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1 Recap

1.1 Reduced Row Echelon Form

Reduced row echelon form (rref) is a special case of the row echelon form (ref).
A matrix is in a reduced row echelon form if and only if it satisfies the following three
conditions.

1. It is in a row echelon form (ref).

2. All the pivots are equal to 1.

3. Every column containing a pivot has zeros elsewhere.

Once we have an ref matrix, we can perform additional steps of row operations to obtain
an rref matrix.

1.2 Matrix Multiplication

How to do matrix multiplication? In other words, if we are given matrices A and B, how
do we determine another matrix C such that AB = C? First of all, we note that the
inner-dimensions of A and B must match. Let’s say A is an m × n matrix, and B is an
n× p matrix. This results in C being an m× p matrix.

There are multiple ways to interpret matrix multiplication.

1. Entry-wise: For each 1 ≤ i ≤ m and 1 ≤ k ≤ p, we have

Cik =
n∑

j=1

AijBjk.

2. Inner product: Cik is the inner product of the ith row in A and the kth column in
B.

3. Column-wise: the ith column of matrix C is a matrix-vector product of A and
the ith column of B. In other words, if B =

[
B1 B2 ... Bp

]
where Bi is the ith

column of B, then
C =

[
AB1 AB2 ... ABp

]
.
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4. Outer product: C is the sum of the product of ith column of A and the ith row of
B – ranging from i = 1 to n. In other words, let’s say

A =
[
A1 A2 ... An

]
and B =


B1

B2

...
Bn


where Ai is the ith column of A and Bj is the jth row of B. Then,

C =
n∑

i=1

AiBi.

Each AiBi is an m× p matrix itself.

1.3 Properties of Matrix Multiplication

1. Associative: A(BC) = (AB)C.

2. Distributive:

• A(B + C) = AB + AC

• (A+B)C = AC +BC

3. Non-commutative (in general): AB ̸= BA.

4. Identity Matrix: In is an n × n square matrix with 1’s on the diagonal and 0’s
elsewhere. For any m× n matrix A, ImA = A; AIn = A.

2 Exercises
1. For each of the following row echelon form (ref) augmented matrix

[
A b

]
, perform

row operations to obtain a reduced row echelon form (rref) one. Use the rref matrix
to solve for general solutions x. You can use any appropriate free variables, if
needed.

(a)
[
A b

]
=

2 5 −2 −1
0 1 2 1
0 0 5 10

 with variables x =

pq
r

 .

(b)
[
A b

]
=

1 −2 2 3 1
0 0 −2 1 5
0 0 0 0 99

 with variables x =


p
q
r
s

 .

(c)
[
A b

]
=

1 −2 2 3 1
0 0 −2 1 5
0 0 0 0 0

 with variables x =


p
q
r
s

 .
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(d)
[
A b

]
=

−2 1 3 0 −3
0 2 −7 2 5
0 0 3 −1 1

 with variables x =


p
q
r
s

 .

2. Let A and B be arbitrary n×n matrices. Indiate whether the following statements
are True or False.

(a) AB = BA.

(b) If AB is a zero matrix (aka every entry is 0), then either A or B is a zero
matrix.

(c) If AB = BA, then either A = In or B = In.

3. Counting Walks
In this problem we will explore directed graphs where each edge points from one
vertex, the “head", to another, the “tail". Now the only allowable walks will be ones
that traverse the edges in the forwards direction. You can think of them as one-way
streets.

(a) Write the adjacency matrix A for the graph. Note the edge from a to b is not
the same as the edge from b to a.

(b) Are there walks of length 2 that start at node a and end at node b? If so, how
many? What about from node a to c?

(c) Are there walks of length 3 that start at node a and end at b? If so, how many?

(d) How do you interpret A+ I4 from an aspect of the graph?
Hint: Adding I4 is equivalent to adding 4 lines to the graph. But which lines
are they?

(e) In class, we established that entries of A2 represent the number of length-2
walks. What do the entries of (A+ I)2 represent? What can we tell if an entry
is zero/non-zero?

(f) Suppose we have a gigantic graph G and we want to check if there exists any
walk of length at most l that goes from node u to v. How do we do that?
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3 Solutions

1. (a)

2 5 −2 −1
0 1 2 1
0 0 5 10

 R3←R3/5
======⇒

2 5 −2 −1
0 1 2 1
0 0 1 2

 R2←R2−2R3========⇒

2 5 −2 −1
0 1 0 −3
0 0 1 2


R1←R1−5R2+2R3===========⇒

2 0 0 18
0 1 0 −3
0 0 1 2

 R1←R1/2
======⇒

1 0 0 9
0 1 0 −3
0 0 1 2

 .

This solves to p = 9, q = −3, r = 2.

(b)

1 −2 2 3 1
0 0 −2 1 5
0 0 0 0 99

 R2←−R1−R2
2========⇒

1 −2 0 4 6
0 0 1 −1/2 −5/2
0 0 0 0 99

 .

The bottom equation gives 0 · p+0 · q+0 · r+0 · s = 99 which is contradiction.
This means that there is no solution.

(c)

1 −2 2 3 1
0 0 −2 1 5
0 0 0 0 0

 R2←−R1−R2
2========⇒

1 −2 0 4 6
0 0 1 −1/2 −5/2
0 0 0 0 0

 .

Pivots are 1 (row 1 column 1) and 1 (row 2 column 3). So the second and
forth columns are non-pivot, which means that we can set q and s to be free
variables. Backsolving then gives r = s−5

2
and p = 2q − 4s+ 6.

(d)

−2 1 3 0 −3
0 2 −7 2 5
0 0 3 −1 1

 R3←R3/3
======⇒

−2 1 3 0 −3
0 2 −7 2 5
0 0 1 −1/3 1/3


R2←R2+7R3

2========⇒

−2 1 3 0 −3
0 1 0 −1/6 11/3
0 0 1 −1/3 1/3

 R1←−R1+R2+3R3
2===========⇒

1 0 0 −7/12 23/6
0 1 0 −1/6 11/3
0 0 1 −1/3 1/3

 .

Pivots are 1 (row 1 column 1), 1 (row 2 column 2), and 1 (row 3 column 3).
So the forth column is non-pivot, which means that we can set s to be a free
variable. Backsolving then gives r = 1

3
+ s

3
, q = 11

3
+ s

6
, and p = 23

6
+ 7s

12
.

2. (a) False. Matrix multiplication is non-commutative.

(b) False. Counterexample: A =

[
1 0
0 0

]
and B =

[
0 0
1 0

]
.

(c) False. Counterexample: A =

[
1 1
1 1

]
and B =

[
0 0
0 0

]
. So we have AB = BA =

zero matrix.

3. (a) The adjacency matrix A must have dimension 4 × 4 as we have 4 nodes. We
can designate the first/second/third/forth rows and columns to be associated
with nodes a/b/c/d respectively.
Each entry is 0 or 1 – indicating whether there is a directed edge pointing from
the associated row to column. For instance, we have A2,1 = 0 since there is no
directed edge from node b to a. On the other hand, we have A4,3 = 1 since
there is a directed edge from node d to c.
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The full adjacency matrix is A =


0 1 0 1
0 0 1 1
0 1 0 0
0 0 1 0



(b) We first compute A2 =


0 0 2 1
0 1 1 0
0 0 1 1
0 1 0 0

.

Since (A2)1,2 = 0, there is no length-2 walks of node a to b. Conversely,
(A2)1,3 = 2 means there are 2 walks of length 2 from node a to c.

(c) We can further compute A3 =


0 2 1 0
0 1 1 1
0 1 1 0
0 0 1 1

.

The number of walks of length 3 from node a to b is (A3)1,2 = 2.

(d) Adding I4 changes entries in A’s main diagonal from 0 to 1. This makes
A1,1 = 1 which means there exists a directed edge that goes out of a and into
a. In other word, we can add a self-loop at node a. The same argument applies
for the remaining three nodes.
Therefore, adding I4 is equivalent to adding 1 self-loop at each of the 4 nodes.

(e) With the same reasoning, we can argue that entries of (A + I)2 represent the
the number of length-2 walks which allow the use of self-loop(s). Using
self-loops mean we increase the number of steps without actually moving. In
other words, (A+ I)2 represent the the number walks of length at most 2.
However, we make a crucial note that such number of walks includes permu-
tation of self-loops which means one walk might be counted more than once.
For instance, going from a to b can be done by either 1) a → a → b, or 2)
a → b → b.
For this reason, we cannot exactly count the number of walks of length at most
l by (A+ I)l. But we can pinpoint whether or not there exists a walk of length
at most l by comparing entries of (A + I)l to 0. If an entry is 0, there is no
walk. If it is non-zero, there must exists at least one walk.

(f) The answer was already given above but here is a summary.

i. Build an adjacency matrix A.
ii. Add to A by an identity matrix I with proper size. So now we have A+ I.
iii. Compute (A+ I)l.
iv. Find an entry of (A+ I)l that corresponds to row u and column v. If it is

zero, there is no walk of length at most l. Otherwise if it is non-zero, at
least 1 walk exists.
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