18.C06 - Linear Algebra and Optimization

Recitation 6

Tuesday September 27, 2022

1 Recap

1.1 Linear Independence

A collection of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent (LI) if any linear combination that results in a zero vector must be trivial. In other words,

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}=\mathbf{0} \quad \Longrightarrow \quad \lambda_{i}=0 \text { for all } i=1, \ldots, n
$$

We also say that a collection of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent if it is not LI. In other words, there exists scalar multipliers $\lambda_{1}, \ldots, \lambda_{n}$ where at least one of them is non-zero, such that

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}=\mathbf{0}
$$

Key Fact: There can be at most n linearly independent vectors in \mathbb{R}^{n}.

1.2 Generators

Let \mathcal{S} be a subspace. We say that $\left\{v_{1}, \ldots, v_{k}\right\} \subset \mathcal{S}$ are generators of \mathcal{S} if every vector $v \in \mathcal{S}$ is a linear combination of $\left\{v_{1}, \ldots, v_{k}\right\}$. In other words, $v=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}$ for some scalars $\lambda_{1}, \ldots, \lambda_{k}$.
We can also write $\mathcal{S}=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ or $\mathcal{S}=\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$

1.3 Two Descriptions of Subspaces

Two useful descriptions of subspaces include:

1. Equations. We can describe a subspace \mathcal{S} as a set of vectors satisfying certain linear relationships between their entries.
2. Generators. We can describe a subspace \mathcal{S} as the span of a set of vectors.

For instance, the subspace \mathcal{S} of 3 -dimensional vectors whose third entry is the sum of the first and second entries can be expressed as either:

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]: v_{1}+v_{2}-v_{3}=0\right\} \quad \text { or } \quad \mathcal{S}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Depending on the task, one description may be more convenient than the other. We can use Gaussian elimination to go from one description to the other.

1.4 Basis

We say $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of a subspace \mathcal{S} if they generate \mathcal{S} and are LI.
In general, a subspace has infinitely many different bases. However, they all must have the same cardinality (i.e., the number of vectors in the basis) - this is called the dimension of the subspace.

2 Exercises

1. Note that the notions of linear independence and linear dependence are not quite symmetric. In particular:
(a) Show that if $\left\{v_{1}, \ldots, v_{k}\right\}$ are LI, then any subset of the vectors is also LI.
(b) Does a similar statement hold for linear dependence? Prove this, or give a counterexample.
2. Identify if the following sets of vectors are linearly independent or not.
(a) $A=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}5 \\ 7\end{array}\right]\right\}$.
(b) $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
(c) $C=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]\right\}$
(d) $D=\left\{\left[\begin{array}{c}0 \\ -1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{c}3 \\ -2 \\ 11 \\ -6\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{c}9 \\ -12 \\ 6 \\ 2\end{array}\right],\left[\begin{array}{c}1000 \\ 100 \\ 10 \\ 1\end{array}\right]\right\}$.
3. Let $A=\left[\begin{array}{cccc}-3 & 1 & 0 & 5 \\ -2 & 2 & -2 & 1 \\ 1 & -3 & 4 & 3\end{array}\right]$. Answer the following questions.
(a) Are the columns of A linearly independent?
(b) Find a set of generators for $N(A)$, the nullspace of A.
(c) Find a basis of the column space $C(A)$, aka the span of columns.

You can do it either by inspection, or algorithmically, using Gauss-Jordan elimination.
4. Consider the two subspaces

$$
\begin{aligned}
& U=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right]\right\} \\
& \left.V=\left\{\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]: v_{1}+2 v_{2}-4 v_{3}=0\right\}
\end{aligned}
$$

(a) Write a description of U as a set of vectors that satisfy linear relationships.
(b) Write a description of V as the span of a set of generators.
(c) Compute the dimension and a basis of U and V.
(d) Compute the dimension and a basis of $U \cap V$.

