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1.5. Appendix: Sets and Functions
1.5.1. Sets, members, and subsets

Since the notions of sets and of functions are crucial throughout this
book, some formal definitions and discussion are provided here for readers
not entirely familiar with these notions. We begin with the notion of a set.
A set is simply any collection of objects (it can have a finite number of
objects, an infinite number, or none at all). For example, we can talk
about the set of positive integers less than 10; sets can be notated by listing
the members and enclosing the list in curly brackets: {1,2,3,4,5,6,7,8,9}. The
order in which they are listed makes no difference; a set is just a collection of
things without any order. So if we were to write {2,5,3,4,9,7,8,1,6}, this
names the same set. Each integer in this set is called a member or an element
of the set. If we were to name this set A, then the notation 4 & A means
that 4 is a member (or element) of A. Something either is or is not in a set; it
makes no sense to say it occurs twice (or more) in the set. Note also that a
set can have a single member; this is called a singleton set. Thus {4} is the
set with only one member; this set is distinct from 4 itself. (4 is a member
of {4}.)

A set can have an infinite number of members; the set of positive integers
for example is infinite. Obviously this can’t be named by listing the mem-
bers. One can in this case specify the set by a recursive procedure. Call the set I,
then one can specify I by two statements: (a) (what is known as the base step):
1 € 1, and (b) (the recursion step) if n & I then n+1 < L. (It is understood
when one lists things this way that nothing else is in 1.) One will also often
see a notation which describes rather than lists the members. For example,
we can write the following set, call it B: {x|x is a New England state}. This
names a finite set, and so we could also give B in list form as follows:
{Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Con-
necticut}. These two are just different notations for naming the same set.
This can also be used, of course, for infinite sets. Take, for example, the set
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{x|x is an integer and x > 9}. This names the set of integers greater than 9.
And, a set can have no members. There is only one such set; its name is the
null set or the empty set, and is generally written as (). Of course, there are
other ways one can describe the null set. For example, the set of integers each
of which is greater than 9 and less than 10 is the empty set. The cardinality of
some set refers to the number of elements in that set; the notation |B| means
the cardinality of B. Hence, given our set B above, |B| is six.

Take some set A. Then a subset of A is any set all of whose members are
also in A. Suppose, for example, we begin with a set C which is {1,2,3}. Then
{1,2} is a subset of C, as is {1,3} and so forth. The notation for the subset
relation is C. The full definition of subset is as follows: B C A if and only if
every member of B is a member of A. From this it follows that every set is
a subset of itself (so for the set C above, one of its subsets is the set {1,2,3}).
It is, however, sometimes convenient to refer to those subsets distinct
from the original set; in that case we can talk about a proper subset of
some set. The symbol for this is C, so B C 4 if and only if B C A and B #
A. Since the definition of subset says that B is a subset of A if and only
if everything that is in B is also in A, it follows that if nothing is in
B then B is a subset of A. thus the null set is a subset of every other set.
Sets themselves can have sets as members, and so one can talk about
the set of all subsets of a set A. This is called the power set of A, written
as &’(A). For example, given the set C above, 2(A) = {Q, {1}, {2}, {3},
{1,2}, {1,3}, {2,3}, {1,2,3}}.

*1.3. Ifa set A has n members, then the number of subsets of A is 2". Try
to see why this is true. Hint: for every member x of some set A, then for
each subset B of A, x is either in B or is not in B.

1.4. How many members does the following set have: {()}?

*1.5. What is &°(0)?

We will also have occasion to talk about the reverse of the subset
relation—i.e., the superset relation. A is a superset of B if and only if B is
a subset of A. The notation for this is A D B. Once again this is defined in
such a way that every set is a superset of itself; a superset of B which is not
identical to B is called a proper superset, and the notation for this is D.
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1.5.2. Union, intersection, and complement

Take any two sets A and B. Then there is a set C which consists of
everything that is in A and everything that is in B. This is called the union
of A and B, and is written A U B. For example, if A is {1,2,3} and B is
{2,4,6} then A U B is {1,2,3,4,6}. Moreover, for any two sets A and B the
intersection of A and B is the set of all things that are in both A and B. This is
written A N B. So, for example, in the case directly above, the intersection of
A and B is {2}. Or, if we were to intersect the set of integers which can be
evenly divided by 2 (the set of even integers) with the set of integers which
can be evenly divided by 3, we end up with the set of integers that can be
evenly divided by 6.

1.6. a. For any two sets A and B such that A C B, what set is A U B?
b. For any two sets A and B such that A C B, what set is A N B?

One final useful notion here is the complement of a set. The complement
of some set A is the set of all things which are not in A (this is sometimes
notated as A’). Usually one talks about this notion with respect to some
larger domain. Strictly speaking, the complement of {1,2,3} would include
not only all integers greater than 3 but also all sorts of other numbers (like
1/3), the sun, my dog Kiana, and the kitchen sink. Rarely are we interested
in that sort of set; so in practice when one talks about “the complement of
some set A” this is generally with respect to some larger set B of which A isa
subset. Then the complement of A refers to all things in B that are not in
A (this is notated as B-A). For example, when restricting the discussion to
the set of positive integers, the complement of {1,2,3} is the set of all integers
greater than 3.

1.5.3. Ordered pairs, relations, equivalence relations,
and partitions

Sets are unordered collections of objects. But it is quite useful (as will
become very apparent as this book proceeds) to be able to talk about
pairs of objects that are ordered in some way. An ordered pair is just that:
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it is two objects with some ordering between them. If the two objects are a
and b, then (a,b) is an ordered pair; (b,a) is a different ordered pair. An
ordered pair need not contain distinct items: (a,a) is an ordered pair. In
applying this to actual natural relations that exist in the world we are
generally interested in sets of ordered pairs. (One can generalize this notion
to ordered triples and so forth; an ordered n-tuple means an ordered list of
n items.)

This notion is easiest to grasp with some concrete examples. Take again
the set {1,2,3}, and take the relation “is greater than.” Then this can be seen
as a set of ordered pairs; if we are restricting this to items from our little 1-2-3
set, this would be the set {(2,1), (3,1), (3,2)}. Now suppose we instead take the
following set of ordered pairs: {(2,1), (3,1), (3,2), (1,1), (2,2), (3,3)}. Then
(restricting this again to our 1-2-3 set) we have now actually listed the
relation “is greater than or equal to.” Or, take the set {(1,1), (2,2), (3,3)}.
That is the relation “is equal to” (defined for the set of integers {1,2,3}).

In other words, what we are calling a relation is just some set of ordered
pairs. In the example above, both the first and second member of each
ordered pair was drawn from the same set (the set {1,2,3}). But this is not
necessary; we can have a set of ordered pairs each of whose first member
is drawn from some set A and the second member from some set B where
A and B are different (they can, but need not, have some of the same
members). For example, the relation “is the capital of” is a relation between
cities and states; it can be expressed as a set of ordered pairs of the general
form {(Providence, Rhode Island), (Boston, Massachusetts), (Springfield,
Illinois), (Pierre, South Dakota),...} (the...here is a shorthand for the
remaining 46 pairs).

Take two sets A and B (they could be the same set or different). Then A x B
refers to the set of all ordered pairs whose first member is in A and whose
second member is in B. (This is also called the Cartesian product of A and B.)
As in the case above, it is helpful to give the intuition of this by coming up
with some concrete example. Suppose we take as our set A some group
of professors—say, Professor Magoo, Professor Carberry, and Professor
Glazie. Call that set P (for shorthand, let’s call its members m, c, and g, so
P is the set {m,c,g}). Now suppose we have a set S which consists of three
students who we will just indicate as x, y, and z (so S = {x,y,z}). Then Px S =
{(m,x}, (m,y), (m,z), (¢.x), (¢.y), (¢,2), (&X), (8,y), (&2)}. Suppose that Magoo
wrote a letter of recommendation for all three students, Carberry wrote one
for only y, and Glazie wrote one for y and z. Then the relation “wrote a
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recommendation for” is a subset of P x S, and is the set of ordered pairs
{(m,x}, (m,y), (m,z), (¢,y), (&), (8,2)}

More generally, we define a relation (between members of A and B) as
any subset of A x B. There are some special and interesting properties that
can be defined when the two sets are the same. That is, we are now looking
at subsets of A x A. Consider a relation R (some subset of A x A) which is
such that for all x in A, (x,x) is in R. Such a relation is called a reflexive
relation. (These need not be the only kinds of pairs to be in R for R to be
reflexive; other pairs can be in there too.) For example, if talking about the
set of integers again, the relation “is greater than or equal to” is reflexive; for
all numbers n, (n,n) is in the set of ordered pairs described by that relation.
A relation R is called irreflexive if for all x in A, (x,X) is not in R. Further,
consider any two members X and y (both members of A). Then if it’s the case
that for all x and y if (x,y) is in R then (y,x) is also in R, the relation is called
symmetric. Imagine, for example, a lovely world with no unrequited love.
Then is in love with is symmetric in that world. If our set were {m, c, g, and
p}, then if the pair (m,c) were in our relation R (i.e., “is in love with”) the
fact that R is symmetric means that (c,m) is also in R. (Notice that our
definition neither requires (c,c) to be in R nor excludes that; either is
possible.) Or, to look at a relation which is symmetric by definition: consider
the relation is a sibling of. (While is a sibling of is symmetric, is a sister of is
not. Why not?) One final useful definition is a transitive relation. A transitive
relation R is one for which for every x, y, and z, if (x,y) is in R and (y,z) is in
R, then (x,z) is in R. (The relation “is greater than” is transitive, as is the
relation “is greater than or equal to”).

Any relation R which is reflexive, transitive, and symmetric is called an
equivalence relation. As an example of such a relation, consider the set of
students (call it S) at an elementary school that services grades 1 through 6.
Then “is in the same grade as” is an equivalence relation in S x S. (While it is
unusual to use the phrase “in the same grade as” when referring to the same
person it seems false to say Johnny is not in the same grade as himself so we
can see that this relation is reflexive.) It is also obvious that it is symmetric
and transitive. Note that this—and any other equivalence relation—divides
up the original set (here, S) into a group of non-overlapping subsets. The set
of these subsets is called a partition. Thus, a partition of any set S is a set of
subsets of S such that for each distinct subset A and B, A N B = @, and the
union of all the subsets is S. To show that any equivalence relation induces
such a partition, take any x in S and define S, as {y|(y,x) is in R}. Since R is
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reflexive, we know that x is in S, (and hence we know that S, is guaranteed
not to be empty). Moreover, the fact that R is reflexive means that each
member of S is guaranteed to be in at least one such subset, so we know that
the union of all of these is S. We can further show that for any two such
subsets S, and Sy, they either have no members in common (i.e., they have a
null intersection) or they are the same. Thus, take any ¢ which is in both S,
and Sy. By definition, this means that (c,a) is in R and (c,b) is in R. By the
fact that R is transitive and symmetric, it follows that (a,b) and (b,a) are in
R (the reader can work through the necessary steps). But then, for all x such
that (x,a) is in R, (x,b) is also in R. To show this note again that R is
transitive. If (x,a) is in R and (a,b) is in R then (x,b) is also in R. Hence given
the initial premise that there is a non-empty intersection between S, and Sy,
it follows that everything in S, is in S,. That everything in Sy is also in S,
follows in the same way, and so the two are the same set. Each subset in a
partition is called a cell in that partition.

In the example above, the cells correspond to the different grades. (There
don’t have to be six cells—it could be that one of the grades has no student
in it. But there can be no more than six; recall that by definition a cell can’t
be empty.) Just as any equivalence relation induces a partition, given any
partition one can give an equivalence relation that corresponds to any
partition; this is the relation that holds between any two a and b in S such
that a and b are in the same cell in the partition.

1.5.4. Functions

A function takes every member of some set A and assigns it a value from a
set B (B could be the same set as A, but need not be). This can also be
formalized using the notion of a set of ordered pairs. Thus, consider two sets
A and B (which again could be the same but need not be). Then, a (total)
function from A to B is any set of ordered pairs (i.e., any subset of A x B)
such that for each a in A, there is one and only one ordered pair with a as
first member. Thus if we think of the function f as assigning to each a in
A some values in B, note that the criterion above ensures that each member
of A is indeed assigned a value, and is assigned a unique value. A is referred
to as the domain of the function, and B is referred to as the co-domain. For
any function f and any a in the domain of f, we write f(a) to indicate the
value that f assigns to a. (To use other common terminology, f(a) means
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the result that one gets by applying the function f to a.) There is no
restriction that each member of B must appear as second member of some
ordered pair; the term range of the function f'is the set of all b in B such that
there is some a such that f(a) = b. Note that these definitions are such that
the range of a function is a subset of the co-domain. In practice (at least in
works within linguistics) the terms “range” and “co-domain” are often not
distinguished.

As noted above, there is no restriction that each member of B appear as
second member of an ordered pair. Nor is there a restriction that it appear
only once. If each member of B is used as a value only once (that is, for each
b in B, there is a unique a such that f(a) = b) then B obviously can be no
smaller than a. It can have more members, or it can be the same size. If the
latter is the case, then it also follows that for every b in B, there is some a
such that f(a) = b. When both conditions above hold (i.e., for each b in B,
there is one and only one a such that f(a) = b, we say that there is a one-to-
one correspondence between A and B. Note that for any function f which is a
one-to-one correspondence, there is a corresponding function ' which is
just the reverse: it is a function mapping each member of B to a member of
A such that for all a in A and b in B, if f(a) = b then f'!(b) = a.'°

We will have some occasion to talk about the notion of a partial function.
A partial function is one where not every member of A is actually assigned a
value by f; f is undefined for some subset of A. (Of course any partial
function f is also a total function with a smaller domain.) We can illustrate
this by returning to our earlier example of ordered pairs of US cities and
states, where the first member of each ordered pair is the capital of the
second. This is a partial function from the set of US cities to states (not every
US city is a capital). We can reverse it, and have each state as the first
member of the ordered pair and the second as its capital (this function could
be expressed in prose as has as its capital). This is now a total function from

19 Incidentally, the notion of the availability of a one-to-one correspondence can
be used to define what it means for two sets to have the same cardinality. Obviously
for two finite sets it is clear what it means to have the same cardinality, since we can
count the members. But consider the case of infinite sets. Take the following two
sets: A = the set of positive integers {1,2,3,...} and B = the set of positive even
integers {2,4,6,...}. Both are infinite. Surprisingly (when one first hears this) they
are also of the same cardinality, because one can establish a one-to-one correspond-
ence between them (each member of A is paired with a member of B by multiplying
by 2: we will never run out of members in B).
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the set of states (every state does have a capital) to the set of US cities. But it
is not a one-to-one correspondence for the same reason that our original
relation is not a total function; there are many cities without the honor of
being a capital.

Occasionally in this text it will be useful to list out some actual
functions—that is, to name every member in the domain and name what
the function at issue maps that member to. There are a variety of ways one
could do this. To illustrate, take a domain of four children {Zacky, Yonnie,
Shelley, and Baba} (call that set C) and four men {Abe, Bert, Carl, David}
(call that set M). Suppose there is a function f from C to M which maps each
child to their father. Assume that Abe is the father of Zacky and Yonnie,
Bert is the father of Shelley, and David is the father of Baba. Then one can
write this information out in various ways. One would be to simply give the
set of ordered pairs: {(Zacky, Abe), (Yonnie, Abe), (Shelley, Bert), (Baba,
David)}. Usually this notation, however, is not terribly easy to read. We
could also write this out in either of the ways shown in (20):

(20) a. f(Zacky) = Abe b. Zacky — Abe
f(Yonnie) = Abe Yonnie — Abe
f(Shelley) = Bert Shelley — Bert
f(Baba) = David Baba — David

Or, sometimes it is more convenient to list out the domain on the left and the
co-domain on the right and connect them with arrows as in (21):

(21) Zacky 7 Abe
Yonnie Bert
Shelley / Carl

Baba ——  » David

Which notation is chosen makes no difference; the choice should be dictated
by clarity.



