1, . . . , n.

We take the same number of equations and unknowns, so that we may be in
a situation where there is one solution (rather than a continuum of solutions
or no solution at all.) Whether the system has zero, one or several solutions
is still a question that needs to be addressed separately. The shorthand
notation for the system is f(x) = 0

By analogy with the 1D case we perform a Taylor expansion about xn:

0 = f(x∗) = f(xn) +∇f(xn)(x∗ − xn) +O(‖x∗ − xn‖2).

With indices this equation is written as

0 = fi(x
∗) = fi(xn) +

n∑
j=1

∂fi
∂xj

(xn)(xj,n − x∗j) +O(
∑
j

(xj,n − x∗j)2).

(Watch the subscript n which indicates the n-th iterate while the subscript j
indicates the j-th component.) The next iterate xn+1 is defined by neglecting
the quadratic error and isolating x∗. A linear system of equations needs to
be solved: the Jacobian matrix ∇f(xn) is inverted and we get

xn+1 = xn − [∇f(xn)]−1 f(xn).

The geometrical interpretation of this equation is that we can fit the tangent
plane to each of the surfaces y = fi(x1, . . . , xn) in Rn+1, find the line at
the intersection of all these planes, and check where this line intersects the
(hyper)plane y = 0.

Newton’s method is still quadratically convergent in multiple dimensions,
and special care must still be taken to make sure that we start close enough
to a root.

Example 10.
x21 + x22 = 1, x2 = sin(x1).

Write this as a root-finding problem: f1 = f2 = 0 with

f1(x1, x2) = x21 + x22 − 1, f2(x1, x2) = x2 − sin(x1).
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The Jacobian matrix is

J = ∇f(x) =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
=

(
2x1 2x2

− cos(x1) 1

)
.

Use the formula for the inverse of a 2-by-2 matrix:(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
,

to obtain

J−1 =
1

2x1 + 2x2 cos(x1)

(
1 −2x2

cos(x1) 2x1

)
.

The Newton iteration is therefore(
x1,n+1

x2,n+1

)
=

(
x1,n
x2,n

)
− J−1

(
x21,n + x22,n − 1
x2,n − sinx1,n

)
.

4.2 Optimization problems

Another important recurring problem in science and engineering is that of
finding a minimum or a maximum of a function F (x). A point x∗ is a local
minimum when F (y) ≥ F (x∗) for all y in a neighborhood of x∗. It is a global
minimum when F (y) ≥ F (x∗) for all y. We write

min
x
F (x)

for the minimum value F (x∗). We then call x∗ the argument of the minimum.
Maximizing F (x) instead is the same as minimizing −F (x), so it suffices to
talk about minimization.

When F (x) is smooth, and x is allowed to run over all real numbers (not
restricted to an interval or other set), then it suffices to solve F ′(x) = 0 (and
check that F ′′(x) > 0) in order to find a local minimum. Hence it suffices
to apply Newton’s method or any other root-finding method to the function
f(x) = F ′(x). We obtain

xn+1 = xn −
F ′(xn)

F ′′(xn)
.
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In multiple dimensions, we minimize a scalar function F (x1, . . . , xn). The
optimality condition, obeyed at the minimum x∗1, . . . x

∗
n, is that all the partial

derivatives of F vanish, i.e.,

∇F (x∗1, . . . x
∗
n) = 0.

Newton’s method, also called Newton descent, follows from considering these
equations as a nonlinear system fi(x1, . . . , xn) = 0 with fi = ∂F

∂xi
. We get

xn+1 = xn − [∇∇F (xn)]−1∇F (xn).

The matrix ∇∇F of second partial derivatives of F is called the Hessian. In
index notation,

(∇∇F )ij =
∂2F

∂xi∂xj
.

Compare Newton’s method with simple gradient descent:

xn+1 = xn − α∇F (xn),

for some sufficiently small scalar α. Gradient descent is slower but typically
converges from a larger set of initial guesses than Newton’s method.

Example 11. Consider

F (x1, x2) = x21 + (log x2)
2.

This function has a unique minimum for x1 ∈ R and x2 > 0. We compute

∇F (x1, x2) =

(
2x1

2 log x2
x2

)
and

∇∇F (x1, x2) =

(
2 0

0 2−2 log x2
x22

)
.

Newton’s iteration is therefore(
x1,n+1

x2,n+1

)
=

(
x1,n
x2,n

)
−

(
1
2

0

0
x22,n

2−2 log x2,n

)(
2x1,n

2 log x2,n
x2,n

)
.

Notice that x1 goes in one step to zero, because a quadratic function is exactly
minimized by Newton’s method.



Chapter 5

Methods for ordinary
differential equations

5.1 Initial-value problems

Initial-value problems (IVP) are those for which the solution is entirely known
at some time, say t = 0, and the question is to solve the ODE

y′(t) = f(t, y(t)), y(0) = y0,

for other times, say t > 0. We will consider a scalar y, but considering
systems of ODE is a straightforward extension for what we do in this chapter.
We’ll treat both theoretical questions of existence and uniqueness, as well as
practical questions concerning numerical solvers.

We speak of t as being time, because that’s usually the physical context
in which IVP arise, but it could very well be a space variable.

Does a solution exist, is it unique, and does it tend to infinity (blow up)
in finite time? These questions are not merely pedantic. As we now show
with two examples, things can go wrong very quickly if we posit the wrong
ODE.

Example 12. Consider

y′ =
√
y, y(0) = 0.

By separation of variables, we find∫
dy
√
y

=

∫
dt ⇒ y(t) =

(t+ C)2

4
.

45
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Imposing the initial condition yields C = 0, hence y(t) = t2/4. However,
y(t) = 0 is clearly another solution, so we have non-uniqueness. In fact, there
is an infinite number of solutions, corresponding to y(t) = 0 for 0 ≤ t ≤ t∗ for
some t∗, which then takes off along the parabola the parabola y(t) = (t−t∗)2/4
for times t ≥ t∗.

Example 13. Consider

y′ = y2, y(0) = 1.

By separation of variables, we find∫
dy

y2
=

∫
dt ⇒ y(t) =

−1

t+ C
.

The initial condition gives C = −1, hence y(t) = 1/(1 − t). It blows up at
time t = 1, because y(t) has a vertical asymptote. We say that the solution
exists locally in any interval to the left of t = 1, but we don’t have global
existence.

Blowup and non-uniqueness are generally, although not always1, unreal-
istic in applications. A theory of existence and uniqueness, including global
existence (non blowup), is desired to guide us in formulating valid models
for physical phenomena.

The basic result is the following.

Theorem 8. (Picard) For given T,C, and y0, consider the box B in (t, y)
space, given by

B = [0, T ]× [y0 − C, y0 + C].

Assume that

• f(t, y) is continuous over B;

• |f(t, y)| ≤ K when (t, y) ∈ B; (boundedness)

• |f(t, u) − f(t, v)| ≤ L|u − v| when (t, u), (t, v) ∈ B. (Lipschitz
continuity).

1In nonlinear optics for instance, laser pulses may “collapse”. This situation is some-
what realistically modeled by an ODE that blows up, although not for times arbitrarily
close to the singularity.
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Assume furthermore that C ≥ K
L

(eLT − 1). Then there exists a unique y ∈
C1[0, T ], such that

y′(t) = f(t, y(t)), y(0) = y0,

and such that |y(t) − y0| ≤ C. In short, the solution exists, is unique, and
stays in the box for times 0 ≤ t ≤ T .

Proof. The technique is called Picard’s iteration. See p.311 in Suli-Mayers.

The ODE y′ =
√
y does not satisfy the assumptions of the theorem above

because the square root is not a Lipschitz function. The ODE y′ = y2 does
not satisfy the assumptions of the theorem above because y2 is not bounded
by a constant K.

5.2 Numerical methods for Initial-Value Prob-

lems

Here is an overview of some of the most popular numerical methods for
solving ODEs. Let tn = nh, and denote by yn the approximation of y(tn).

1. Forward Euler (a.k.a. explicit Euler).

yn+1 = yn + hf(tn, yn).

This formula comes from approximating the derivative y′ at t = tn by
a forward difference. It allows to march in time from the knowledge of
yn, to get yn+1.

2. Backward Euler (a.k.a. implicit Euler).

yn+1 = yn + hf(tn+1, yn+1).

This time we use a backward difference for approximating the derivative
at t = tn+1. The unknown yn+1 appears implicitly in this equation,
hence the name implicit. It still needs to be solved for as a function
of yn, using (for instance) Newton’s method. The strategy is still to
march in time, but at every step there is a nonlinear equation to solve.
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3. Trapezoidal (a.k.a. midpoint) rule (implicit).

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)] .

In this equation yn+1−yn
h

has the interpretation of a centered difference

about the midpoint tn+ 1
2

= tn+tn+1

2
, but since f(tn+ 1

2
, yn+ 1

2
) is not ac-

cessible (yn+ 1
2

is not part of what we wish to solve for), we replace it

by the average 1
2

[f(tn, yn) + f(tn+1, yn+1)]. This gives a more balanced

estimate of the slope yn+1−yn
h

. It is an implicit method: yn+1 needs to
be solved for.

4. Improved Euler, Runge-Kutta 2 (explicit).

ỹn+1 = yn + hf(tn, yn),

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, ỹn+1)] .

This is the simplest of “predictor-corrector” methods. It is like the
midpoint rule, except that we use a guess ỹn+1 for the unknown value
of yn+1 in the right-hand side, and this guess comes from the explicit
Euler method. Now yn+1 only appears in the left-hand side, so this is
an explicit method.

5. Runge-Kutta 4 (explicit).

yn+1 = yn + h[k1 + 2k2 + 2k3 + k4],

where the slopes k1, . . . , k4 are given in succession by

k1 = f(tn, yn), k2 = f(tn +
h

2
, yn +

h

2
k1),

k3 = f(tn +
h

2
, yn +

h

2
k2), k4 = f(tn + h, yn + hk3).

6. There are also methods that involve not just the past value yn, but a
larger chunk of history yn−1, yn−2,etc. These methods are called multi-
step. They are in general less flexible than the one-step methods de-
scribed so far, in that they require a constant step h as we march in
time.
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Two features of a numerical method are important when choosing a nu-
merical method:

• Is it convergent, i.e., does the computed solution at some fixed time
t = T tend to the true solution as h→ 0, and at which rate?

• Is it stable, i.e., does the solution computed with a fixed time step h
become unstable (“blows up”) as t increases?

5.2.1 Convergence

To understand convergence better in the case of one-step methods, let us
write the numerical scheme as

yn+1 = Ψ(tn, yn, h),

and introduce the local error

en+1(h) = Ψ(tn, y(tn), h)− y(tn+1),

as well as the global error

En(h) = yn − y(tn).

The expression of the local error can be explained as “trying the exact
solution in the numerical scheme” — although the exact solution is unknown.
It is a lot easier to approach the convergence question via local errors than
global errors. It does not immediately make sense, for instance, to “try an
approximate solution in the exact ODE”.

Convergence is the study of the global error. Consistency is the study
of the local error. A numerical method is called consistent if the local error
decays sufficiently fast as h → 0 that there is hope that the global error
would be small as well. The particular rate at which the local error decays
is related to the notion of order of an ODE solver.

Definition 6. (Consistency) Ψ is consistent if, for any n ≥ 0,

lim
h→0

en(h)

h
= 0

Definition 7. (Order) Ψ is of order p if en(h) = O(hp+1).



50CHAPTER 5. METHODS FORORDINARYDIFFERENTIAL EQUATIONS

The basic convergence theorem for one-step solvers, that we
will not prove, is that if the local error is O(hp+1), then the global
error is O(hp). This convergence result is only true as stated for one-
step methods; for multi-step methods we would also need an assumption of
stability (discussed below). Intuitively, the local errors compound over the
O(1/h) time steps necessary to reach a given fixed time t, hence the loss of
one power of h. Of course the local errors don’t exactly add up; but they do
up to a multiplicative constant. It is the behavior of the global error that
dictates the notion of order of the numerical scheme.

It is a good exercise to show, using elementary Taylor expansions, that the
explicit and implicit Euler methods are of order 1, and that the midpoint rule
and improved Euler methods are of order 2. It turns out that Runge-Kutta
4 is of order 4, but it is not much fun to prove that.

5.2.2 Stability

Consistency and convergence do not tell the whole story. They are helpful
in the limit h→ 0, but don’t say much about the behavior of a solver in the
interesting regime when h is small, but not so small as to make the method
computationally inefficient.

The single most important consideration in the regime of moderately
small h is stability. The rigorous criterion for stability is that if we run the
numerical scheme with different initial conditions y0 and ỹ0, the discrepancy
in computed solutions should be under control, in the sense that |yn − ỹn| ≤
C|y0− ỹ0|, with n = O(1/h), and C independent of h. However, this criterion
is too complex to handle as such. The important ideas already appear if
we study the representative setting of linear stability. The linearization of
the ODE y′ = f(t, y) about a point y0 is obtained from writing the Taylor
expansion

d

dt
(y(t)− y0) = f(t, y(t)) = f(t, y0) +

∂f

∂y
(t, y0)(y(t)− y0) + o(|y(t)− y0|).

The culprit for explosive (exponential) growth or decay is the linear term
∂f
∂y

(t, y0)(y(t) − y0). Indeed, if the other two terms are neglected, we can
write the solution, locally, as an exponential. For practical purposes, it is
therefore sufficient to check stability for the linear equation y′ = λy, keeping
in mind that λ is a number representative of the derivative ∂f

∂y
(t, y0) of f at

y0 in the y variable.
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Definition 8. (Linear stability2) Suppose y′ = λy for some λ ∈ C. Then the
numerical method Ψ is linearly stable if yn → 0 as n→∞.

Of course linear stability depends on the value of λ. Stability for the
original equation y′ = λy is guaranteed if Re(λ) < 0 (because the solution is
y(0)eλt), and the question is that of showing whether a numerical method Ψ
is stable under the same condition or not.

If a numerical method is stable in the above sense for a certain range of
values of λ, then it is possible to show that it will be stable for the ODE
y′ = f(t, y) as long as ∂f

∂y
is in that range of λ (and f is smooth enough). We

won’t prove this theorem here.
Let us consider a few examples.

Example 14. For the forward Euler method applied to y′ = λy, we get

yn+1 = yn + hλyn = (1 + hλ)yn.

The iterates yn tend to zero provided |1 + hλ| < 1, where the | · | denote
the complex modulus. Write hλ = x + iy, so that the inequality becomes
(1 + x)2 + y2 < 1. This is the equation of a disc in the complex (hλ)-plane,
with center at −1, and radius 1. If hλ sits inside this disk, the method
is stable, and otherwise it isn’t. We say that the forward Euler method is
conditionally stable: typically, we require both Re(λ) < 0 and a small step
size h in order to guarantee stability.

Example 15. The backward Euler method applied to y′ = λy gives

yn+1 = yn + hλyn+1,

or in other words
yn+1 =

yn
1− hλ

.

The iterates yn tend to zero provided |1− hλ| > 1. In terms of hλ = x+ iy,
this becomes (x − 1)2 + y2 > 1. This condition is satisfied whenever hλ is
outside the disc in the complex (hλ)-plane with center at +1, and radius 1.
In that case the method is stable, and otherwise it isn’t. We say that the
backward Euler method is unconditionally stable: the stability zone for the
ODE (Re(λ) < 0) is always included in the stability zone of the numerical

2Sometimes called A-stability in some texts.
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method, regardless of h. In fact the zone of stability for the backward Euler
method is larger than the left complex half-plane, so there exist choices of
(large) time steps for which the numerical method is stable although the ODE
isn’t.

Example 16. The linearized stability analysis of the midpoint method gives

yn+1 = yn + hλ(
yn
2

+
yn+1

2
),

hence

yn+1 =

(
1 + hλ/2

1− hλ/2

)
yn.

The method is stable provided

|1 + hλ/2

1− hλ/2
| < 1.

In terms of hλ = x+ iy, we can simplify to get

(1 +
x

2
)2 + (

y

2
)2 < (1− x

2
)2 + (

y

2
)2,

which is true if and only if x < 0. So the stability region is Re(hλ) < 0, the
same as that of the ODE. As a result, the method is unconditionally stable.

It is a general rule that explicit methods have conditional stability (sta-
bility only happens when the time step is small enough, if it does at all),
whereas implicit methods are unconditionally stable.

The stability regions for the Runge-Kutta methods are plotted on page
351 of Suli-Mayers; or google for it.

Stability can also be studied for systems of ODEs y′(t) = f(t, y(t)) where
both y and f are vectors. The interesting object is now the Jacobian matrix

A = ∇yf(t, y0).

(it is a matrix because the gradient of a vector function is a ”vector of vec-
tors”, i.e., a matrix.) The linearized problem is now

y′(t) = Ay(t).
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It turns out3 that stability will happen when the eigenvalues λ of A all obey
Re(λ) < 0. So the story is the same as in the scalar case, except that λ is
now any eigenvalue of the Jacobian matrix. So we need to make sure that
hλ is in the stability zone of the ODE solver in the complex plane, for every
eigenvalue λ of the Jacobian matrix.

Problems for which λ has a very large, negative real part are called stiff.
Physically they are very stable, but they pose numerical problems for ex-
plicit methods since the region of stability does not extend very far along
the negative real axis. Implicit methods are hands down the best for stiff
problems.

It should also be mentioned that stability can be studied for multi-step
methods of the form yn+1 = ayn + byn−1, say, in the linearized case. Such
recurrence equations can be solved by letting yn = ρn, and determining the
number(s) ρ for which yn is a solution. In the 3-term case, there are two
such numbers (roots of a quadratic). All the ρj thus obtained should satisfy
|ρj| < 1.

5.2.3 Miscellaneous

Another interesting class of methods, and a way to naturally design high-
order methods, is deferred correction. Assume that time is split into a uniform
grid tj = jh, and that some low-order method has given us the samples
y1, . . . , yn+1 for some (small) m. Denote by πn(t) the n-th order interpolation
polynomial passing through the (tj, yj). Consider the error (“defect”)

δ(t) = y(t)− πn(t).

It obeys the equation

δ′(t) = f(t, y(t))− π′n(t), δ(0) = 0.

We do not have access to y(t) in the argument of f , but we can replace it by
our best guess πn(t) + δ(t). This way we can compute an approximate defect

δ̃′(t) = f(t, πn(t) + δ̃(t))− π′n(t), δ̃(0) = 0.

3When A is diagonalizable as V ΛV −1, the system becomes y′(t) = V ΛV −1y(t), so
(V −1y)′(t) = ΛV −1y(t). Let z(t) = V −1y(t) be the coefficients of the vector y(t) in
the eigen-basis of A. Then the equations are decoupled as z′j(t) = λjzj(t), resulting in

zj(t) = zj(0)eλjt and y(t) = V diag(eλjt)V −1y(0). This reduces the question of stability
to the scalar case, with the λ now taking on the role of the eigenvalues of A.
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using the same (or another) low-order method. Once δ̃(t) is computed, add
it back to the interpolant to get

ỹ(t) = πn(t) + δ̃(t).

This procedure can be repeated a few times to get the desired accuracy.
(This version of deferred correction is actually quite recent and due to Dutt,
Greengard, and Rokhlin, 2000).

5.3 Boundary-value problems

Boundary-value problems (BVP) are ODE where some feature of the solution
is specified at two ends of an interval. The number of initial or boundary
conditions matches the order of the highest derivative in the equation, hence
such ODE are generally second-order scalar equations. The simplest exam-
ples are

−u′′(x) = f(x), x ∈ [0, 1], u(0) = a, u(1) = b (Dirichlet)

−u′′(x) = f(x), x ∈ [0, 1], u′(0) = a, u′(1) = b (Neumann)

−u′′(x) = f(x), x ∈ [0, 1], u(0) = u(1) (periodic)

We don’t really mean to study the equation−u′′ = f for its own sake (you can
find the general solution by integrating f twice and fixing the two constants
from the boundary conditions), but its study serves two purposes:

• It is the simplest ODE that models problems in continuous elasticity:
here u is the displacement of a vertical elastic bar, or rod, that sags
under its own weight. The right-hand-side f is the gravitational force
as a function of x, and u′ is the “elongation”, or strain of the bar.
A condition where u is specified means that the bar is fixed at that
end, while the condition u′ = 0 would mean that that end is free. The
condition u(0) = u(1) means that it’s an elastic band. By solving the
ODE we are finding the displacement u generated by the force f .

• It is the simplest boundary-value problem to treat numerically, and
contains many of the important features of such problems. It needs to
be understood before moving on to any other example.
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Alternative problems of this kind are

−u′′(x) + α(x)u(x) = f(x), u(0) = a, u(1) = b,

for instance, the solution of which does not generally obey an explicit formula.

A first intuitive method for solving BVP is the shooting method. Consider
again u′′(x) + α(x)u(x) = f(x), u(0) = a, u(1) = b. We cannot in general
march in time from 0 to 1 (the variable x is more often a spatial variable),
but we can guess what the derivative should have been for the solution to
end up near b at x = 1. Introduce a parameter s, and write

−u′′(x; s) + α(x)u(x; s) = f(x), u(0; s) = a, u′(0; s) = s.

Of course in general we won’t reach b at x = 1, but we can refine our estimate
of s so that we get closer to it. The problem becomes that of solving for s in
u(1; s) = b, where u(1; s) is defined implicitly from the ODE. This equation
that can be viewed as a root-finding or fixed-point problem and solved using
any of the methods we’ve seen previously. The secant method only requires
evaluations of u(1; s), which involves solving the ODE. To set up Newton’s
method, we need the derivative ∂u

∂s
(1; s) of the solution as a function of its

parameter s. Exercise: find the value of this derivative by differentiating the
ODE in the s parameter, and obtain an ODE for ∂u

∂s
(1; s) itself.

The shooting method is easy and intuitive (and there isn’t much more
to say about it), but it has the disadvantage of being restricted to ODE. In
contrast, we’ll now investigate finite difference methods, which can also be
applied to partial differential equations (PDE).

Let’s start by considering the problem −u′′ = f , u(0) = u(1) = 0. Con-
sider the grid xj = jh, j = 0, . . . , N , h = 1/N . This grid has N + 1 points.
The usual 3-point stencil for the centered second difference gives rise to

−Uj+1 − 2Uj + Uj−1
h2

= f(xj). (5.1)

In this context, capital U denotes the numerical solution, while lowercase
u denotes the exact solution. For the boundary conditions, we simply set
U0 = UN = 0. The rest of the Uj for j = 1, . . . N − 1 are unknowns and
can be solved for from the linear system KU = F generated by (5.1). The
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resulting matrix K (of size N − 1 by N − 1) is

K =
1

h2


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2


The zero elements are not shown. The right-hand side is here Fj = f(xj).
In Matlab, one then solves U as K \F . Had the boundary conditions been
U0 = a and UN = b instead, it is a good exercise to check that this does not
change K, but that the right-hand side gets modified as

F =


f(x1) + a

h2

f(x2)
...

f(xN−2)
f(xN−1) + b

h2

 .

Of course, the matrix K should be invertible for this strategy to make
sense. We will see below that this is the case. It is also important that K−1

be bounded for convergence of the numerical scheme.

Definition 9. The local truncation error (LTE) of a numerical scheme KU =
F , is the error made when evaluating the numerical scheme with the exact
solution u(xj) in place of the numerical solution Uj. It is the quantity τ in

Ku = F + τ.

The local truncation is directly obtained from the truncation error of the
finite-difference scheme, for instance

−u(xj+1)− 2u(xj) + u(xj−1)

h2
= f(xj) +O(h2),

so the LTE is O(h2).

Definition 10. The (actual) error of a numerical scheme KU = F , is the
vector of differences ej = u(xj)− Uj.
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In order to obtain the error e from the LTE, one writes

Ku = F + τ, KU = F,

and subtract those two equations. This gives K(u − U) = (F − F ) + τ , or
Ke = τ . If K is invertible, this gives

e = K−1τ.

The next few sections introduce the tools needed to control how large e
can get from the knowledge that it is τ “magnified” by K−1.

5.3.1 Matrix norms and eigenvalues

This section is mostly a linear algebra refresher.

Definition 11. The spectral norm, or 2-norm, of (any rectangular, real)
matrix A is

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

,

where the vector 2-norm is ‖x‖2 =
√∑

i x
2
i . In other words, the matrix 2-

norm is the maximum stretch factor for the length of a vector after applying
the matrix to it.

Notice that, by definition,

‖Ax‖2 ≤ ‖A‖2‖x‖2,

for any vector x, so the matrix 2-norm is a very useful tool to write all sorts
of inequalities involving matrices.

We can now characterize the 2-norm of a symmetric matrix as a function
of its eigenvalues. The eigenvalue decomposition of a matrix A is, in matrix
form, the equation AV = V Λ, where V contains the eigenvectors as columns,
and Λ contains the eigenvalues of the diagonal (and zero elsewhere.) For those
(non-defective) matrices for which there is a full count of eigenvectors, we
also have

A = V ΛV −1.

Symmetric matrices have a full set of orthogonal eigenvectors, so we can
further write V TV = I, V V T = I (i.e. V is unitary, a.k.a. a rotation), hence

A = V ΛV T .
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In terms of vectors, this becomes

A =
∑
i

viλiv
T
i .

Note that λi are automatically real when A = AT .

Theorem 9. Let A = AT . Then

‖A‖2 = max
i
|λi(A)|.

Proof. First observe that the vector 2-norm is invariant under rotations: if
V TV = I and V V T = I, then ‖V x‖2 = ‖x‖2. This follows from the defini-
tion:

‖V x‖22 = (V x)TV x = xTV TV x = xTx = ‖x‖22.
Now fix x and consider now the ratio

‖Ax‖22
‖x‖22

=
‖V ΛV Tx‖22
‖x‖22

=
‖ΛV Tx‖22
‖x‖22

(unitary invariance)

=
‖Λy‖22
‖V y‖22

(change variables)

=
‖Λy‖22
‖y‖22

(unitary invariance again)

=

∑
i λ

2
i y

2
i∑

i y
2
i

.

This quantity is maximized when y is concentrated to have nonzero compo-
nent where λi is the largest (in absolute value): yj = 1 when |λj| = maxn |λn|,
and zero otherwise. In that case,

‖Ax‖22
‖x‖22

= max
n

λ2n,

the desired conclusion.

Note: if the matrix is not symmetric, its 2-norm is on general not its
largest eigenvalue (in absolute value). Instead, the 2-norm is the largest
singular value (not material for this class, but very important concept.)
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One very useful property of eigenvalues is that if A = V ΛV T is invertible,
then

A−1 = V Λ−1V T

(which can be checked directly), and more generally

f(A) = V f(Λ)V T ,

where the function f is applied componentwise to the λi (which can be
checked when f has a Taylor expansion, and otherwise serves as the defi-
nition of f(A)). The eigenvectors of the function of a matrix are unchanged,
and the eigenvalues are the function of the original eigenvalues.

If a matrix A is not invertible, things usually go wrong when trying to
solve the linear system Ax = b.

Definition 12. The nullspace of (any rectangular, real) matrix A is the space
Null(A) of all vectors v such that Av = 0. In other words, it is the eigenspace
corresponding to the eigenvalue zero.

Null(A) always contains the zero vector. The following conditions are
equivalent to characterize singular matrices:

• A is singular (non-invertible);

• Null(A) contains some nonzero vector;

• 0 is an eigenvalue of A;

• det(A) = 0;

• The rows/columns are linearly dependent;

• (Zero is a pivot in the row echelon reduction of A.)

We now present a version of the inversion theorem for symmetric matrices.
If the matrix is not symmetric, the statement looks quite different.

Theorem 10. Let A = AT . Consider the system Ax = b.

• If A is invertible, then the solution is unique and x = A−1b.

• If Null(A) = span(v1, . . . vm) 6= 0, then



60CHAPTER 5. METHODS FORORDINARYDIFFERENTIAL EQUATIONS

– If b has a component along any of the vj (i.e., vTj b 6= 0 for some
j), then the system has no solution.

– If all vTj b = 0, j = 1, . . . ,m, then there exists an infinite number of
solution to the system. If x0 is a solution, then so is x0+

∑m
j=1 cjvj

for arbitrary coefficients cj.

In terms of eigenvectors vj, if the matrix is invertible, the solution of
Ax = b is

x =
N∑
j=1

vj
1

λj
vTj b.

If A is not invertible, but vTj b = 0 for all the eigenvectors vj, j = 1, . . . ,m
corresponding to the zero eigenvalue (as in the theorem above), then we still
have

x =
N∑

j=m+1

vj
1

λj
vTj b+

m∑
j=1

cjvj,

where the first sum only runs from m + 1 to N , and the coefficients cj are
arbitrary. (Apply the matrix A to this equation to see that they disappear.)

If vTj b 6= 0, then the operation 1
λj
vTj b would result in an infinity when

λj = 0 — a crude reason to see why the system has no solution in that case.

5.3.2 Properties of the matrix K

We are now equipped to study the matrix K and its inverse. Recall that we
are interested in controlling e = K−1τ to get the error from the LTE. From
the results in the previous section, we know that

‖e‖2 = ‖K−1τ‖2 ≤ ‖K−1‖2‖τ‖2.

Since K is a symmetric matrix,

‖K−1‖2 = max
j
|λj(K−1)| =

1

minj |λj(K)|
.

So it remains for us to understand the eigenvalues of K, and specifically to
show that the minimum eigenvalue (in absolute value) does not get too small.
What we mean by this is that there should exist a number c > 0 such that

c < min
j
|λj(K)|,
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independently of the grid spacing h (recall that the size of K and its entries
depend on h.) Only in that case will we be able to conclude that ‖e‖ is of
the same order of magnitude as ‖τ‖.

Note in passing that if τ = O(h2) then ‖τ‖2 =
√∑

i τ
2
i will beO(

√
1
h
h4) =

O(h3/2), which is not very appealing. Instead, it is common to modify the
vector 2-norm as

‖τ‖2,h =

√
h
∑
i

τ 2i ,

so as to restore ‖τ‖2,h = O(h2) (note how h times the sum resembles an
integral quadrature.) In that case, we also expect ‖τ‖2,h = O(h2). The
reasoning with matrix 2-norms does not change one bit form this different
choice of normalization.

Let us now study the eigenvalues and eigenvectors of K. The best way
to guess them is to notice that KU = F is a discretization of −u′′ = f with
Dirichlet boundary conditions. The eigenvalue problem

−v′′ = λv, v(0) = v(1) = 0,

has a solution in terms of sines: for each n ≥ 1, we have the pair

vn(x) = sin(nπx), λ = n2π2.

This analogy is very fruitful: the eigenvectors of K are precisely the vn
sampled at xj = jh,

v
(n)
j = sin(nπjh), j = 1, . . . , N − 1, n = 1, . . . , N − 1.

(here n is the label index, and j is the component index.) It is straightforward
and a little tedious to check from trigonometric formulas that v(n) defined by
this formula are indeed eigenvectors, with eigenvalues

λn =
4

h2
sin2(

πnh

2
), n = 1, . . . , N − 1.

A Taylor expansion for small h shows that the minimum eigenvalue is λ1 =
π2 +O(h2), and this O(h2) is positive, so that λ1 ≥ π2.

Note in passing that since K is symmetric, the eigenvectors are automat-
ically orthogonal, hence there is a way to normalize them so that V TV = I
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and V V T = I. Applying the matrix V T is called the discrete sine trans-
form (DST), and applying the matrix V is called the inverse discrete sine
transform (IDST).

The formula for the eigenvalues has two important consequences:

• The matrix K is invertible, now that it is clear that all its eigenvalues
are positive. So setting up the discrete problem as KU = F makes
sense.

• Returning to the error bound, we can now conclude that ‖e‖2,h ≤
1
π2‖τ‖2,h = O(h2), establishing once and for all that the finite-difference
method is second-order accurate for −u′′ = f with Dirichlet boundary
conditions.

The reasoning of first establishing consistency (small LTE) and showing
a stability result transferring at the level of the actual error is very common
in numerical analysis. Consistency + Stability = Convergence.

5.3.3 Other boundary conditions and other equations

The boundary conditions (BC) play a crucial role in the description of the
problem: if the BC changes, the solution changes completely, and so can the
LTE and the error. For instance, let’s return to the Neumann problem

−u′′(x) = f(x), x ∈ [0, 1], u′(0) = a, u′(1) = b (Neumann)

The discretization of the interior equations is the same as previously, but at
least one extra equation needs to be added for the BC. For instance, at zero,
we may write a forward difference

U1 − U0

h
= a.

and similarly, a backward difference at x = 1. Each BC adds one row and
one column to the original matrix K, and results in a different system of
equations. The choice above leads to a first-order LTE, only O(h), even
though the LTE for the interior equations is O(h2). This is enough to spoil
the error itself: we don’t have ‖e‖2,h = O(h2) in general, as a result of the
low-accuracy boundary conditions.
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A more accurate way to discretize a Neumann boundary condition is to
introduce a “ghost” node U−1, and write

U1 − U−1
2h

= a.

This new unknown is linked to the others by writing the equation one more
time at j = 0,

= U1 + 2U0 − U−1
h2

= f(x0).

(Previously, we had only evaluated the equation at j = 1, . . . , N − 1.) This
results in two additional rows and columns per BC. The same treatment
should be applied at x = 1.

Note that these additional “boundary” rows can be scaled so that the
resulting matrix looks symmetric, or at least more balanced. For instance,
by rescaling the U1−U−1

2h
= a by 2/h (including the right-hand side) we get

the resulting matrix

T =


−1 0 1
−1 2 −1

−1 2 −1
. . . . . . . . .


The eigenvalues depend on this choice of normalization!

Notice that, unlike the Dirichlet problem, the Neumann problem has a
nullspace. The vector identically equal to 1 is in the nullspace of either of the
2 discretizations we have presented. As a result, there exists a solution only
if the admissibility condition 1Tf =

∑
i f(xi) = 0 is satisfied (see a theorem

in the previous section). This is also a feature of the non-discretized BVP:

it has a solution if and only if
∫ 1

0
f(x) dx = 0.

The periodic problem is also very interesting:

−u′′(x) = f(x), x ∈ [0, 1], u(0) = u(1) (periodic)

The boundary condition U0 = UN modifies K by adding two elements in the
bottom-left and top-right:

C =
1

h2


2 −1 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 −1 2


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This new matrix C is circulant and singular. We can check that the vector 1 is
in its nullspace, so the BVP has a solution if and only if 1Tf =

∑
i f(xi) = 0.

The eigenvectors of C are the Fourier components

v
(n)
j = wjn = e2πijn/N , w = e2πi/N .

Since C is symmetric, these v(n) are orthogonal (and orthonormal when di-
vided by

√
N). To deal with vectors and matrices that have complex entries,

don’t forget that the transposes come with a complex conjugate, so the dot
product is

x∗y = xTy =
∑
i

xiyi.

The norm is ‖x‖2 =
√∑

i |xi|2. The orthogonality relations for the matrix of
eigenvectors are now V ∗V = I and V V ∗ = I, where ∗ is transpose conjugate.



Chapter 6

Fourier analysis

(Historical intro: the heat equation on a square plate or interval.)
Fourier’s analysis was tremendously successful in the 19th century for for-

mulating series expansions for solutions of some very simple ODE and PDE.
This class shows that in the 20th century, Fourier analysis has established
itself as a central tool for numerical computations as well, for vastly more
general ODE and PDE when explicit formulas are not available.

6.1 The Fourier transform

We will take the Fourier transform of integrable functions of one variable
x ∈ R.

Definition 13. (Integrability) A function f is called integrable, or absolutely
integrable, when ∫ ∞

−∞
|f(x)| dx <∞,

in the sense of Lebesgue integration. One also writes f ∈ L1(R) for the space
of integrable functions.

We denote the physical variable as x, but it is sometimes denoted by
t in contexts in which its role is time, and one wants to emphasize that.
The frequency, or wavenumber variable is denoted k. Popular alternatives
choices for the frequency variable are ω (engineers) or ξ (mathematicians),
or p (physicists).

65
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Definition 14. The Fourier transform (FT) of an integrable function f(x)
is defined as

f̂(k) =

∫ ∞
−∞

e−ikxf(x) dx. (6.1)

When f̂(k) is also integrable, f(x) can be recovered from f̂(k) by means of
the inverse Fourier transform (IFT)

f(x) =
1

2π

∫ ∞
−∞

eikxf̂(k) dk. (6.2)

Intuitively, f̂(k) is the amplitude density of f at frequency k. The formula
for recovering f is a decomposition of f into constituent waves.

The justification of the inverse FT formula belongs in a real analysis class
(where it is linked to the notion of approximate identity.) We will justify the
form of (6.2) heuristically when we see Fourier series in the next section.

The precaution of assuming integrability is so that the integrals can be
understood in the usual Lebesgue sense. In that context, taking integrals
over infinite intervals is perfectly fine. If (6.1) and (6.2) are understood as
limits of integrals over finite intervals, it does not matter how the bounds are
chosen to tend to ±∞.

One may in fact understand the formulas for the FT and IFT for much
larger function classes than the integrable functions, namely distributions,
but this is also beyond the scope of the class. We will generally not overly
worry about these issues. It is good to know where to draw the line: the
basic case is that of integrable functions, and anything beyond that requires
care and adequate generalizations.

Do not be surprised to see alternative formulas for the Fourier transfom
in other classes or other contexts. Wikipedia lists them.

Here are some important properties of Fourier transforms:

• (Differentiation)

f̂ ′(k) = ikf̂(k).

Justification: integration by parts in the integral for the FT.

• (Translation) If g(x) = f(x+ a), then

ĝ(k) = eikaf̂(k).

Justification: change of variables in the integral for the FT.
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Let’s see some examples of FT.

Example 17. Let

f(x) =
1

2a
χ[−a,a](x) =

{
1
2a

if x ∈ [−a, a];
0 otherwise.

Then

f̂(k) =
1

2a

∫ a

−a
e−ikxdx =

sin(ka)

ka
.

This function is a scaled version of the sinc function,

sinc(k) =
sin k

k
.

It is easy to check by L’Hospital’s rule that

sinc(0) = 1.

At k →∞, sinc(k) decays like 1/k, but does so by alternating between positive
and negative values. It is a good exercise to check that sinc is not absolutely
integrable. It turns out that the Fourier transform can still be defined for it,
so lack of integrability is not a major worry.

Example 18. Consider the Gaussian function

f(x) = e−x
2/2.

By completing the square and adequately modifying the contour of integration
in the complex plane (not part of the material for this class), it can be shown
that

f̂(k) =
√

2π e−k
2/2.

Example 19. The Dirac delta δ(x) has a FT equal to 1 (why?).

Another basic property of Fourier transforms is the convolution theorem.

Theorem 11. (The convolution theorem.) Denote convolution as f ? g(x) =∫∞
−∞ f(y)g(x− y) dy. Then

f̂ ? g(k) = f̂(k) ĝ(k).
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Proof. Let h = f ? g. We can use Fubini below provided every function is
integrable.

ĥ(k) =

∫
e−ikx

∫
f(y)g(x− y) dydx

=

∫ ∫
e−ikyf(y)e−ik(x−y))g(x− y) dydx

=

(∫
e−ikyf(y) dy

) (∫
e−ikx

′
g(x′) dx′

)
= f̂(k) ĝ(k).

The Fourier transform is an important tool in the study of linear differen-
tial equations because it turns differential problems into algebraic problems.
For instance, consider a polynomial P (x) =

∑
anx

n, and the ODE

P

(
d

dx

)
u(x) = f(x), x ∈ R,

which means
∑
an

dnu
dxn

= f . (Such ODE are not terribly relevant in real life
because they are posed over the whole real line.) Upon Fourier transforma-
tion, the equation becomes

P (ik)û(k) = f̂(k),

which is simply solved as

û(k) =
f̂(k)

P (ik)
,

and then

u(x) =
1

2π

∫ ∞
−∞

eikx
f̂(k)

P (ik)
dk.

Beware the zeros of P when applying this formula! They always carry im-
portant physical interpretation. For instance, they could be resonances of a
mechanical system.

The formula û(k) = f̂(k)
P (ik)

also lends itself to an application of the convo-

lution theorem. Let K(x) be the inverse Fourier transform of 1/P (ik). Then
we have

u(x) =

∫
K(x− y)f(y) dy.

The function K is called Green’s function for the original ODE.
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6.2 Sampling and restriction

We aim to use Fourier transforms as a concept to help understand the ac-
curacy of representing and manipulating functions on a grid, using a finite
number of degrees of freedom. We also aim at using a properly discretized
Fourier transform as a numerical tool itself.

For this purpose, x ∈ R and k ∈ R must be replaced by x and k on finite
grids. Full discretization consists of sampling and restriction.

Let us start by sampling x ∈ hZ, i.e., considering xj = jh for j ∈ Z. The
important consequence of sampling is that some complex exponential waves
eikx for different k will appear to be the same on the grid xj. We call aliases
such functions that identify on the grid.

Definition 15. (Aliases) The functions eik1x and eik2x are aliases on the grid
xj = jh if

eik1xj = eik2xj , ∀j ∈ Z.

Aliases happen as soon as

k1jh = k2jh+ 2π × integer(j).

Letting j = 1, and calling the integer n, we have

k1 − k2 =
2π

h
n,

for some n ∈ Z. Two wave numbers k1, k2 are indistinguishable on the grid
if they differ by an integer multiple of 2π/h.

For this reason, we restrict without loss of generality the wavenumber to
the interval

k ∈ [−π/h, π/h].

We also call this interval the fundamental cell in frequency (in reference to
a similar concept in crytallography.)

Real-life examples of aliases are rotating wheels looking like they go back-
wards in a movie, Moiré patterns on jackets on TV, and stroboscopy.

The proper notion of Fourier transform on a grid is the following.

Definition 16. Let xj = hj, fj = f(xj). Semidiscrete Fourier transform
(SFT):

f̂(k) = h
∞∑

j=−∞

e−ikxjfj, k ∈ [−π/h, π/h]. (6.3)
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Inverse semidiscrete Fourier transform (ISFT):

fj =
1

2π

∫ π/h

−π/h
eikxf̂(k) dk. (6.4)

As we saw, sampling in x corresponds to a restriction in k. If one still
wanted to peek outside [−π/h, π/h] for the SFT, then the SFT would simply
repeat by periodicity:

f̂(k +
2nπ

h
) = f̂(k).

(why?). That’s why we restrict it to the fundamental cell.
We can now define the proper notion of Fourier analysis for functions

that are restricted to x in some interval, namely [−π, π] for convention. Un-
surprisingly, the frequency is sampled as a result. the following formulas are
dual to those for the SFT.

Definition 17. Fourier series (FS):

f̂k =

∫ π

−π
e−ikxf(x) dx. (6.5)

Inverse Fourier series (IFS)

f(x) =
1

2π

∞∑
k=−∞

eikxf̂k, x ∈ [−π, π]. (6.6)

If one uses the Fourier series inversion formula (6.6) for x outside of its
intended interval [−π, π], then the function simply repeats by periodicity:

f(x+ 2nπ) = f(x).

(again, why?)
The two formulas (6.5) and (6.6) can be justified quite intuitively. The

expression
∫
f(x)g(x) dx is an inner product on functions. It is easy to see

that the complex exponentials√
h

2π
e−ikxj = vj(k)

form an orthonormal set of functions on [−π/h, π/h], for this inner product.
Hence, up to normalization constants, (6.5) is simply calculation of the coef-
ficients in an orthobasis (analysis), and (6.6) is the synthesis of the function
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back from those coefficients. We’d have to understand more about the pecu-
liarities of infinite-dimensional linear algebra to make this fully rigorous, but
this is typically done in a real analysis class.

Here’s an example of SFT.

Example 20.

fj =
1

2a
χ[−a,a](xj)

Then

f̂(k) =
h

2a

a∑
j=−a

e−ikjh

=
h

2a
eikah

2a∑
j=0

e−ikjh

=
h

2a
eikah

(e−ikh)2a+1 − 1

e−ikh − 1
(geometric series)

=
h

2a

sin(kh(a+ 1/2))

sin(kh/2)
.

This function is called the discrete sinc. It looks like a sinc, but it periodizes
smoothly when k = −π/h and k = π/h are identified.

Our first slogan is therefore:

Sampling in x corresponds to restriction/periodization in k, and
restriction/periodization in k corresponds to sampling in x.

6.3 The DFT and its algorithm, the FFT

The discrete Fourier transform is what is left of the Fourier transfom when
both space and frequency are sampled and restricted to some interval.

Consider
xj = jh, j = 1, . . . , N.

The point j = 0 is identified with j = N by periodicity, so it is not part of
the grid. If the endpoints are x0 = 0 and xN = 2π, then N and h relate as

h =
2π

N
⇒ π

h
=
N

2
.
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For the dual grid in frequency, consider that N points should be equispaced
between the bounds [−π/h, π/h]. The resulting grid is

k, k = −N
2

+ 1, . . . ,
N

2
.

We have the following definition.

Definition 18. Discrete Fourier transform (DFT):

f̂k = h

N∑
j=1

e−ikjhfj, k = −N
2
, . . . ,

N

2
. (6.7)

Inverse discrete Fourier transform (IDFT)

fj =
1

2π

N/2∑
k=−N/2+1

eikjhf̂k, j = 1, . . . , N. (6.8)

The DFT can be computed as is, by implementing the formula (6.7) di-
rectly on a computer. The complexity of this calculation is a O(N2), since
there are N values of j, and there are N values of k over which the compu-
tation must be repeated.

There is, however, a smart algorithm that allows to group the compu-
tation of all the fk in complexity O(N logN). It is called the fast Fourier
transform (FFT). It is traditionally due to Tukey and Cooley (1965), but the
algorithm had been discovered a few times before that by people who are not
usually credited as much: Danielson and Lanczos in 1942, and well as Gauss
in 1805.

The trick of the FFT is to split the samples of f into even samples (j
even) and odd samples (j odd). Assume that N is a power of 2. Then

f̂k = h
N∑
j=1

e−ikjhfj

= h

N/2∑
j=1

e−ik(2j)hf2j + h

N/2∑
j=1

e−ik(2j+1)hf2j+1

= h

N/2∑
j=1

e−ikj(2h)f2j + heikh
N/2∑
j=1

e−ikj(2h)f2j+1.
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The first term on the last line is simply the DFT of length N/2, on a
grid of spacing 2h, of the even samples of f . The second term is, besides the
multiplicative factor, the DFT of length N/2, on a grid of spacing 2h, of the
odd samples of f .

Note that those smaller DFTs would normally be only calculated for
k = −N

4
+ 1, . . . , N

4
, but we need them for k = −N

2
+ 1, . . . , N

2
. This is not

a big problem: we know that the DFT extends by periodicity outside the
standard bounds for k, so all there is to do is copy f̂k by periodicity outside
of k = −N

4
+ 1, . . . , N

4
.

Already, we can see the advantage in this reduction: solving one problem
of size N is essentially reduced to solving two problems of size N/2. Even
better, the splitting into even and odd samples can be repeated recursively
until the DFT are of size 1. When N = 1, the DFT is simply multiplication
by a scalar.

At each stage, there are O(N) operations to do to put together the sum-
mands in the equation of the last line above. Since there are O(logN) levels,
the overall complexity is O(N logN).

There are variants of the FFT when N is not a power of 2.

6.4 Smoothness and truncation

In this section, we study the accuracy of truncation of Fourier transforms
to finite intervals. This is an important question not only because real-
life numerical Fourier transforms are restricted in k, but also because, as
we know, restriction in k serves as a proxy for sampling in x. It will be
apparent in Chapter 2, section 2.1 that every claim that we make concerning
truncation of Fourier transforms will have an implication in terms of accuracy
of sampling a function on a grid, i.e., how much information is lost in the
process of sampling a function f(x) at points xj = jh.

We will manipulate functions in the spaces L1, L2, and L∞. We have
already encountered L1.

Definition 19. Let 1 ≤ p < ∞. A function f of x ∈ R is said to belong to
the space Lp(R) when ∫ ∞

−∞
|f(x)|p dx <∞.

Then the norm of f in Lp(R) is ‖f‖p =
(∫∞
−∞ |f(x)|p dx

)1/p
.
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A function f of x ∈ R is said to belong to L∞ when

ess sup |f(x)| <∞.

Then the norm of f in L∞(R) is ess sup |f(x)|.

In the definition above, “ess sup” refers to the essential supremum, i.e.,
the infimum over all dense sets X ⊂ R of the supremum of f over X. A
set X is dense when R\X has measure zero. The notions of supremum and
infimum correspond to maximum and minimum respectively, when they are
not necessarily attained. All these concepts are covered in a real analysis
class. For us, it suffices to heuristically understand the L∞ norm as the
maximum value of the modulus of the function, except possibly for isolated
points of discontinuity which don’t count in calculating the maximum.

It is an interesting exercise to relate the L∞ norm to the sequence of Lp

norms as p→∞.
We will need the very important Parseval and Plancherel identitites. They

express “conservation of energy” from the physical domain to the frequency
domain.

Theorem 12. (Parseval’s identity). Let f, g ∈ L1(R) ∩ L2(R). Then∫ ∞
−∞

f(x)g(x) dx =
1

2π

∫ ∞
−∞

f̂(k)ĝ(k) dk.

Proof. Let h be the convolution f ? g̃, where g̃(x) = g(−x). It is easy to see
that the Fourier transform of g̃ is ĝ(k) (why?). By the convolution theorem
(Section 1.1), we have

ĥ(k) = f̂(k) ĝ(k).

If we integrate this relation over k ∈ R, and divide by 2π, we get the IFT at
x = 0:

h(0) =
1

2π

∫ ∞
−∞

f̂(k)ĝ(k) dk.

On the other hand,

h(0) =

∫ ∞
−∞

f(x)g(−(0− x)) dx =

∫ ∞
−∞

f(x)g(x) dx.
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Theorem 13. (Plancherel’s identity). Let f ∈ L1(R) ∩ L2(R). Then∫ ∞
−∞
|f(x)|2 dx =

1

2π

∫ ∞
−∞
|f̂(k)|2 dk.

Proof. Apply Parseval’s identity with g = f .

(With the help of these formulas, it is in fact possible to extend their
validity and the validity of the FT to f, g ∈ L2(R), and not simply f, g ∈
L1(R) ∩ L2(R). This is a classical density argument covered in many good
analysis texts.)

We need one more concept before we get to the study of truncation of
Fourier transforms. It is the notion of total variation. We assume that the
reader is familiar with the spaces Ck(R) of bounded functions which are k
times continuously differentiable.

Definition 20. (Total variation) Let f ∈ C1(R). The total variation of f is
the quantity

‖f‖TV =

∫ ∞
−∞
|f ′(x)| dx. (6.9)

For functions that are not C1, the notion of total variation is given by either
expression

‖f‖TV = lim
h→0

∫ ∞
−∞

|f(x)− f(x− h)|
|h|

dx = sup
{xp} finite subset of R

∑
p

|f(xp+1)−f(xp)|,

(6.10)
These more general expressions reduce to

∫∞
−∞ |f

′(x)| dx when f ∈ C1(R).
When a function has finite total variation, we say it is in the space of func-
tions of bounded variation, or BV(R).

The total variation of a piecewise constant function is simply the sum of
the absolute value of the jumps it undergoes. This property translates to a
useful intuition about the total variation of more general functions if we view
them as limits of piecewise constant functions.

The important meta-property of the Fourier transform is that

decay for large |k| corresponds to smoothness in x.
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There are various degrees to which a function can be smooth or rates at
which it can decay, so therefore there are several ways that this assertion
can be made precise. Let us go over a few of them. Each assertion either
expresses a decay (in k) to smoothness (in x) implication, or the converse
implication.

• Let f̂ ∈ L1(R) (decay), then f ∈ L∞(R) and f is continuous (smooth-
ness). That’s because |eikx| = 1, so

|f(x)| ≤ 1

2π

∫
|eikxf̂(k)| dk =

1

2π

∫
|f̂(k)| dk,

which proves boundedness. As for continuity, consider a sequence yn →
0 and the formula

f(x− yn) =
1

2π

∫
eik(x−yn)f̂(k) dk.

The integrand converges pointwise to eikxf̂(k), and is uniformly bounded
in modulus by the integrable function |f̂(k)|. Hence Lebesgue’s dom-
inated convergence theorem applies and yields f(x − yn) → f(x), i.e.,
continuity in x.

• Let f̂(k)(1 + |k|p) ∈ L1(R) (decay). Then f ∈ Cp (smoothness). We
saw the case p = 0 above; the justification is analogous in the general
case. We write

|f (n)(x)| ≤ 1

2π

∫
|eikx(ik)nf̂(k)| dk ≤

∫
|k|n|f̂(k)| dk,

which needs to be bounded for all 0 ≤ n ≤ p. This is obviously the
case if f̂(k)(1 + |k|p) ∈ L1(R). Continuity of f (p) is proved like before.

• Let f ∈ BV(R) (smoothness). Then f̂(k) ≤ ‖f‖TV |k|−1 (decay). If
f ∈ C1 ∩BV (R), then this is justified very simply from (6.9), and

ikf̂(k) =

∫
e−ikxf ′(x) dx.

Take a modulus on both sides, and get the desired relation

|k||f̂(k)| ≤
∫
|f ′(x)|dx = ‖f‖TV <∞.
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When f ∈ BV (R), but f /∈ C1, either of the more general formulas
(6.10) must be used instead. It is a great practice exercise to articulate
a modified proof using the limh→0 formula, and properly pass to the
limit.

• Let f such that f (k) ∈ L2(R) for 0 ≤ k < p, and assume that f (p) ∈
BV(R) (smoothness). Then there exists C > 0 such that |f̂(k)| ≤
|k|−p−1 (decay). This claim is also formulated as point (a) in Theo-
rem 1 on page 30 of Trefethen’s “Spectral methods in Matlab”. The
justification is very simple when f ∈ Cp+1: we then get

(ik)p+1f̂(k) =

∫
e−ikxf (p+1)(x) dx,

so

|k|p+1|f̂(k)| ≤
∫
|f (p+1)(x)| dx = ‖f (p)‖TV <∞.

Again, it is a good exercise to try and extend this result to functions
not in Cp+1.

• (This is the one we’ll use later). (Same proof as above.)

In summary, let f have p derivatives in L1. Then |f̂(k)| ≤ C|k|−p. This
is the form we’ll make the most use of in what follows.

Example 21. The canonical illustrative example for the two statements in-
volving bounded variation is that of the B-splines. Consider

s(x) =
1

2
χ[−1,1](x),

the rectangle-shaped indicator of [−1, 1] (times one half). It is a function in
BV (R), but it has no derivative in L2(R). Accordingly, its Fourier transform
ŝ(k) is predicted to decay at a rate ∼ |k|−1. This is precisely the case, for we
know

ŝ(k) =
sin k

k
.

Functions with higher regularity can be obtained by auto-convolution of s; for
instance s2 = s ? s is a triangle-shaped function which has one derivative in
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L2, and such that s′2 ∈ BV (R). We anticipate that ŝ2(k) would decay like
|k|−2, and this the case since by the convolution theorem

ŝ2(k) = (ŝ(k))2 =

(
sin k

k

)2

.

Any number of autoconvolutions s?s . . . ? s can thus be considered: that’s the
family of B-splines.

The parallel between smoothness in x and decay in k goes much further.
We have shown that p derivatives in x very roughly corresponds to an inverse-
polynomial decay |k|−p in k. So C∞ functions in x have so called super-
algebraic decay in k: faster than Cp|k|−p for all p ≥ 0.

The gradation of very smooth functions goes beyond C∞ functions to
include, in order:

• analytic functions that can be extended to a strip in the complex plane
(like f(x) = 1/(1+x2)), corresponding to a Fourier transform decaying
exponentially (in this case f̂(k) = πe−|k|). That’s Paley-Wiener theory,
the specifics of which is not material for this course.

• analytic functions that can be extended to the whole complex plane
with super-exponential growth (like f(x) = e−x

2/2), whose Fourier
transform decays faster than exponentially (in this case f̂(k) =

√
π/2e−k

2/2).

• analytic functions that can be extended to the whole complex plane
with exponential growth at infinity (like f(x) = sinx

x
), whose Fourier

transform is compactly supported (in this case f̂(k) = 2πχ[−1,1](k)).
That’s Paley-Wiener theory in reverse. Such functions are also called
bandlimited.

More on this in Chapter 4 of Trefethen’s book.
An important consequence of a Fourier transform having fast decay is

that it can be truncated to some large interval k ∈ [−N,N ] at the expense
of an error that decays fast as a function of N . The smoother f , the faster
f̂ decays, and the more accurate the truncation to large N in frequency. On
the other hand, there may be convergence issues if f(x) is not smooth.

To make this quantitative, put

f̂N(k) = χ[−N,N ](k)f̂(k).
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Recall that 1
2π

∫ N
−N e

ikxdx = sin(Nx)
πx

. By the convolution theorem, we therefore
have

fN(x) =
sinNx

πx
? f(x).

In the presence of f ∈ L2(R), letting N →∞ always gives rise to conver-
gence fN → f in L2(R). This is because by Plancherel’s identity,

‖f − fN‖22 =
1

2π

∫ ∞
−∞
|f̂N(k)− f̂(k)|2 dk =

1

2π

∫
|k|>N

|f̂(k)|2 dk.

This quantity tends to zero as N →∞ since the integral
∫
R |f̂(k)|2 over the

whole line is bounded.
The story is quite different if we measure convergence in L∞ instead of

L2, when f has a discontinuity. Generically, L∞ (called uniform) convergence
fails in this setting. This phenomenon is called Gibb’s effect, and manifests
itself through ripples in reconstructions from truncated Fourier transforms.
Let us illustrate this on the Heaviside step function

u(x) =

{
1 if x ≥ 0;
0 if x < 0.

(It is not a function in L2(R) but this is of no consequence to the argument.
It could be modified into a function in L2(R) by some adequate windowing.)
Since u(x) is discontinuous, we expect the Fourier transform to decay quite
slowly. Consider the truncated FT

ûN(k) = χ[−N,N ](k)û(k).

Back in the x domain, this is

uN(x) =
sinNx

πx
? u(x)

=

∫ ∞
0

sinN(x− y)

π(x− y)
dy

=

∫ Nx

−∞

sin y

πy
dy

≡ s(Nx).

(Draw picture)
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The function s(Nx) is a sigmoid function going from 0 at −∞ to 1 at∞,
going through s(0) = 1/2, and taking on min. value ' −.045 at x = −π/N
and max. value ' 1.045 at x = π/N . The oscillations have near-period π/N .
The parameter N is just a dilation index for the sigmoid, it does not change
the min. and max. values of the function. Even as N →∞, there is no way
that the sigmoid would converge to the Heaviside step in a uniform manner:
we always have

‖u− uN‖∞ & .045.

This example of Gibb’s effect goes to show that truncating Fourier expan-
sions could be a poor numerical approximation if the function is nonsmooth.

However, if the function is smooth, then everything goes well. Let us
study the decay of the approximation error

ε2N = ‖f − fN‖22
for truncation of the FT to [−N,N ]. Again, we use Plancherel to get

ε2N =

∫
|k|>N

|f̂(k)|2 dk

Now assume that f̂(k) ≤ C|k|−p, a scenario already considered earlier. Then

ε2N ≤ C

∫
|k|>N

|k|−2p ≤ C ′N−2p+1,

so, for some constant C ′′ (dependent on p but independent of N , hence called
constant),

εN ≤ C ′′N−p+1/2.

The larger p, the faster the decay as N →∞.
When a function is C∞, the above decay rate of the approximation error

is valid for all p > 0. When the function is analytic and the Fourier trans-
form decays exponentially, the decay rate of the approximation error is even
faster, itself exponential (a good exercise). In numerical analysis, either such
behavior is called spectral accuracy.

6.5 Chebyshev expansions

In the previous sections, we have seen that smooth functions on the real line
have fast decaying Fourier transforms.
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On a finite interval, a very similar property hold for Fourier series: if a
function is smooth in [−π, π] and connects smoothly by periodicity at x = −π
and x = π, then its Fourier series (6.5) decays fast. Periodicity is essential,
because the points x = −π and x = π play no particular role in (6.5). They
might as well be replaced by x = 0 and x = 2π for the integration bounds.
So if a function is to qualify as smooth, it has to be equally smooth at x = 0
as it is at x = −π, identified with x = π by periodicity.

For instance if a function f is smooth inside [−π, π], but has f(−π) 6=
f(π), then for the purpose of convergence of Fourier series, f is considered
discontinuous. We know what happens in this case: the Gibbs effect takes
place, partial inverse Fourier series have unwelcome ripples, and convergence
does not occur in L∞.

If f is smooth and periodic, then it is a good exercise to generalize the
convergence results of the previous section, from the Fourier transform to
Fourier series.

How shall we handle smooth functions in intervals [a, b], which do not
connect smoothly by periodicity? The answer is not unique, but the most
standard tool for this in numerical analysis are the Chebyshev polynomials.

For simplicity consider x ∈ [−1, 1], otherwise rescale the problem. Take
a Ck nonperiodic f(x) in [−1, 1]. The trick is to view it as g(θ) = f(cos θ).
Since cos[0, π] = cos[π, 2π] = [−1, 1], all the values of x ∈ [−1, 1] are covered
twice by θ ∈ [0, 2π]. Obviously, at any point θ, g inherits the smoothness of
f by the chain rule. Furthermore, g is periodic since cos θ is periodic. So g is
exactly the kind of function which we expect should have a fast converging
Fourier series:

ĝk =

∫ 2π

0

e−ikθg(θ) dθ, g(θ) =
1

2π

∞∑
k=−∞

eikθĝk, k ∈ Z.

Since g(θ) is even in θ, we may drop the sin θ terms in the expansion, as well
as the negative k:

ĝk =

∫ 2π

0

cos (kθ)g(θ) dθ, g(θ) =
1

2π
ĝ0 +

1

π

∞∑
k=1

cos (kθ)ĝk, k ∈ Z+.

Back to f , we find

ĝk = 2

∫ 1

−1
cos (k arccosx)f(x)

dx√
1− x2

, f(x) =
1

2π
ĝ0+

1

π

∞∑
k=1

cos (k arccosx)ĝk, k ∈ Z+.
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The function cos(k arccosx) happens to be a polynomial in x, of order
k, called the Chebyshev polynomial of order k. Switch to the letter n as is
usually done:

Tn(x) = cos(n arccosx), x ∈ [−1, 1].

The first few Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

It is a good exercise (involving trigonometric identities) to show that they
obey the recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x).

The orthogonality properties of Tn(x) over [−1, 1] follows from those of
cos(nθ) over [0, π], but watch the special integration weight:∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

= cnδmn,

with cn = π/2 if n = 0 and cn = π otherwise. The Chebyshev expansion of
f is therefore

〈f, Tn〉 =

∫ 1

−1
Tn(x)f(x)

dx√
1− x2

, f(x) =
1

π
〈f, T0〉+

2

π

∞∑
n=1

Tn(x)〈f, Tn〉, k ∈ Z+.

Under the hood, this expansion is the FS of a periodic function, so we can
apply results pertaining to Fourier series and Fourier transforms to obtain
fast decay of Chebyshev expansions. This way, spectral accuracy is restored
for nonperiodic functions defined on an interval.



Chapter 7

Spectral Interpolation,
Differentiation, Quadrature

7.1 Interpolation

7.1.1 Bandlimited interpolation

While equispaced points generally cause problems for polynomial interpola-
tion, as we just saw, they are the natural choice for discretizing the Fourier
transform. For data on xj = jh, j ∈ Z, recall that the semidiscrete Fourier
transform (SFT) and its inverse (ISFT) read

f̂(k) = h
∑
j∈Z

e−ikxjfj, fj =
1

2π

∫ π/h

−π/h
eikxj f̂(k) dk.

The idea of spectral interpolation, or bandlimited interpolation, is to evaluate
the ISFT formula above at some point x not equal to one of the xj.

Definition 21. (Fourier/spectral/bandlimited interpolation on R) Let xj =

jh, j ∈ Z. Consider f : R 7→ R, its restriction fj = f(xj), and the SFT f̂(k)
of the samples fj. Then the spectral interpolant is

p(x) =
1

2π

∫ π/h

−π/h
eikxf̂(k) dk.

We can view the formula for p(x) as the inverse Fourier transform of the
compactly supported function equal to f̂(k) for k ∈ [−π/h, π/h], and zero
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otherwise. When the Fourier transform of a function is compactly supported,
we say that that function is bandlimited, hence the name of the interpolation
scheme.

Example 22. Let

fj = δ0j =

{
1 if j = 0;
0 if j 6= 0.

Then the SFT is f̂(k) = h for k ∈ [−π/h, π/h] as we saw previously. Extend
it to k ∈ R by zero outside of [−π/h, π/h]. Then

p(x) =
sin(πx/h)

πx/h
= sinc(πx/h).

This function is also called the Dirichlet kernel. It vanishes at xj = jh for
j 6= 0, integer.

Example 23. In full generality, consider now the sequence

fj =
∑
k∈Z

δjkfk.

By linearity of the integral,

p(x) =
∑
k∈Z

fksinc(π(x− xk)/h).

The interpolant is a superposition of sinc functions, with the samples fj as
weights. Here sinc is the analogue of the Lagrange elementary polynomials
of a previous section, and is called the interpolation kernel. For this reason,
bandlimited interpolation sometimes goes by the name Fourier-sinc interpo-
lation.

(Figure here for the interpolation of a discrete step.)

In the example above we interpolate a discontinuous function, and the
result is visually not very good. It suffers from the same Gibbs effect that
we encountered earlier. The smoother the underlying f(x) which fj are the
samples of, however, the more accurate bandlimited interpolation.

In order to study the approximation error of bandlimited interpolation,
we need to return to the link between SFT and FT. The relationship be-
tween p(x) and fj is sampling, whereas the relationship between the FT
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f̂(k)χ[−π/h,π/h](k) and the SFT f̂(k) is periodization. We have already alluded
to this correspondence earlier, and it is time to formulate it more precisely.

(Figure here; sampling and periodization)

Theorem 14. (Poisson summation formula, FT version) Let u : R 7→ R,
sufficiently smooth and decaying sufficiently fast at infinity. (We are delib-
erately imprecise!) Let vj = u(xj) for xj = jh, j ∈ Z, and

û(k) =

∫
R
e−ikxu(x) dx, (FT ), k ∈ R,

v̂(k) = h
∑
j∈Z

e−ikxju(xj). (SFT ), k ∈ [−π/h, π/h].

Then

v̂(k) =
∑
m∈Z

û(k +m
2π

h
), k ∈ [−π/h, π/h] (7.1)

In some texts the Poisson summation formula is written as the special
case k = 0:

h
∑
j∈Z

u(jh) =
∑
m∈Z

û(
2π

h
m).

Exercise: use what we have already seen concerning translations and Fourier
transforms to show that the above equation implies (hence is equivalent to)
equation (7.1).

Proof. Consider the right-hand side in (7.1), and call it

φ̂(k) =
∑
m∈Z

û(k +m
2π

h
), k ∈ [−π/h, π/h].

It suffices to show that φ̂(k) = v̂(k), or equivalently in terms of their ISFT,
that φj = vj for j ∈ Z. The ISFT is written

φj =
1

2π

∫ π/h

−π/h

[∑
m∈Z

û(k +m
2π

h
)

]
eikjh dk.
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The function u is smooth, hence integrable, and the sum over m converges
fast. So we can interchange sum and integral:

φj =
1

2π

∑
m∈Z

∫ π/h

−π/h
û(k +m

2π

h
)eikjh dk.

Now put k′ = k +m2π
h

, and change variable:

φj =
1

2π

∑
m∈Z

∫ π
h
−m 2π

h

−π
h
−m 2π

h

û(k′)eik
′jhe−i

2π
h
jh dk′.

The extra exponential factor e−i
2π
h
jh is equal to 1 because j ∈ Z. We are

in presence of an integral over R chopped up into pieces corresponding to
sub-intervals of length 2π/h. Piecing them back together, we get

φj =
1

2π

∫
R
û(k′)eik

′jhdk′,

which is exactly the inverse FT of û evaluated at xj = jh, i.e., φj = u(xj) =
vj.

The Poisson summation formula shows that sampling a function at rate
h corresponds to periodizing its spectrum (Fourier transform.) with a period
2π/h. So the error made in sampling a function (and subsequently doing
bandlimited interpolation) is linked to the possible overlap of the Fourier
transform upon periodization.

• Scenario 1. Assume supp(û) ⊂ [−π/h, π/h]. Then no error is made in
sampling and interpolating u at rate h, because nothing happens upon
2π/h-periodization and windowing into [−π/h, π/h]:

p̂(k) = û(k) ⇒ p(x) = u(x).

(Draw picture)

• Scenario 2. Now assume that û(k) is not included in [−π/h, π/h].
In general the periodization of û(k) will result in some overlap inside
[−π/h, π/h]. We call this aliasing. In that case, some information is
lost and interpolation will not be exact.
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Scenario 1 is known as the Shannon sampling theorem: a function ban-
dlimited in [−π/h, π/h] in k space is perfectly interpolated by bandlimited
interpolation, on a grid of spacing h or greater. In signal processing h is also
called the sampling rate, because x has the interpretation of time. When h
is the largest possible rate such that no aliasing occurs, it can be referred to
as the Nyquist rate.

More generally, the accuracy of interpolation is linked to the smoothness
of u(x). If the tails û(k) are small and h is large, we can expect that the
error due to periodization and overlap won’t be too big. The following result
is a consequence of the Poisson summation formula.

Theorem 15. (Error of bandlimited interpolation) Let u have p ≥ 1 deriva-
tives in L1(R). Let vj = u(xj) at xj = jh, j ∈ Z. Denote by p(x) the
bandlimited interpolant formed from vj. Then, as h→ 0,

|û(k)− p̂(k)| = O(hp) |k| ≤ π

h
,

and
‖u− p‖2 = O(hp−1/2).

Proof. Denote by û(k) the FT of u(x), and by v̂(k) the SFT of vj, so that
p̂(k) = v̂(k) on [−π/h, π/h]. By the Poisson summation formula (7.1),

v̂(k)− û(k) =
∑
m6=0

û(k +m
2π

h
), k ∈ [−π/h, π/h].

As we saw earlier, the smoothness condition on u imply that

|û(k)| ≤ C |k|−p.

Since

k +m
2π

h
∈ [−π

h
+m

2π

h
,
π

h
+m

2π

h
],

we have |k +m2π
h
| ≥ |mπ

h
|, hence

|û(k +m
2π

h
)| ≤ C ′ |mπ

h
|−p,

for some different constant C ′. Summing over m 6= 0,

|v̂(k)− û(k)| ≤ C ′
∑
m 6=0

|m|−p(π
h

)−p ≤ C ′′ (
π

h
)−p ≤ C ′′′ hp.
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One can switch back to the x domain by means of the Plancherel formula

‖u− p‖2L2 =
1

2π
‖û(k)− v̂(k)‖2L2(R).

The right-hand side contains the integral of |û(k)− v̂(k)|2 over R. Break this
integral into two pieces:

• Over [−π/h, π/h], we have seen that |û(k) − v̂(k)|2 = O(h2p). The
integral is over an interval of length O(1/h), hence the L2 norm squared
is O(h2p−1). Taking a square root to get the L2 norm, we get O(hp−1/2).

• For |k| ≥ π/h, we have p̂(k) = 0, so it suffices to bound
∫
|k|≥π/h |û(k)|2 dk.

Since |û(k)| ≤ C |k|−p, this integral is bounded by O((π/h)2p−1). Tak-
ing a square root, we again obtain a O(hp−1/2).

We have seen how to interpolate a function defined on R, but as a closing
remark let us notice that a similar notion exists for functions defined on
intervals, notably x ∈ [−π, π] or [0, 2π]. In that case, wavenumbers are
discrete, the FT is replaced by the FS, and the SFT is replaced by the DFT.
Evaluating the DFT for x not on the grid would give an interpolant:

1

2π

N/2∑
k=−N/2+1

eikxf̂k.

Contrast with the formula (6.8) for the IDFT. This is almost what we want,
but not quite, because the highest wavenumber k = N/2 is treated asym-
metrically. It gives rise to an unnatural complex term, even if f̂k is real and
even. To fix this, it is customary to set f̂−N/2 = f̂N/2, to extend the sum
from −N/2 to N/2, but to halve the terms corresponding to k = −N/2 and
N/2. We denote this operation of halving the first and last term of a sum
by a double prime after the sum symbol:∑′′

Itis easy to check that this operation does not change the interpolating prop-
erty. The definition of bandlimited interpolant becomes the following in the
case of intervals.
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Definition 22. (Spectral interpolation on [0, 2π]) Let xj = jh, j = 0, . . . , N−
1 with h = 1/N . Consider f : [0, 2π] 7→ R, its restriction fj = f(xj), and

the DFT f̂k of the samples fj. Then the spectral interpolant is

p(x) =
1

2π

∑′′ N/2

k=−N/2
eikxf̂k.

Because p(x) is a superposition of “monomials” of the form eikx = (eix)k

for k integer, we call it a trigonometric polynomial.
The theory for interpolation by trigonometric polynomials (inside [0, 2π])

is very similar to that for general bandlimited interpolants. The only impor-
tant modification is that [0, 2π] is a periodized interval, so a function qualifies
as smooth only if it connects smoothly across x = 0 indentified with x = 2π
by periodicity. The Poisson summation formula is still the central tool, and
has a counterpart for Fourier series.

Theorem 16. (Poisson summation formula, FS version) Let u : [0, 2π] 7→ R,
sufficiently smooth. Let vj = u(θj) for θj = jh, j = 1, . . . , N , h = 2π/N ,
and

ûk =

∫ 2π

0

e−ikθu(θ) dθ, (FS), k ∈ Z,

v̂k = h
N∑
j=1

e−ikθju(θj). (DFT ), k = −N
2
, . . . ,

N

2
− 1.

Then

v̂k =
∑
m∈Z

ûk+mN , k = −N
2
, . . . ,

N

2
− 1. (7.2)

(Recall that N = 2π
h

so this formula is completely analogous to (7.1).)

For us, the important consequence is that if u has p derivatives in L1,
over the periodized interval [0, 2π], then the bandlimited interpolation error
is a O(hp) in the pointwise sense in k space, and O(hp−1/2) in the L2 sense.

For this result to hold it is important that u has p derivatives at the
origin as well (identified by periodicity with 2π), i.e., the function is equally
smooth as it straddles the point where the interval wraps around by pe-
riodicity.Otherwise, if u(θ) has discontinuities such as. u(2π−) 6= u(0+),
interpolation will suffer from the Gibbs effect.
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7.1.2 Chebyshev interpolation

Consider now smooth functions inside [−1, 1] (for illustration), but not nec-
essarily periodic. So the periodization

∑
j f(x + 2j) may be discontinuous.

Polynomial interpolation on equispaced points may fail because of the Runge
phenomenon, and bandlimited interpolation will fail due to Gibbs’s effect.

A good strategy for interpolation is the same trick as the one we used for
truncation in the last chapter: pass to the variable θ such that

x = cos θ.

Then x ∈ [−1, 1] corresponds to θ ∈ [0, π]. We define g(θ) = f(cos θ) with g
2π-periodic and even.

We can now consider the bandlimited interpolant of g(θ) on an equispaced
grid covering [0, 2π], like for instance

θj =
πj

N
, where j = 1, . . . , 2N.

Using the definition we saw at the end of the last section (with the ”double
prime”), we get

q(θ) =
1

2π

∑′′ N

k=−N
eikθĝk, ĝk =

π

N

2N−1∑
j=0

e−ikθjg(θj).

By even symmetry in θ and k (why?), we can write

q(θ) =
N∑
k=0

cos(kθ)ck,

with

c0 =
ĝ0
2π
, ck =

ĝk
π

for k 6= 0.

Note that the ck are determined from the samples g(θj).
Back to x, we get the sample points xj = cos(θj). They are called Cheby-

shev points. They are not equispaced anymore, and because they are the
projection on the x-axis of equispaced points on the unit circle, they cluster
near the edges of [−1, 1]. There are N + 1 of them, from j = 0 to N , because
of the symmetry in θ. It turns out that the xj are the extremal points of the
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Chebyshev polynomial TN(x), i.e., the points in [−1, 1] where TN takes its
maximum and minimum values.

In terms of the variable x, the interpolant can be expressed as

p(x) = q(acos x) =
N∑
n=0

Tn(x)cn, Tn(x) = cos(n acos x),

with the same cn as above. Since Tn(x) are polynomials of degree 0 ≤ n ≤ N ,
and p(x) interpolates f(x) at the N + 1 (non-equispaced) points xj, we are
in presence of the Lagrange interpolation polynomial for f at xj!

In practice, the formula in terms of Tn(x) may not even be needed. From
interpolation points x̃j, it suffices to map them to θ̃j = acos x̃j, then get
the interpolated values as q(acos x̃j). For instance, when x̃j are Chebyshev
points on a grid twice finer than xj, namely x̃j = acos πj

2N
for j = 1, . . . , 4N ,

it is a good exercise to write a fast FFT-based algorithm for Chebyshev
interpolation.

The interesting conclusion is that, although this is a polynomial inter-
polant, the error analysis is inherited straight from Fourier analysis. If f is
smooth, then g is smooth and periodic, and we saw that the bandlimited
interpolant converges very fast. The Chebyshev interpolant of f is equal to
the bandlimited interplant of g so it converges at the exact same rate (in L∞

in k or n space) — for instance O(N−p−1) when f has p derivatives (in BV).
In particular, we completely bypassed the standard analysis of error of

polynomial interpolation, and proved universal convergence for smooth f .
The factor

πN+1(x) =
N∏
j=0

(x− xj)

that was posing problems in the error estimate then does not pose a problem
anymore, because of the very special choice of Chebyshev points cos(πj/N)
for the interpolation. Intuitively, clustering the grid points near the edges
of the interval [−1, 1] helps giving πN+1(x) more uniform values throughout
[−1, 1], hence reduces the gross errors near the edges.

Let us now explain the differences in the behavior of the monic polynomial∏N
j=0(x−xj) for equispaced vs. Chebyshev points, and argue that Chebyshev

points are near-ideal for interpolation of smooth functions in intervals. The
discussion below is mostly taken from Trefethen, p.43. (See also the last
problem on homework 2 for an example of different analysis.)
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Let p(z) =
∏N

j=0(z − xj), where we have extended the definition of the
monic polynomial to z ∈ C. We compute

log |p(z)| =
N∑
j=0

log |z − xj|,

Put

φN(z) = (N + 1)−1
N∑
j=0

log |z − xj|.

The function φN is like an electrostatic potential, due to charges at z = xj,
each with potential (N + 1)−1 log |z − xj|. Going back to p(z) from φN is
easy:

p(z) = e(N+1)φN (z).

Already from this formula, we can see that small variations in φN will lead
to exponentially larger variations in p(z), particularly for large N .

Let us now take a limit N → ∞, and try to understand what happens
without being too rigorous. What matters most about the Chebyshev points
is their density : the Chebyshev points are the projection onto the real-axis
of a sequence of equispaced points on a circle. If the density of points on the
circle is a constant 1/(2π), then the density of points on [−1, 1] generated by
vertical projection is

ρCheb(x) =
1

π
√

1− x2
. (normalized to integrate to 1 on [−1, 1])

(This is a density in the sense that

N

∫ b

a

ρCheb(x) dx

approximately gives the number of points in [a, b].) Contrast with a uniform
distribution of points, with density

ρequi(x) =
1

2
.

Then the potential corresponding to any given ρ(x) is simply

φ(z) =

∫ 1

−1
ρ(x) log |z − x| dx.

The integral can be solved explicitly for both densities introduced above:
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• For ρequi, we get

φequi(z) = −1 +
1

2
Re((z + 1) log(z + 1)− (z − 1) log(z − 1)).

It obeys φequi(0) = −1, φequi(±1) = −1 + log 2.

• For ρCheb, we get

φCheb(z) = log
|z −
√
z2 − 1|
2

.

This function obeys (interesting exercise) φCheb(x) = − log 2 for all
x ∈ [−1, 1] on the real axis.

The level curves of both φequiv and φCheb in the complex plane are shown
on page 47 of Trefethen.

Overlooking the fact that we have passed to a continuum limit for the
potentials, we can give a precise estimate on the monic polynomial:

|pequi(z)| ' e(N+1)φequi(z) =

{
(2/e)N near x = ±1;
(1/e)N near x = 0.

whereas

|pCheb(z)| ' e(N+1)φequi(z) = 2−N , z ∈ [−1, 1].

We see that pequi can take on very different values well inside the interval
vs. near the edges. On the other hand the values of pCheb are near-constant in
[−1, 1]. The density ρCheb(x) is the only one that will give rise to this behav-
ior, so there is something special about it. It is the difference in asymptotic
behavior of (2/e)−N vs. 2−N that makes the whole difference for interpola-
tion, as N →∞.

One may argue that neither pequi nor pCheb blow up as N → ∞, but it
is an interesting exercise to show that if we were interpolating in an interval
[−a, a] instead of [−1, 1], then the bounds would be multiplied by aN , by
homogeneity.

The Chebyshev points are not the only one that correspond to the density
ρCheb(x) as N →∞. For instance, there is also the Chebyshev roots

θ′j =
π

2N
+
πj

N
, j = 0, . . . , 2N − 1,
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which are the roots of TN(x), instead of being the extremal points. They
give rise to very good interpolation properties as well.

Finally, let us mention that the theory can be pushed further, and that
the exponential rate of convergence of Chebyshev interpolation for analytic
functions can be linked to the maximum value of φ(z) on the strip in which
the extension f(z) of f(x) is analytic. We will not pursue this further.

7.2 Differentiation

7.2.1 Bandlimited differentiation

The idea that a numerical approximation of a derivative can be obtained from
differentiating an interpolant can be pushed further. In this section we return
to bandlimited interpolants. We’ve seen that they are extremely accurate
when the function is smooth and periodic; so is the resulting differentiation
scheme. It is called bandlimited differentiation, or spectral differentiation.

First consider the case of x ∈ R and xj = jh, j ∈ Z. As we’ve seen, the
bandlimited/spectral interpolant of u(xj) is

p(x) =
1

2π

∫ π/h

−π/h
eikxû(k) dk,

where v̂(k) is the SFT of vj = u(xj). Differentiating p(x) reduces to a
multiplication by ik in the Fourier domain. Evaluating p′(xj) is then just a
matter of letting x = xj in the resulting formula. The sequence of steps for
bandlimited differentiation (x ∈ R) is the following:

• Obtain the SFT v̂(k) of vj = u(xj);

• Multiply v̂(k) by ik;

• Obtain the ISFT of ŵ(k) = ikv̂(k), call it wj.

The numbers wj obtained above are an approximation of u′(xj). The
following result makes this precise.

Theorem 17. (Accuracy of bandlimited differentiation, see also Theorem 4
in Trefethen’s book) Let u have p derivatives in L1(R). Let vj = u(xj), and
wj = p′(xj) be the result of bandlimited differentiation. Then

sup
j
|wj − u′(xj)| = O(hp−2).
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and
‖u′ − p′‖2 = O(hp−3/2).

Proof. The proof hinges on the fact that

|v̂(k)− û(k)| = O(hp).

One power of h is lost when differentiating u (because ik is on the order of
1/h over the fundamental cell [−π/h, π/h]). Half a power of h is lost in going
back to the physical domain (j instead of k) via the L2 norm (why?), and a
full power of h is lost when going back to j in the uniform sense (why?).

The point of the above theorem is that the order of bandlimited differ-
entiation is directly linked to the smoothness of the function, and can be
arbitrarily large. This is called spectral accuracy. One can even push the
analysis further and show that, when f is real-analytic, then the rate of
convergence of wj towards u′(xj) is in fact exponential/geometric.

Of course in practice we never deal with a function u(x) defined on the
real line. In order to formulate an algorithm, and not simply a sequence of
abstract steps, we need to limit the interval over which u is considered. Spec-
tral differentiation in the periodic interval [0, 2π] works like before, except
DFT are substituted for SFT. For θ ∈ [0, 2π], we’ve seen that the spectral
interpolant is defined as

p(θ) =
1

2π

∑′′ N/2

k=−N/2
eikθf̂k.

(The double prime is important here.) Again, a derivative can be imple-
mented by multiplying by ik in the Fourier domain. The sequence of steps
is very similar to what it was before, except that we can now label them as
“compute”, and not just “obtain”:

• Compute the DFT v̂k of vj = u(xj);

• Multiply v̂k by ik;

• Compute the IDFT of ŵk = ikv̂k, call it wj.

The result of accuracy are the same as before, with the provision that u needs
to be not only smooth, but also smooth when extended by periodicity.

The FFT can be used to yield a fast O(N logN) algorithm for spectral
differentiation.

Note that higher derivatives are obtained in the obvious manner, by mul-
tiplying in Fourier by the adequate power of ik.
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7.2.2 Chebyshev differentiation

In view of what has been covered so far, the idea of Chebyshev differentiation
is natural: it is simply differentiation of the Chebyshev interpolant at the
Chebyshev nodes. It proves very useful for those smooth functions on an
interval, which do not necessarily extend smoothly by periodicity.

Let us recall that the Chebyshev interpolant is q(x) = p(arccosx), where
p(θ) is the bandlimited interpolant of u(cos θj) at the Chebyshev points
xj = cos θj. As such, a differentiation on q(x) is not the same thing as a
differentiation on p(θ). Instead, by the chain rule,

q′(x) =
−1√

1− x2
p′(arccosx).

The algorithm is as follows. Start from the knowledge of u(xj) at xj =
cos θj, θj = jh, h = π/N , and j = 1, . . . , N .

• Perform an even extension of u(xj) to obtain u(cos θj) for θj = jh,
h = π/N , and j = −N + 1, . . . , N . Now we have all the equispaced
sample of the periodic function u(cos θ) for θj covering [0, 2π], not just
[0, π].

• Take the DFT of those samples, call it v̂k,

• Multiply by ik,

• Take the IDFT of the result ikv̂k,

• Multiply by −1/
√

1− x2j to honor the chain rule. At the endpoints

xj = −1 or 1, take a special limit to obtain the proper values of p′(−1)
and p(1). See Trefethen’s book for the correct values.

This is a fast algorithm since we can use the FFT for the DFT and IDFT.
Since we are only a change of variables away from Fourier analysis in a pe-

riodic domain, the accuracy of Chebyshev differentiation is directly inherited
from that of bandlimited differentiation. We also have spectral accuracy.

Note that higher derivatives can be treated similarly, by applying the
chain rule repeatedly.

In practice, Chebyshev methods are particularly useful for boundary-
value problems (we’ll come back to this), when all samples of a function are
to be determined at once, and when we have the freedom of choosing the
sample points.
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7.3 Integration

7.3.1 Spectral integration

To go beyond methods of finite order, the idea of spectral integration is to
integrate a bandlimited interpolant. This strategy yields very high accuracy
when the function is smooth and periodic.

Consider a function u(θ), θ ∈ [0, 2π]. Its samples are vj = u(θj) with
θj = jh, h = 2π/N , and j = 1, . . . , N . Form the DFT:

v̂k = h
N∑
j=1

e−ikθjvj,

and the bandlimited interpolant,

p(θ) =
1

2π

∑′′N/2

k=−N/2
eikθv̂k.

Integrating p(θ) gives the remarkably simple following result.

∫ 2π

0

p(θ) dθ = v̂0 = h
N∑
j=1

u(θj).

We are back to the trapezoidal rule! (The endpoints are identified, θ0 = θN .)
While we have already encountered this quadrature rule earlier, it is now
derived from Fourier analysis. So the plot thickens concerning its accuracy
properties.

Specifically, we have to compare v̂0 to û0 =
∫ 2π

0
u(θ) dθ, where ûk are the

Fourier series coefficients of u(θ). The relationship between v̂0 and û0 is the
Poisson summation formula (7.2):

v̂0 =
∑
m∈Z

ûmN , N =
2π

h
.

The most important term in this sum is û0 for m = 0, and our task is again
to control the other ones, for m 6= 0. The resulting accuracy estimate is the
following.
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Theorem 18. Assume u has p derivatives in L1[0, 2π], where [0, 2π] is con-
sidered a periodic interval. (So it matters that the function connects smoothly
by periodicity.) Then∫ 2π

0

u(θ) dθ − h
N∑
j=1

u(θj) = O(hp).

Proof. By the Poisson summation formula, in the notations of the preceding
few paragraphs,

û0 − v̂0 =
∑
m6=0

ûmN .

We have already seen that the smoothness properties of u are such that

|ûk| ≤ C|k|−p.

So we have
|û0 − v̂0| ≤ C

∑
m 6=0

(mN)−p ≤ C ′N−p,

which is a O(hp).

As a conclusion, the trapezoidal rule is spectrally accurate (error O(hp+1)
for all p ≥ 0 when u ∈ C∞), provided the function to be integrated in
smooth and periodic. If the function is C∞ in an interval but is for instance
discontinuous upon periodization, then we revert to the usual O(h2) rate. So
the true reason for the trapezoidal rule generally being O(h2) and not O(h∞)
is only the presence of the boundaries!

An important example of such periodic smooth function, is a regular
C∞function multiplied by a C∞ window that goes smoothly to zero at the
endpoints of [a, b], like for instance a member of a partition of unity. (This
plays an important role in some electromagnetism solvers, for computing the
radar cross-section of scatterers.)

7.3.2 Chebyshev integration

Like for Chebyshev differentiation, we can warp θ into x by the formula
θ = arccosx, and treat smooth functions that are not necessarily periodic.
Integrating a Chebyshev interpolant gives rise to Chebyshev integration, also
called Clenshaw-Curtis quadrature.
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Assume that f(x) is given for x ∈ [−1, 1], otherwise rescale the x variable.
The Chebyshev interpolant is built from the knowledge of f at the Chebyshev
nodes xj = cos θj, and takes the form

p(x) =
∑
n≥0

anTn(x).

We have seen that an are obtained by even extension of f(xj), followed by
an FFT where the sine terms are dropped. As a result,∫ 1

−1
p(x) dx =

∑
n≥0

an

∫ 1

−1
Tn(x) dx.

We compute ∫ 1

−1
Tn(x) dx =

∫ π

0

cos(nθ) sin θdθ.

This integral can be evaluated easily by relating cos and sin to complex
exponentials (or see Trefethen’s book for an elegant shortcut via complex
functions), and the result is∫ 1

−1
Tn(x) dx =

{
0 if n is odd;

2
1−n2 if n is even.

The algorithm for Chebyshev differentiation is simply: (1) find the coef-
ficients an for 0 ≤ n ≤ N , and (2) form the weighted sum∑

n even, n≤N

an
2

1− n2
.

The accuracy estimate of Chebyshev integration is the same as that of
bandlimited integration, except we do not need periodicity. So the method
is spectrally accurate.

An important method related to Chebyshev quadrature is Gaussian quadra-
ture, which is similar but somewhat different. It is also spectrally accurate for
smooth functions. Instead of using extrema or zeros of Chebyshev polynomi-
als, it uses zeros of Legendre polynomials. It is usually derived directly from
properties of orthogonal polynomials and their zeros, rather than Fourier
analysis. This topic is fascinating but would take us a little too far.
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Appendix A

Round-off errors

In double-precision floating-point arithmetic (the most widespread choice in
scientific computation), real numbers are represented using 8 bytes, or 64
bits (binary digits).

The binary expansion of a number x is of the form

x = a · 2b,

where a is called the mantissa (or significand) and b is called the exponent. A
normalized number is one for which the mantissa is of the form 1.a1a2a3 . . .,
i.e., the first bit is one.

The convention is to use 52 bits to represent the bits of the mantissa,
i.e., we encode the aj for j = 1, . . . , 52, and to use 11 bits to encode the
exponent. This results in the ability to use integers exponents between the
values of -1023 and 1023 (with 1024 set aside to represent the exceptions ∞
and NaN). The last bit is used to encode the sign of x.

With this scheme, the range of accessible machine numbers is a collection
with spacing dependent on the size of the nearby numbers. For instance,

• Between 1 and 2, the exponent is b = 0 and the spacing between
machine-representable numbers is 2−52. The smallest numbers in that
interval are 1, 1 + 2−52, 1 + 2 · 2−52, etc.

• Between 1/2 and 1, the exponent is b = −1 and the spacing between
machine-representable numbers is 2−53. The largest numbers in that
interval are 1, 1− 2−53, 1− 2 · 2−53, etc.

101
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We see that, in the neighborhood of 1, the maximum error that one may
incur upon rounding is 2−53. This very special number is called the epsilon
machine, and its value is approximately 10−16. If not in the neighborhood of
1, it is the maximum relative round-off error incurred in the double precision
system.

Example 1: Both 1 = 1.0 . . . 00 · 20 and 2−52 = 1.0 . . . 00 · 2−52 are exactly
representable. Upon taking the sum of these two numbers, 2−52 is denor-
malized to match the exponent of 1, hence is temporarily represented as
0.0 . . . 01 · 20. The addition is done without error and results in 1.0 . . . 01 · 20.

Example 2: A round-off errors is incurred when trying to sum 1 and 2−53.
Even though the latter number is machine-representable, its denormalization
to b = 0 results in a loss of information, since the bit equal to 1 gets “pushed
out” of the 52-bit mantissa. The number 2−53 is confounded with zero in
denormalized form, hence 1 + 2−53 is computed to be 1.

Having 64 bits of precision looks like it is more than enough for represent-
ing any given real number in the computer, and that is often the case, but
we should be mindful that the propagation of round-off errors plagues some
difficult computations. Often, a loss of precision occurs when subtracting
nearby numbers; if x1 and x2 agree to 6 binary places, say, then the compu-
tation of their difference will incur a loss of 6 bits in the mantissa (why?).
This may not sound like a big deal, but if this kind of operation is repeated
9 times or more in a sequence, then all the bits of the mantissa end up being
lost.


