Linear Algebra and Optimization

Recitation 5

Thursday September 22, 2022

1 Recap

1.1 Vector Space

A vector space V is a set that is closed under vector addition and scalar multiplication. These two operations must satisfy a set of axioms ${ }^{1}$. A basic example is the real vector space \mathbb{R}^{n}, where

- every vector is represented by a list of n real numbers
- scalars are real numbers
- addition is defined element-wise
- scalar multiplication is multiplication on each term separately

For a general vector space, the scalars are elements of a field F (e.g., the complex numbers), in which case V is called a vector space over F. If $W \subseteq V$ is also a vector space with respect to the operations in V, then W is called a subspace of V.

Key Fact. If S_{1} and S_{2} both are vector space, then $S=S_{1} \cap S_{2}$ is a subspace.

1.2 Column Space

The column space of an $m \times n$ matrix A, denoted $C(A)$, is the set of all linear combinations of columns of A, or the span of A.

- $C(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\}$.
- $A x=b$ has a solution iff $b \in C(A)$.
- If $m=n$, then A is invertible iff $C(A)=\mathbb{R}^{n}$.

1.3 Null Space

The null space of A, denoted $N(A)$, is the set of vectors x such that $A x=0$.

- $N(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$.
- If B is a square and invertible matrix, then $N(A)=N(B A)$.
- If A is $n \times n$, then $C(A)=\mathbb{R}^{n} \Longleftrightarrow N(A)=\{0\} \Longleftrightarrow A$ is invertible.

[^0]
2 Exercises

1. Is V a real vector space?
(a) V is the set of all n-dimensional vectors with positive entries, with usual vector operations.
(b) V is the set of all n-dimensional vectors whose elements sum to 0 , with usual vector operations.
(c) V is the set of all $n \times n$ diagonal matrices, with usual matrix operations.
(d) V is the set of all polynomials with degree up to d, with usual polynomial operations.
(e) V is the set of all constant functions, i.e. $f(x)=c$ for some constant $c \in \mathbb{R}$, with usual real number operations.
(f) V is the set of all single-variable polynomial whose value at 0 is 1 , i.e. polynomial P with $P(0)=1$, with usual polynomial operations.
2. True or False
(a) Define the row space of matrix A as the span of the row vectors of A . If A is a square matrix, then the row space of A equals the column space.
(b) The row space of A is equal to the column space of A^{T}.
(c) If the row space of A equals the column space, then $A^{T}=A$.
(d) A 4 by 4 permutation matrix has column space equal to \mathbb{R}^{4}.
(e) Let $v \in N(A)$. If x is a solution to equation $A \mathrm{x}=b$, so is $x+v$.
3. A is a 3 by 3 matrix.
(a) $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ is in the null space of some matrix A . What is $A(2 x)$?
(b) $y=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]^{T}$ is also in the null space of A. What is $A(2 x+y)$?
(c) $A z=\left[\begin{array}{lll}1 & 2 & 5\end{array}\right]^{T}$. What is $A(2 x+y+z)$
4. $A x=b, \mathrm{~A}$ is a 3 by 3 matrix, x and b are 3 -dimensional vectors.
(a) When $b=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ we have infinite solutions. Is b in the column space of A?
(b) Assume (a) is still true. Is A invertible?
(c) Now assume A is invertible, do we have a solution when $b=\mathbf{0}$? How many?
5.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

(a) Find a nonzero vector in the null space of A, if any exists.
(b) Is A invertible?
(c) Find a vector in the column space of A that is not equal to either column.
(d) Find a vector in the row space of A that is not equal to either row.

3 Solutions

1. (a) No. Take $v=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{T}$. All entries of v is positive so $v \in V$. However, $(-1) \cdot v=\left[\begin{array}{llll}-1 & -1 & \ldots & -1\end{array}\right]^{T}$ has negative entries; thus is not in V.
(b) Yes. If v has elements sum to 0 , then λv has elements sum to $\lambda \cdot 0=0$. If we have another vector u whose elements also sum to 0 , then $u+v$ has elements sum to u 's sum $+v$'s sum $=0+0=0$.
(c) Yes. The sum of two diagonal matrices is a diagonal matrix. The scalar multiple of a diagonal matrix is also a diagonal matrix.
(d) Yes. The sum of two up-to-degree- d polynomials also has degree at most d. The scalar multiple does not change the degree - so it is still at most d.
(e) Yes. For any two constant functions $f(x)=c_{1}, g(x)=c_{2}$, and any real numbers $a, b, a f(x)=a c_{1}$ is a constant function; $f(x)+g(x)=c_{1}+c_{2}$ is a constant function.
(f) No. If we have a polynomial P which $P(0)=1$, then $Q=5 P$ has $Q(0)=$ $5 \cdot P(0)=5(1)=5 \neq 1$, which violates scalar multiplicity condition. Moreover, if we have two polynomials P, Q with $P(0)=Q(0)=1$, then $(P+Q)(0)=$ $P(0)+Q(0)=1+1=2 \neq 1$ which violates the vector addition condition.
2. (a) False. The 2 by 2 matrix A in question 5 is a counter example.
(b) True. The set of rows of A is identical to the set of columns of A^{T}.
(c) False. Counter example: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Both the column and row space are equal to \mathbb{R}^{2}, but $A \neq A^{T}$.
(d) True. Any permutation matrix is invertible which implies that its span is \mathbb{R}^{4}.
(e) $v \in N(A)$ means $A v=\mathbf{0}$. As x is a solution to $A \mathbf{x}=b$, we have $A x=b$. This gives us $A(x+v)=A x+A v=b+\mathbf{0}=b$ which means $x+v$ is also an answer.
3. (a) $x \in A$ means $A x=\mathbf{0}$. This gives $A(2 x)=2(A x)=2(\mathbf{0})=\mathbf{0}$.
(b) We also have $A y=\mathbf{0}$. This gives $A(2 x+y)=2(A x)+A y=2(\mathbf{0})+\mathbf{0}=\mathbf{0}$.
(c) $A(2 x+y+z)=A(2 x+y)+A z=\mathbf{0}+A z=A z=[125]^{T}$
4. (a) Take one solution x that gives $A x=b$. This means $b \in C(A)$ as we can right multiply A by some vector (x in this case) to get b.
(b) A is not invertible. Take two distinct answers u, v of $A x=b$. This gives $A u=A v=b$ so $A(u-v)=\mathbf{0}$ which implies $u-v \in N(A)$. In addition, $u-v \neq \mathbf{0}$ so $N(A)$ is non-trivial - this means A is not invertible.
(c) If A is invertible, we can solve $A x=\mathbf{0}$ by left-multiplying both sides by A^{-1} which gives $x=\mathbf{0}$.
5. (a) $\left[\begin{array}{c}2 \\ -1\end{array}\right]$. We notice that at every row, the second column is twice of the first column. This means We see that $A\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(b) Per part a), we see that $A\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ which means $\left[\begin{array}{c}2 \\ -1\end{array}\right] \in N(A)$. This tells us that $N(A)$ is non-trivial; thus A is not invertible.
(c) Any vector in A 's column space can be expressed as $x \cdot\left[\begin{array}{l}1 \\ 3\end{array}\right]+y \cdot\left[\begin{array}{l}2 \\ 6\end{array}\right]=(x+$ $2 y) \cdot\left[\begin{array}{l}1 \\ 3\end{array}\right]$. In other words, any scalar multiple of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is in A 's column space.
(d) Any vector in A 's row space can be expressed as $x \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]+y \cdot\left[\begin{array}{l}3 \\ 6\end{array}\right]=(x+3 y) \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]$. In other words, any scalar multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is in A 's row space.

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Vector saceDefinition,ormoreformallyathttps : //encyclopediaofmath.org/wiki/V

