
Linear Algebra and Optimization
MIT Fall 2021

Recitation 9
Thursday October 6, 2022

1 Recap

1.1 Determinant

1.1.1 Algebraic View

The determinant of a square matrix A ∈ Rn×n is defined as

detA =
∑
σ

(
(−1)sign(σ) ·

n∏
i=1

Ai,σ(i)

)
(1)

where σ iterates over any permutation of {1, ..., n} and sign(σ) is the parity of σ.
An equivalent definition (more computationally convenient) for the determinant is

detA = (±1) · (product of pivots in ref(A)) ,

where the sign depends on the parity of the number of row exchanges in the REF.

1.1.2 Geometric View

The determinant of a square matrix A ∈ Rn×n is the scaling factor between vol(S) and
vol(ϕA(S)) taking into account handedness; where ϕA(S) = {Ax : x ∈ S} is the region
which ϕA maps S into.

1.1.3 Properties

Let A,B be n × n matrices. Let C be another square matrix and D be a matrix with
proper dimension.

1. Swapping two rows (or two columns) of A negates the determinant.

2. Adding a row to another row does not change the determinant.

3. Adding a column to another column does not change the determinant.

4. Multiplying a row/column by a scalar c changes the determinant by a factor of c.

5. detAT = detA

6. detAB = detA · detB

7. det(A+B) ̸= detA+ detB

8. det

([
A D
0 C

])
= detA · detC.
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1.2 Square Matrices Revisited

Let A be an n× n square matrix. Then, the following statements are equivalent.

1. A is invertible, i.e. A−1 exists

2. A has both a left inverse and a right inverse

3. The columns of A are linearly independent

4. The rows of A are linearly independent

5. Ax = b is uniquely solvable for every b ∈ Rn

6. N(A) = {0}

7. C(A) = Rn

8. Rank(A) = n

9. detA ̸= 0

1.3 Projection

Suppose that we want to find the orthogonal projection of a given vector w onto a k-
dimensional subspace V . In other words, we want to find a vector v = projVw for which
1) v ∈ V , and 2) (w − v) ⊥ u for all u ∈ V .
Suppose that {v1, . . . , vk} is an orthonormal basis of V . Then,

v = projVw =
k∑

i=1

(w · vi)vi =
k∑

i=1

vi · (vi · w) =
k∑

i=1

vi · (v⊤i w)

=
k∑

i=1

(viv
⊤
i )w =

(
k∑

i=1

viv
⊤
i

)
w = Pw

when P =
∑k

i=1 viv
⊤
i is an n×n matrix. The matrix P is the orthogonal projection matrix

onto the subspace V , and can also be written as

P = V V ⊤, where V =
[
v1 · · · vk

]
∈ Rn×k.

Note that P is symmetric (i.e. P⊤ = P ) and rank(P ) = rank(V ) = k.
Another interesting property of V is that V ⊤V = Ik. Indeed, this is a necessary and
sufficient condition for {v1, . . . , vk} to be orthonormal.

2 Exercises
1. Use determinant properties to show that if A and B are square matrices such that

AB is invertible, then both A and B are invertible.

2. Let A =

 1 −2 1
3 α −5
−1 −1 2

. What values of α makes A not invertible?
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3. Consider the two subspaces U and W as follows.

U =


u1

u2

u3

 : u1 − u2 = 0, u1 − u3 = 0

 = Span


11
1


W =


w1

w2

w3

 : w1 + w2 + w3 = 0

 = Span


 1
−1
0

 ,

 1
0
−1



U

V

x

y

z

The two subspaces are orthogonal complements (check!). It can be easily seen that
the given set of generators bases are actually bases (why?).

(a) Find an orthonormal basis of U . Use it to derive the projection matrix PU

which projects vectors onto the subspace U .
(b) Find an orthonormal basis of W . Use it to derive the projection matrix PW

which projects vectors onto the subspace W .
(c) Notice that PU +PW = I3. It turns out that this is not a coincidence. For any

orthogonal complement subspaces U,W ⊆ Rn, the sum of their corresponding
projection matrices is exactly In. Can you explain why it is always the case?
Hint: Use orthogonal decomposition. What exactly is each component of the
decomposition?

4. Recall in 2D plane, a mirror matrix M is the matrix for which given a vector x,
then Mx is the mirror image of x across a line L that passes through the origin.

(a) What can we tell about M2 using the following fact: if we reflect a vector v
across the line L twice, we end up with the original vector v.

(b) Using the answer from part (a), find the possible values of detM .
(c) Take any 2-dimensional region S you like. What is the region that is produced

from left-multiplying any x ∈ S by M? In other words, what is the region
ϕM(S) = {Mx : x ∈ S}?

(d) What is the volume of ϕM(S)? How is to compared to the volume of S? What
can we tell about detM?

(e) Recall from problem set 2 that if L makes angle θ with the x-axis, then we

have M =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
. Is the expression consistent with part a and d ?
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3 Solutions
1. If AB is invertible, then det(AB) ̸= 0. As det(AB) = detA · detB, neither detA

not detB can be zero which means both A and B are invertible.

2. A is not invertible iff detA = 0. There are several ways to compute detA. One
approach is to use equation (1): detA = (1)(α)(2) + (−2)(−5)(−1) + (1)(3)(−1)−
(1)(α)(−1)− (−2)(3)(2)− (1)(−5)(−1) = 3α− 6.

Another way to compute the determinant is by deriving ref(A).

A =

 1 −2 1
3 α −5
−1 −1 2

 R2←R2−3R1
R3←R3+R1========⇒

1 −2 1
0 α + 6 −8
0 −3 3

 swap R2&R3
========⇒

1 −2 1
0 −3 3
0 α + 6 −8


R3←R3+(α+6

3 )R2

===========⇒

1 −2 1
0 −3 3
0 0 α− 2

 = ref(A)

We do 1 rows swap and ends up with pivots 1,−3, α−2. Thus, detA = (−1)1(1)(−3)(α−
2) = 3α− 6.

Another approach is to perform some row operations then calculate the determinants
from block matrices.

A =

 1 −2 1
3 α −5
−1 −1 2

 R2←R2−3R1
R3←R3+R1========⇒

1 −2 1
0 α + 6 −8
0 −3 3


As we didn’t do any swaps, we have

detA = det
([
1
])

· det
([

α + 6 −8
−3 3

])
= 1 · [(α + 6)(3)− (−8)(−3)] = 3α− 6.

In any cases, we can solve detA = 0 as 3α− 6 = 0 which gives us α = 2.

3. (a) The basis


11
1

 is already orthogonal since it only has 1 vector. Therefore,

we can find the orthonormal basis by normalizing it into


1/√3

1/
√
3

1/
√
3

. It

follows that

PU =

1/√3

1/
√
3

1/
√
3

 [1/√3 1/
√
3 1/

√
3
]
=

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .

(b) For convenient, let w1 =

 1
−1
0

 and w2 =

 1
0
−1

. The basis {w1, w2} of W is

neither orthogonal nor normalized. In order to obtain orthonormal basis B, we
can use Gram-Schmidt. The first vector to be added to B is the normalized
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w1 which is

 1/
√
2

−1/
√
2

0

 = t1. The second vector to be added to B is then

t2 = normalize(w2 − projt1w2). We can calculate w2 − projt1w2 = w2 − (w2 ·

t1)t1 =

 1
0
−1

−

 1
0
−1

 ·

 1/
√
2

−1/
√
2

0

 1/
√
2

−1/
√
2

0

 =

 1/2
−1/2
−1

 which gives t2 =

normalize

 1/2
−1/2
−1

 =

 1/
√
6

−1/
√
6

−2/
√
6

 . It follows that

PW = t1t
⊤
1 + t2t

⊤
2

=

 1/
√
2

−1/
√
2

0

 [1/√2 −1/
√
2 0

]
+

 1/
√
6

−1/
√
6

−2/
√
6

 [1/√6 −1/
√
6 −2/

√
6
]

=

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .

(c) Take any vector v ∈ Rn. From orthogonal decomposition, we can write v =
u + w for a unique choice of u ∈ U and w ∈ W . Moreover, we know that u is
the projection of v onto U – so u = PUv. Similarly, we have w = PWv. Thus,
we must have v = u + w = PUv + Pwv = (Pu + Pw)v. As the equation holds
for arbitrary v ∈ Rn, we must have Pu + Pw = In.

4. (a) Pick an arbitrary vector v ∈ R2. The first reflection across L is Mv. Then we
reflect Mv across L again into M(Mv) = M2v. However, if we reflect a vector
v across L twice, we end up with the original vector v. This means M2v = v
and it holds for arbitrary v ∈ R2. This tells us that M2 = I2.

(b) Taking determinants of both sides of M2 = I2, we have (detM)2 = 1. This
implies that detM is either 1 or −1.

(c) Take any region S we like. The region ϕM(S) is a result of applying M to each
x ∈ S so it becomes Mx = the reflection of x across L. In other words, ϕM(S)
is the reflection of S across L.

(d) The volume of ϕM(S) is a negation of that of S. This is because reflection
across L does not change the area, but flips the handedness of S. As a result,
we must have vol(ϕM(S)) = −vol(S) which means detM = −1.

(e) With M =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
, we can easily check that

M2 =

[
cos2 2θ + sin2 2θ cos 2θ sin 2θ − sin 2θ cos 2θ

sin 2θ cos 2θ − cos 2θ sin 2θ sin2 2θ + cos2 2θ

]
=

[
1 0
0 1

]
= I2.

We can also verify that

detM = (cos 2θ)(− cos 2θ)− (sin 2θ)(sin 2θ) = −(cos2 2θ + sin2 2θ) = −1.

So the properties in part a and d are satisfied.
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