Recitation 9

Thursday October 6, 2022

1 Recap

1.1 Determinant

1.1.1 Algebraic View

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is defined as

$$\det A = \sum_{\sigma} \left((-1)^{\operatorname{sign}(\sigma)} \cdot \prod_{i=1}^{n} A_{i,\sigma(i)} \right)$$
(1)

where σ iterates over any permutation of $\{1, ..., n\}$ and $sign(\sigma)$ is the parity of σ . An equivalent definition (more computationally convenient) for the determinant is

 $\det A = (\pm 1) \cdot (\text{product of pivots in ref}(A)),$

where the sign depends on the parity of the number of row exchanges in the REF.

1.1.2 Geometric View

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is the scaling factor between vol(S) and $vol(\phi_A(S))$ taking into account handedness; where $\phi_A(S) = \{Ax : x \in S\}$ is the region which ϕ_A maps S into.

1.1.3 Properties

Let A, B be $n \times n$ matrices. Let C be another square matrix and D be a matrix with proper dimension.

- 1. Swapping two rows (or two columns) of A negates the determinant.
- 2. Adding a row to another row *does not* change the determinant.
- 3. Adding a column to another column *does not* change the determinant.
- 4. Multiplying a row/column by a scalar c changes the determinant by a factor of c.

5. det
$$A^T = \det A$$

6. det $AB = \det A \cdot \det B$

7.
$$\det(A+B) \neq \det A + \det B$$

8. det
$$\begin{pmatrix} \begin{bmatrix} A & D \\ 0 & C \end{bmatrix} = \det A \cdot \det C.$$

1.2 Square Matrices Revisited

Let A be an $n \times n$ square matrix. Then, the following statements are equivalent.

- 1. A is invertible, i.e. A^{-1} exists
- 2. A has both a left inverse and a right inverse
- 3. The columns of A are linearly independent
- 4. The rows of A are linearly independent
- 5. Ax = b is uniquely solvable for every $b \in \mathbb{R}^n$
- 6. $N(A) = \{\mathbf{0}\}$
- 7. $C(A) = \mathbb{R}^n$
- 8. $\operatorname{Rank}(A) = n$
- 9. det $A \neq 0$

1.3 Projection

Suppose that we want to find the orthogonal projection of a given vector w onto a k-dimensional subspace \mathcal{V} . In other words, we want to find a vector $v = \operatorname{proj}_{\mathcal{V}} w$ for which 1) $v \in \mathcal{V}$, and 2) $(w - v) \perp u$ for all $u \in \mathcal{V}$.

Suppose that $\{v_1, \ldots, v_k\}$ is an orthonormal basis of \mathcal{V} . Then,

$$v = \operatorname{proj}_{\mathcal{V}} w = \sum_{i=1}^{k} (w \cdot v_i) v_i = \sum_{i=1}^{k} v_i \cdot (v_i \cdot w) = \sum_{i=1}^{k} v_i \cdot (v_i^{\top} w)$$
$$= \sum_{i=1}^{k} (v_i v_i^{\top}) w = \left(\sum_{i=1}^{k} v_i v_i^{\top}\right) w = Pw$$

when $P = \sum_{i=1}^{k} v_i v_i^{\top}$ is an $n \times n$ matrix. The matrix P is the orthogonal projection matrix onto the subspace \mathcal{V} , and can also be written as

$$P = VV^{\top}$$
, where $V = \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix} \in \mathbb{R}^{n \times k}$.

Note that P is symmetric (i.e. $P^{\top} = P$) and $\operatorname{rank}(P) = \operatorname{rank}(V) = k$. Another interesting property of V is that $V^{\top}V = I_k$. Indeed, this is a necessary and sufficient condition for $\{v_1, \ldots, v_k\}$ to be orthonormal.

2 Exercises

1. Use determinant properties to show that if A and B are square matrices such that AB is invertible, then both A and B are invertible.

2. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & \alpha & -5 \\ -1 & -1 & 2 \end{bmatrix}$$
. What values of α makes A not invertible?

3. Consider the two subspaces U and W as follows.

The two subspaces are orthogonal complements (check!). It can be easily seen that the given set of generators bases are actually bases (why?).

- (a) Find an orthonormal basis of U. Use it to derive the projection matrix P_U which projects vectors onto the subspace U.
- (b) Find an orthonormal basis of W. Use it to derive the projection matrix P_W which projects vectors onto the subspace W.
- (c) Notice that $P_U + P_W = I_3$. It turns out that this is not a coincidence. For any orthogonal complement subspaces $U, W \subseteq \mathbb{R}^n$, the sum of their corresponding projection matrices is exactly I_n . Can you explain why it is always the case? *Hint: Use orthogonal decomposition. What exactly is each component of the decomposition?*
- 4. Recall in 2D plane, a mirror matrix M is the matrix for which given a vector x, then Mx is the mirror image of x across a line L that passes through the origin.
 - (a) What can we tell about M^2 using the following fact: if we reflect a vector v across the line *L* twice, we end up with the original vector v.
 - (b) Using the answer from part (a), find the possible values of $\det M$.
 - (c) Take any 2-dimensional region S you like. What is the region that is produced from left-multiplying any $x \in S$ by M? In other words, what is the region $\phi_M(S) = \{Mx : x \in S\}$?
 - (d) What is the volume of $\phi_M(S)$? How is to compared to the volume of S? What can we tell about det M?
 - (e) Recall from problem set 2 that if *L* makes angle θ with the *x*-axis, then we have $M = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$. Is the expression consistent with part *a* and *d*?