Linear Algebra and Optimization

Recitation 5

Thursday September 22, 2022

1 Recap

1.1 Vector Space

A vector space V is a set that is closed under vector addition and scalar multiplication. These two operations must satisfy a set of axioms ${ }^{1}$. A basic example is the real vector space \mathbb{R}^{n}, where

- every vector is represented by a list of n real numbers
- scalars are real numbers
- addition is defined element-wise
- scalar multiplication is multiplication on each term separately

For a general vector space, the scalars are elements of a field F (e.g., the complex numbers), in which case V is called a vector space over F. If $W \subseteq V$ is also a vector space with respect to the operations in V, then W is called a subspace of V.

Key Fact. If S_{1} and S_{2} both are vector space, then $S=S_{1} \cap S_{2}$ is a subspace.

1.2 Column Space

The column space of an $m \times n$ matrix A, denoted $C(A)$, is the set of all linear combinations of columns of A, or the span of A.

- $C(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\}$.
- $A x=b$ has a solution iff $b \in C(A)$.
- If $m=n$, then A is invertible iff $C(A)=\mathbb{R}^{n}$.

1.3 Null Space

The null space of A, denoted $N(A)$, is the set of vectors x such that $A x=0$.

- $N(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$.
- If B is a square and invertible matrix, then $N(A)=N(B A)$.
- If A is $n \times n$, then $C(A)=\mathbb{R}^{n} \Longleftrightarrow N(A)=\{0\} \Longleftrightarrow A$ is invertible.

[^0]
2 Exercises

1. Is V a real vector space?
(a) V is the set of all n-dimensional vectors with positive entries, with usual vector operations.
(b) V is the set of all n-dimensional vectors whose elements sum to 0 , with usual vector operations.
(c) V is the set of all $n \times n$ diagonal matrices, with usual matrix operations.
(d) V is the set of all polynomials with degree up to d, with usual polynomial operations.
(e) V is the set of all constant functions, i.e. $f(x)=c$ for some constant $c \in \mathbb{R}$, with usual real number operations.
(f) V is the set of all single-variable polynomial whose value at 0 is 1 , i.e. polynomial P with $P(0)=1$, with usual polynomial operations.
2. True or False
(a) Define the row space of matrix A as the span of the row vectors of A . If A is a square matrix, then the row space of A equals the column space.
(b) The row space of A is equal to the column space of A^{T}.
(c) If the row space of A equals the column space, then $A^{T}=A$.
(d) A 4 by 4 permutation matrix has column space equal to \mathbb{R}^{4}.
(e) Let $v \in N(A)$. If x is a solution to equation $A \mathrm{x}=b$, so is $x+v$.
3. A is a 3 by 3 matrix.
(a) $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ is in the null space of some matrix A . What is $A(2 x)$?
(b) $y=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]^{T}$ is also in the null space of A. What is $A(2 x+y)$?
(c) $A z=\left[\begin{array}{lll}1 & 2 & 5\end{array}\right]^{T}$. What is $A(2 x+y+z)$
4. $A x=b, \mathrm{~A}$ is a 3 by 3 matrix, x and b are 3 -dimensional vectors.
(a) When $b=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ we have infinite solutions. Is b in the column space of A?
(b) Assume (a) is still true. Is A invertible?
(c) Now assume A is invertible, do we have a solution when $b=\mathbf{0}$? How many?
5.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

(a) Find a nonzero vector in the null space of A, if any exists.
(b) Is A invertible?
(c) Find a vector in the column space of A that is not equal to either column.
(d) Find a vector in the row space of A that is not equal to either row.

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Vector spaceDefinition,ormoreformallyathttps : //encyclopediaofmath.org/wiki/V

