Recitation 8

Tuesday October 5, 2021

1 Recap

1.1 Orthogonality of Vectors

Let u and v be vectors of the same dimension. We say u and v are orthogonal iff their angle is 90°, or equivalently $u \cdot v = u^{\top}v = v^{\top}u = 0$.

In addition, we say that a set of vectors $\{v_1, v_2, ..., v_n\}$ is *pairwise orthogonal* iff v_i and v_j are orthogonal for any $i \neq j \in \{1, 2, ..., n\}$. A set of pairwise orthogonal (nonzero) vectors is always linearly independent.

A set of vectors $\{u_1, u_2, ..., u_n\}$ is *pairwise orthonormal* if it is pairwise orthogonal, and each u_i is a unit vector.

1.2 Orthogonality of Subspaces

Two subspaces U and V of \mathbb{R}^n are *orthogonal* if $u \cdot v = 0$ for all $u \in U$ and $v \in V$. In addition, it follows that dim $U + \dim V \leq n$.

1.3 Orthogonal Complement of Subspaces

Given a subspace V, its orthogonal complement V^{\perp} is defined as:

$$V^{\perp} = \{ w : w \cdot v = 0 \text{ for any } v \in V \}.$$

Intuitively, V^{\perp} is the largest subspace that is orthogonal to V. Some important properties include

- 1. dim $V + \dim V^{\perp} = n$
- 2. $(V^{\perp})^{\perp} = V$

1.4 Decomposition

Theorem 1 Let $V, W \subseteq \mathbb{R}^n$ are orthogonal complements – that is $V = W^{\perp}$ and $W = V^{\perp}$. Then every vector $x \in \mathbb{R}^n$ has a unique decomposition x = v + w where $v \in V$ and $w \in W$. In addition, it follows that $v \cdot w = 0$.

1.5 Some Familiar Orthogonal Complements

We have already seen and worked on orthogonal complements, but we just didn't realize that they are!

Theorem 2 N(A) and $C(A^{\top})$ are orthogonal complements in \mathbb{R}^n . Similarly, C(A) and $N(A^{\top})$ are orthogonal complements in \mathbb{R}^m .

In relation to Theorem 1, we can plug in V = N(A) and $W = C(A^T)$ and derive the following result.

Theorem 3 Suppose that we are given a matrix $A \in \mathbb{R}^{m \times n}$. Any vector $v \in \mathbb{R}^n$ can be written uniquely as $v = v_1 + v_2$ where $v_1 \in N(A)$ and $v_2 \in C(A^{\top})$.

1.6 Relationship to Projection

Suppose that we want to project a vector v onto a *unit* vector w, then the projection is

$$\operatorname{proj}_{w} v = (v \cdot w) w.$$

We note that $v \cdot w$ is a scalar – which ensures that the projection is on w. In general cases where w is not necessarily a unit vector, we have

$$\operatorname{proj}_{w} v = \left(\frac{v \cdot w}{\|w\|^2}\right) w.$$

1.7 Gram-Schmidt

Let's suppose that we a set $\mathcal{V} = \{v_1, ..., v_k\}$ of linearly independent vectors. Our goal is to transform it into a set of orthonormal vectors \mathcal{W} .

Algorithm 1 GRAM-SCHMIDT Input: a set $\mathcal{V} = \{v_1, ..., v_k\}$ of linearly independent vectors

```
w_{1} := \operatorname{normalize}(v_{1})
w_{2} := \operatorname{normalize}(v_{2} - \operatorname{proj}_{w_{1}}v_{2})
w_{3} := \operatorname{normalize}(v_{3} - \operatorname{proj}_{w_{1}}v_{3} - \operatorname{proj}_{w_{2}}v_{3})
...
w_{k} := \operatorname{normalize}\left(v_{k} - \sum_{i=1}^{k-1} \operatorname{proj}_{w_{i}}v_{k}\right)
Output \mathcal{W} = \{w_{1}, ..., w_{k}\}
```

One crucial property is that \mathcal{V} and \mathcal{W} span the same subspace. In other words, if we are given a subspace \mathcal{S} which is the span of basis \mathcal{V} , we can use Gram-Schmidt to derive its orthonormal basis \mathcal{W} – meaning that \mathcal{W} is a basis of \mathcal{S} and is orthonormal.

and

2 Exercises

1. Among the following six 3-dimensional vectors, which pairs are orthogonal?

$$a = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, b = \begin{bmatrix} 2\\-6\\-3 \end{bmatrix}, c = \begin{bmatrix} 3\\-2\\-1 \end{bmatrix}, d = \begin{bmatrix} 2\\1\\4 \end{bmatrix}, e = \begin{bmatrix} -3\\-2\\2 \end{bmatrix}, f = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$
2. Denote a subspace $V = \left\{ \begin{bmatrix} v_1\\v_2\\v_3 \end{bmatrix} : 2v_1 + 3v_3 + 5v_5 = 0 \right\}$. Find V^{\perp} .

3. Suppose that we have a subspace S with an orthongonal basis $\{v_1, ..., v_k\}$. By the definition of basis, any vector $v \in S$ can be expressed as

$$v = \sum_{i=1}^{k} \alpha_i v_i = \alpha_1 v_1 + \dots \alpha_k v_k$$

for some constants $\alpha_1, ..., \alpha_k$. Determine each α_j in terms of $v_1, ..., v_k$ and v. Will the same derivation work if it not for the orthogonality of $\{v_1, ..., v_k\}$?

- 4. Suppose that a set of vectors $\{v_1, ..., v_n\}$ generates a subspace S. In other words, $S = \text{Span}\{v_1, ..., v_n\}$. Describe a procedure to derive an orthonormal basis of S.
- 5. In this problem, we will explore the effect of ordering on the Gram-Schmidt algorithm. Denote

$$u_{1} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \ u_{2} = \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \ u_{3} = \begin{bmatrix} 4\\0\\-1 \end{bmatrix}$$
$$v_{1} = \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \ v_{2} = \begin{bmatrix} 4\\0\\-1 \end{bmatrix}, \ v_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

for which each $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$ is a set of three linearly independent vectors. Moreover, the two sets $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$ are identical, but are in different orders. This means both sets are bases of the same subspace S.

- (a) Perform Gram-Schmidt on $\{u_1, u_2, u_3\}$ to derive an orthonormal basis of \mathcal{S} .
- (b) Perform Gram-Schmidt on $\{v_1, v_2, v_3\}$ to derive an orthonormal basis of \mathcal{S} .
- (c) Each of the answer to the previous parts is an orthonormal basis of S. Are they identical? What can we conclude about the effect of order to the Gram-Schmidt?