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1 Quantifiers

We will be looking at the meaning of expressions like the following:
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every
some
no
exactly two
at least two
at most two
both
neither
more than half (of)
most
many
several
few
a few
all but five (of)
the four
between five and ten
an even number of
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(the) child(ren) { is
are} tall

We discussed four conceivable approaches to the analysis of most, depend-
ing on both syntactic constituency and semantic plausibility. We settled on
the following: most first combines with a nominal predicate (squares, for ex-
ample) and then combines with the verb phrase predicate:

(1) [most squares] are filled.

Both of the arguments of most are of type ⟨𝑒, 𝑡⟩ and thus most is of type
⟨⟨𝑒, 𝑡⟩, ⟨⟨𝑒, 𝑡⟩, 𝑡⟩⟩. In other words, most denotes a relation between two sets.
A concrete proposal for its meaning is:



(2) For any context 𝑐 and world 𝑤:
⟦most⟧𝑐,𝑤 = 𝜆𝑓𝑒,𝑡.(𝜆𝑔𝑒,𝑡. |char𝑓 ∩ char𝑔| > |char𝑓 − char𝑔|)

where for any function 𝑓 of type ⟨𝑒, 𝑡⟩, char𝑓 = {𝑥 ∈ 𝐷𝑒 ∶ 𝑓(𝑥) = 1}, the
set characterized by 𝑓.

We can now specify the meaning for other quantifiers schematically, by say-
ing what they require of two sets 𝐴 and 𝐵 that they are given as arguments.
For example:

every(𝐴)(𝐵)∶ 𝐴 ⊆ 𝐵
some(𝐴)(𝐵)∶ 𝐴∩ 𝐵 ≠ ∅

exactly three(𝐴)(𝐵)∶ |𝐴 ∩ 𝐵| = 3
no(𝐴)(𝐵)∶ 𝐴∩ 𝐵 = ∅

2 Conceivable relations between two sets

There’s a large set of conceivable meanings for quantifiers that are not in-
stantiated in any language. Here’s a sample:

Dsz(𝐴)(𝐵)∶ Dszenifer ∈ 𝐴∩𝐵
Allam(𝐴)(𝐵)∶ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 such that 𝑥 admires 𝑦 in w
Moxon(𝐴)(𝐵)∶ |𝐴| > |𝐷𝑒 −𝐵|

Evso(𝐴)(𝐵)∶ 𝐴 ⊆ 𝐵, if |𝐷𝑒| < 1, 000, 000
𝐴∩ 𝐵 ≠ ∅, otherwise

AllbutJohn(𝐴)(𝐵)∶ 𝐴− 𝑗 ⊆ 𝐵
Somesquare(𝐴)(𝐵)∶ there is a square in 𝐴∩𝐵

Mmore(𝐴)(𝐵)∶ |𝐴| > |𝐵|
Equi(𝐴)(𝐵)∶ |𝐴| = |𝐵|

Three*(𝐴)(𝐵)∶ |𝐴| ≥ 3
Some-not(𝐴)(𝐵)∶ 𝐴− 𝐵 ≠ ∅

Intuitions: natural language quantifiers

• care only about A and B, nothing else

• they “live on” A, A “sets the scene”, A is the domain
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• they care about “logical” (numerical?) relations

We will define three formal properties of relations between sets that are
meant to capture these intuitions.

3 Three constraints on quantifier meanings

3.1 extension

The extension constraint requires that there be no sensitivity to any ele-
ments of 𝐷𝑒 outside of 𝐴 and 𝐵. Technically, this is formulated as the con-
dition that as long as 𝐴 and 𝐵 are both subsets of 𝐷𝑒, it doesn’t matter if we
add further elements to 𝐷𝑒.

The intuition:

• only the relation between two sets characterized by the predicates
matters

• if the set of entities (𝐷𝑒) were larger (or smaller), it wouldn’t matter,
as long as the two sets stay the same

• in effect, as far as natural language quantifiers are concerned, we
might as well have a 𝐷𝑒 that is identical to 𝐴∪𝐵

The constraint rules out the putative quantifiers moxon and evso defined
earlier.

3.2 isomorphy

The intuition:

• the particular identity and nature of the entities in A and B doesn’t
matter

• what matters are “structural” relations between the sets

More formally:

(3) A permutation of a set is a bijective function from the set to the set
again. Each element of the set is mapped to a unique, possibly different
element of the set.
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(4) A quantifier 𝑄 satisfies isomorphy iff
∀ permutations 𝜋 of 𝐷𝑒 ∶ 𝑄(𝐴)(𝐵) = 𝑄(𝜋(𝐴))(𝜋(𝐵))

Which quantifiers from our list are ruled out by isomorphy?

3.3 conservativity

(5) A quantifier Q is conservative iff
∀𝐴,𝐵∶ 𝑄(𝐴)(𝐵) = 𝑄(𝐴)(𝐴∩ 𝐵)

The intuition: quantifiers do not care about what happens outside A.

• The first argument of a quantifier “sets the scene”.

• A quantifier “lives on” its first argument.

A test for conservativity:

• Every box is blue = every box is a box that is blue.

• Some box is blue = some box is a box that is blue.

• No box is blue = no box is a box that is blue.

• Three boxes are blue = three boxes are boxes that are blue.

• Most boxes are blue = most boxes are boxes that are blue.

• Few boxes are blue = few boxes are boxes that are blue.

• Many boxes are blue = many boxes are boxes that are blue.

Now ruled out by conservativity: mmore, equi

4 Number trees

All three constraints together result in quantifier meanings that can be stated
as conditions on just two numbers:

• |𝐴 ∩ 𝐵|: the number of elements in 𝐴∩𝐵 and

• |𝐴 − 𝐵|: the number of elements in 𝐴−𝐵

This has a wonderfully simple visualization.
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0,0
1,0 0,1

2,0 1,1 0,2
3,0 2,1 1,2 0,3

4,0 3,1 2,2 1,3 0,4
5,0 4,1 3,2 2,3 1,4 0,5

Pick a quantifier, any quantifier, and highlight the number pairs that verify
the quantifier.

5 More formal properties of quantifiers

While the three formal properties of natural language quantifiers that we
have discussed so far are arguably universal, there are others that determine
(at least mathematically, but perhaps also linguistically) natural classes of
quantifiers.

Any quantifier Q is

reflexive ∀𝐴∶ 𝑄(𝐴)(𝐴)
irreflexive ∀𝐴∶ ¬𝑄(𝐴)(𝐴)
symmetric ∀𝐴,𝐵∶ 𝑄(𝐴)(𝐵) iff 𝑄(𝐵)(𝐴)
anti-symmetric ∀𝐴,𝐵∶ if 𝑄(𝐴)(𝐵) & 𝑄(𝐵)(𝐴), then 𝐴 = 𝐵
transitive ∀𝐴,𝐵,𝐶∶ if 𝑄(𝐴)(𝐵) & 𝑄(𝐵)(𝐶), then 𝑄(𝐴)(𝐶)
left upward monotone ∀𝐴,𝐵,𝐶∶ if 𝐴 ⊆ 𝐵) & 𝑄(𝐴)(𝐶), then 𝑄(𝐵)(𝐶)
left downward monotone ∀𝐴,𝐵,𝐶∶ if 𝐴 ⊆ 𝐵) & 𝑄(𝐵)(𝐶), then 𝑄(𝐴)(𝐶)
right upward monotone ∀𝐴,𝐵,𝐶∶ if 𝐴 ⊆ 𝐵) & 𝑄(𝐶)(𝐴), then 𝑄(𝐶)(𝐵)
right downward monotone ∀𝐴,𝐵,𝐶∶ if 𝐴 ⊆ 𝐵) & 𝑄(𝐶)(𝐵), then 𝑄(𝐶)(𝐴)

In class: in each case, think of quantifiers that have the property and ones
that don’t.
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