Lecture 11
The Matrix Inverse
Existence and
Projections.

- PSET 2 OUT!

Due Men Oct 5

- Midterm : Wed Oct 7

- Final: Friday Dec 18

Determinants:
Recall: Given a square matrix $A \in \mathbb{R}^{\text {nan }}$ the determinant was defined as the ratio $\frac{\mathrm{val}(A S)}{v a l(S)}$ (for any set $\frac{s}{\underline{s}}$).

Example:

$$
\begin{aligned}
& (2 \times 2) \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \Rightarrow \operatorname{det} A=a d-b c \\
& \text { (product) } \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

$(\operatorname{didg} g$ anal $) \quad \operatorname{det}\left[\begin{array}{ll}A & B \\ 0 & C\end{array}\right]=\operatorname{det}(A) \operatorname{det}(C)$

Computation:

$\operatorname{det} A=(-1)^{\text {\#exalungeses }}\binom{$ product of pivots }{ in REF }
brest. Useful. But not too insightful ...

Today, a few more properties to better understand determinants...

- Row/ column exchanges $\left[\begin{array}{c}\text { and } \\ 1\end{array}\right]$
Recall this example $\left\{\begin{array}{l}\xrightarrow[R]{M} \\ A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \\ (x, y) \mapsto(y, x)\end{array}\right.$
swapping any two rows/columns is "like reflecting on a mirror" \Rightarrow determinant charges sign
$\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\quad \operatorname{det}\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]=$
$\operatorname{det}\left[\begin{array}{lll}0 & 4 & 5 \\ 1 & 2 & 3 \\ 0 & 6 & 7\end{array}\right]=$

Multilinedrity:

$$
\operatorname{det}\left[\begin{array}{c}
\alpha v+\beta w \\
M
\end{array}\right]=\alpha \cdot \operatorname{det}\left[\begin{array}{l}
v \\
M
\end{array}\right]+\beta \operatorname{det}\left[\begin{array}{l}
w \\
M
\end{array}\right]
$$

Linear in each row/column separately

$$
\text { NOT TRUE: } \operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)
$$

In general, $\operatorname{det}(A)$ is a multilinedr polynomial in the coefficients aij

More specifically:
"big Formula"
in the notes

permutation

$$
\theta \text { of }\{1, \ldots, n\}
$$

$n!$ terms

Many applications:

- Computing Volumes (eg.ellipsoids)
* Multivariate Gdussidn distributions
- Multidimensional Integrals
- Combinatorics (e.j. counting

Enough about determinsuts... ((for now n)

BACK TO LEAR MAPS!

Recall this picture:

Q: How to de compose a given vector? (project)
Q: What does this say about (left/right)? inverses

Projections:
Given a subspace $V \subseteq \mathbb{R}^{n}$
How to project a point w ?

$$
v=\operatorname{proj}_{v} w
$$

Defining.
(a) $\quad V \in \mathbb{V}$ properties:
(b) $(\underline{w-v}) \perp \mathbb{V}$

How to compute v ?
Easy, if we have an orthonormal basis (recall 6rdmesconidt)

$$
V=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\} \quad \begin{align*}
\left\|v_{i}\right\| & =1 \\
v_{i}^{\top} v_{j} & =0
\end{align*}
$$

To compute the projection $v=$ projus w

$$
\sqrt[w^{2 k}]{\operatorname{proj}_{V} \omega=\sum_{i=1}^{k} \underbrace{\left(w \cdot v_{i}\right)}_{\in \mathbb{R}} v_{i}}
$$

Noes to check:
(1) $v \in$
\vee
(2) $(\omega-v) \perp V$

Recall
How to write this in matrix form?

$$
\begin{array}{r}
\sum_{i=1}^{k}\left(\widetilde{\omega \cdot v}_{v_{i}}^{\alpha}\right) v_{i}=\sum_{i=1}^{k} v_{i}\left(v_{i}^{\top} \omega\right)=P \omega \\
P=\sum_{i=1}^{k} v_{i} v_{i}^{\top} \quad Q: v_{\text {auk }} P ?
\end{array}
$$

Let's write it a bit nicer... If $\left\{v_{1} \ldots v_{k}\right\}$ is orthonormal, then defining $\quad V=[\underbrace{v_{1} \ldots v_{k}}]\}^{n} \in \mathbb{R}^{n \times k}$
we have

$$
V^{\top} V=I_{k}
$$

Then, the projection matrix is

$$
P=\vee \vee^{\top} \quad\binom{\text { check! }}{P^{2}=P}
$$

Let's verify properties:

$$
v=P_{w}
$$

(1) $v \in \mathbb{V}$ espy! $p_{w} \in C(v)$
(2) $(\omega-v) \perp \mathbb{V} \underbrace{e d s y^{!}}_{\text {arbitrary }} \underset{\substack{u^{\uparrow}}}{u^{\top}(\omega-v)}=\underbrace{u^{\top} P(I-p)} \omega=0$

Great. But, what if I dan't want to compute an orthogonal basis...

Assumption (for now):

$$
\operatorname{rank}(A)=m
$$

"A is foll row rank"

$$
\begin{gathered}
x=x_{1}+x_{2} \\
\left\{\begin{array}{l}
x_{1} \in N(A) \\
x_{2} \in C\left(4^{\top}\right) \\
x_{1} \perp x_{2}
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& x_{2} \in C\left(A^{\top}\right) \Leftrightarrow \quad x_{2}=A^{\top} Z \quad \text { forsome } Z \\
& X_{1}=X-X_{2}=X-A^{\top} Z \quad \in N(A) \\
& \Rightarrow A\left(x-A^{\top} z\right)=0 \quad A x=A A^{\top} z \\
& \Rightarrow \quad z=\left(A A^{\top}\right)^{-1} A x \\
& \Rightarrow\left\{\begin{array}{l}
x_{1}=X-A^{\top}\left(A A^{\top}\right)^{-1} A x \\
X_{2}=A^{\top}\left(A A^{\top}\right)^{-1} A X
\end{array}\right.
\end{aligned}
$$

Nicer in matrix form.

$$
\left\{\begin{array}{lr}
P=A^{T}\left(A A^{T}\right)^{-1} A & {\left[\begin{array}{c}
\text { orthogonol } \\
\text { proj outo } \\
C\left(A^{T}\right)
\end{array}\right]} \\
Q=I-A^{T}\left(A A^{\top}\right)^{-1} A & {\left[\begin{array}{l}
\text { ortlogondl } \\
\text { projection auto } \\
N(A)
\end{array}\right]}
\end{array}\right.
$$

Check!

$$
\begin{aligned}
P^{2} & =P \\
Q^{2} & =Q \\
P+Q & =I \quad \text { (projedtus) } \\
A Q & =0
\end{aligned}
$$

Left / right inverses:

- Right inverse of $A: \underbrace{A^{\top}\left(A A^{\top}\right)^{-1}}_{\text {(nat unique! !) }}$
a Left inverse of $A^{\top}:\left(A A^{\top}\right)^{-1} A$ (not unique!)
"Dual" picture $\quad A \in \mathbb{R}^{m \times n}$ if we assume

$$
\operatorname{rank}(A)=n
$$

"A is foll columnar rank"
$\Rightarrow \underbrace{A^{\top} A}_{n \times n}$ invertible

For instance:

- Left inverse of A : (not unifier)

$$
\left(A^{\top} A\right)^{-1} A^{T}
$$

11
The" Inverse

- If A has both a right and a left inverse, they are equal: $\quad B A=A C=I \Rightarrow B=C$

$$
B=B I=B A C=I C=C
$$

- The inverse, if it exists, is unique

A nensingular (invertible)
rows linearly independent columns linearly independent

$$
\begin{gathered}
\Uparrow \\
\sqrt{\operatorname{det} A \neq 0} \\
\operatorname{rank}(A)=n \\
\Downarrow \\
N(A)=\{0\} \\
\Uparrow \Vdash \\
C(A)=\mathbb{R}^{n}
\end{gathered}
$$

\sqrt{V}
$A x=b$ always has a unique sol.

Computation

Apply to

$$
\begin{array}{ll}
\text { Apply to } \\
{[A} & I
\end{array} \xrightarrow{\text { GiE. }} \overbrace{\left[\begin{array}{ll}
I & B
\end{array}\right]}^{\text {PREF }}
$$

Then,

$$
B=A^{-1}
$$

