
18.C06 - Linear Algebra and Optimization
MIT Fall 2022

Recitation 6
Tuesday September 27, 2022

1 Recap

1.1 Linear Independence

A collection of vectors {v1, . . . , vn} is linearly independent (LI) if any linear combination
that results in a zero vector must be trivial. In other words,

n∑
i=1

λivi = 0 =⇒ λi = 0 for all i = 1, . . . , n.

We also say that a collection of vectors {v1, ..., vn} is linearly dependent if it is not LI.
In other words, there exists scalar multipliers λ1, . . . , λn where at least one of them is
non-zero, such that

n∑
i=1

λivi = 0.

Key Fact: There can be at most n linearly independent vectors in Rn.

1.2 Generators

Let S be a subspace. We say that {v1, . . . , vk} ⊂ S are generators of S if every vector
v ∈ S is a linear combination of {v1, . . . , vk}. In other words, v = λ1v1 + · · · + λkvk for
some scalars λ1, . . . , λk.
We can also write S = ⟨v1, . . . , vk⟩ or S = Span(v1, . . . , vk)

1.3 Two Descriptions of Subspaces

Two useful descriptions of subspaces include:

1. Equations. We can describe a subspace S as a set of vectors satisfying certain linear
relationships between their entries.

2. Generators. We can describe a subspace S as the span of a set of vectors.

For instance, the subspace S of 3-dimensional vectors whose third entry is the sum of the
first and second entries can be expressed as either:

S =


v1v2
v3

 : v1 + v2 − v3 = 0

 or S = Span


10
1

 ,

01
1


Depending on the task, one description may be more convenient than the other. We can
use Gaussian elimination to go from one description to the other.
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1.4 Basis

We say {v1, . . . , vk} is a basis of a subspace S if they generate S and are LI.
In general, a subspace has infinitely many different bases. However, they all must have
the same cardinality (i.e., the number of vectors in the basis) – this is called the dimension
of the subspace.

2 Exercises
1. Note that the notions of linear independence and linear dependence are not quite

symmetric. In particular:

(a) Show that if {v1, . . . , vk} are LI, then any subset of the vectors is also LI.

(b) Does a similar statement hold for linear dependence? Prove this, or give a
counterexample.

2. Identify if the following sets of vectors are linearly independent or not.

(a) A =

{[
2
3

]
,

[
5
7

]}
.

(b) B =


11
1

 ,

11
0

 ,

10
0

.

(c) C =


12
3

 ,

45
6

 ,

78
9


(d) D =




0
−1
3
5

 ,


3
−2
11
−6

 ,


−4
0
0
4

 ,


9

−12
6
2

 ,


1000
100
10
1


.

3. Let A =

−3 1 0 5
−2 2 −2 1
1 −3 4 3

. Answer the following questions.

(a) Are the columns of A linearly independent?

(b) Find a set of generators for N(A), the nullspace of A.

(c) Find a basis of the column space C(A), aka the span of columns.

You can do it either by inspection, or algorithmically, using Gauss-Jordan elimina-
tion.

4. Consider the two subspaces

2
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U = Span



1
1
1
0

 ,


0
1
0
1

 ,


1
3
1
2




V =



v1
v2
v3
v4

 : v1 + 2v2 − 4v3 = 0


(a) Write a description of U as a set of vectors that satisfy linear relationships.

(b) Write a description of V as the span of a set of generators.

(c) Compute the dimension and a basis of U and V .

(d) Compute the dimension and a basis of U ∩ V .

3
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3 Solutions
1. (a) True. Suppose {v1, · · · , vk} are LI. Consider {v1, · · · , vk−1}. Suppose there are

coefficients α′1, · · ·α′k−1 with
∑k−1

i=1 α
′
ivi = 0. Now choose αi = α′i for all i from

1 to k−1 and set αk = 0. For this choice, we have
∑k

i=1 αivi = 0 and since the
vi’s are LI, by definition, we must have that all the αi’s are zero which means
all the α′i’s are zero too. This implies {v1, · · · , vk−1} are LI.

(b) False. Consider, for example [
1
0

]
,

[
0
1

]
and

[
1
1

]
It is easy to see that the vectors are LD. And yet the first two vectors are LI.

2. (a) Yes. Let’s suppose there is a linear combination of the two vectors that results

in 0. This means
[
0
0

]
= λ1

[
2
3

]
+λ2

[
5
7

]
=

[
2λ1 + 5λ2

3λ1 + 7λ2

]
. Therefore 2λ1+5λ2 = 0

and 3λ1 + 7λ2 = 0. We can then solve

λ1 = 5 · (3λ1 + 7λ2)− 7 · (2λ1 + 5λ2) = 5 · 0− 7 · 0 = 0

λ2 = 3 · (2λ1 + 5λ2)− 2 · (3λ1 + 7λ2) = 3 · 0− 2 · 0 = 0.

(b) Yes. Let’s suppose there is a linear combination of the three vectors that

results in 0. This means

00
0

 = λ1

11
1

+ λ2

11
0

+ λ3

10
0

 =

λ1 + λ2 + λ3

λ1 + λ2

λ1

.

Therefore λ1 + λ2 + λ3 = λ1 + λ2 = λ1 = 0 which yields λ1 = λ2 = λ3 = 0.
(c) No. There is a non-trivial linear combination that results in 0:

1 ·

12
3

− 2 ·

45
6

+ 1 ·

78
9

 =

00
0

 .

(d) No. There are 5 vectors in R4 which means they cannot be linearly independent.

3. (a) No, the columns of the matrix are not linearly independent. The third and
fourth columns fall into the span of the first two columns. We perform row
operations.

A =

−3 1 0 5
−2 2 −2 1
1 −3 4 3

 swap R1&R3
========⇒

 1 −3 4 3
−2 2 −2 1
−3 1 0 5


R2←R2+2R1
R3←R3+3R1========⇒

1 −3 4 3
0 −4 6 7
0 −8 12 14

 R3←R3−2R2========⇒

1 −3 4 3
0 −4 6 7
0 0 0 0


R2←−R2/4
=======⇒

1 −3 4 3
0 1 −3/2 −7/4
0 0 0 0

 R1←R1+3R2========⇒

1 0 −1/2 −9/4
0 1 −3/2 −7/4
0 0 0 0

 = R

Pivots of the rref matrix R is indicated in red. This tells us that the pivot
columns are the first and the second column – which together will form a basis
of C(A). This is also the solution to part (c)
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(b) We wish to solve for x the following matrix vector equation

1 0 −1/2 −9/4
0 1 −3/2 −7/4
0 0 0 0

 ·


x1

x2

x3

x4

 = 0

We see that all solutions are of the form

(
1

2
x3 +

9

4
x4,

3

2
x3 +

7

4
x4, x3, x4) = x3 · (

1

2
,
3

2
, 1, 0) + x4(

9

4
,
7

4
, 0, 1)

Which implies {(1
2
, 3
2
, 1, 0), (9

4
, 7
4
, 0, 1)} is the basis of the nullspace of A.

(c) Algorithmically. At first, B = ∅. Since B was empty, the first column

−3
−2
1


is not in its span – so we add the first column to B. The second column is not
a multiple of the first column so we add it to B as well. The third column,
however, is in Span(B) since 0

−2
4

 = (−1/2) ·

−3
−2
1

+ (−3/2) ·

 1
2
−3


which means it is not added to B. The forth column is neither added to B
since 51

3

 = (−9/4) ·

−3
−2
1

+ (−7/4) ·

 1
2
−3

 .

This concludes that the basis of C(A) consists of the first two columns of A
which are 

−3
−2
1

 ,

 1
2
−3

 .

On the other hand, we can do it by performing row operations.

A =

−3 1 0 5
−2 2 −2 1
1 −3 4 3

 swap R1&R3
========⇒

 1 −3 4 3
−2 2 −2 1
−3 1 0 5


R2←R2+2R1
R3←R3+3R1========⇒

1 −3 4 3
0 −4 6 7
0 −8 12 14

 R3←R3−2R2========⇒

1 −3 4 3
0 −4 6 7
0 0 0 0


R2←−R2/4
=======⇒

1 −3 4 3
0 1 −3/2 −7/4
0 0 0 0

 R1←R1+3R2========⇒

1 0 −1/2 −9/4
0 1 −3/2 −7/4
0 0 0 0

 = R

Pivots of the rref matrix R is indicated in red. This tells us that the pivot
columns are the first and the second column – which together will form a basis
of C(A).
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4. (a) We first notice that the 
1
3
1
2

 =


1
1
1
0

+ 2


0
1
0
1


which means we can remove the third vector off the collection without altering

the span. Thus, U is a set of vectors in forms of x


1
1
1
0

+ y


0
1
0
1

 =


x

x+ y
x
y

. In

other words,

U =



u1

u2

u3

u4

 : u1 = u3, u1 + u4 = u2

 .

(b) With v1 + 2v2 − 4v3 = 0, we can write
v1
v2
v3
v4

 =


−2v2 + 4v3

v2
v3
v4

 = v2


−2
1
0
0

+ v3


4
0
1
0

+ v4


0
0
0
1


which tells us that

V = Span



−2
1
0
0

 ,


4
0
1
0

 ,


0
0
0
1


 .

(c) In part a, we eliminated the third vector and the two remaining vectors are
linearly independent. This means U ’s dimension is 2, and thus U ’s basis is


1
1
1
0

 ,


0
1
0
1


 .

In part b, we found a generator of V with 3 vectors. Moreover, they are linearly
independent. This tells us that V ’s dimension is 3, and thus V ’s basis is


−2
1
0
0

 ,


4
0
1
0

 ,


0
0
0
1


 .

(d) Any vector t =


t1
t2
t3
t4

 ∈ U ∩ V must satisfy the equations describing of both U

and V . This means t1 = t3, t1 + t4 = t2, and t1 +2t2 − 4t3 = 0. If we fix t1, we

6
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will have t3 = t1, t2 = (4t3− t1)/2 = 3t1/2, and t4 = t2− t1 = 3t1/2− t1 = t1/2.
Therefore,

t =


t1
t2
t3
t4

 =


t1

3t1/2
t1
t1/2

 = (t1/2) ·


2
3
2
1



which implies U ∩ V = Span



2
3
2
1


. Moreover, this tells us that U ∩ V has

dimension 1 with a basis



2
3
2
1


.
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