Linear Algebra and Optimization

Recitation 8

Tuesday October 5, 2021

1 Recap

1.1 Orthogonality of Vectors

Let u and v be vectors of the same dimension. We say u and v are orthogonal iff their angle is 90°, or equivalently $u \cdot v=u^{\top} v=v^{\top} u=0$.
In addition, we say that a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is pairwise orthogonal iff v_{i} and v_{j} are orthogonal for any $i \neq j \in\{1,2, \ldots, n\}$. A set of pairwise orthogonal (nonzero) vectors is always linearly independent.
A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is pairwise orthonormal if it is pairwise orthogonal, and each u_{i} is a unit vector.

1.2 Orthogonality of Subspaces

Two subspaces U and V of \mathbb{R}^{n} are orthogonal if $u \cdot v=0$ for all $u \in U$ and $v \in V$. In addition, it follows that $\operatorname{dim} U+\operatorname{dim} V \leq n$.

1.3 Orthogonal Complement of Subspaces

Given a subspace V, its orthogonal complement V^{\perp} is defined as:

$$
V^{\perp}=\{w: w \cdot v=0 \text { for any } v \in V\}
$$

Intuitively, V^{\perp} is the largest subspace that is orthogonal to V.
Some important properties include

1. $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$
2. $\left(V^{\perp}\right)^{\perp}=V$

1.4 Decomposition

Theorem 1 Let $V, W \subseteq \mathbb{R}^{n}$ are orthogonal complements - that is $V=W^{\perp}$ and $W=V^{\perp}$. Then every vector $x \in \mathbb{R}^{n}$ has a unique decomposition $x=v+w$ where $v \in V$ and $w \in W$. In addition, it follows that $v \cdot w=0$.

1.5 Some Familiar Orthogonal Complements

We have already seen and worked on orthogonal complements, but we just didn't realize that they are!

Theorem $2 N(A)$ and $C\left(A^{\top}\right)$ are orthogonal complements in \mathbb{R}^{n}. Similarly, $C(A)$ and $N\left(A^{\top}\right)$ are orthogonal complements in \mathbb{R}^{m}.

In relation to Theorem 1, we can plug in $V=N(A)$ and $W=C\left(A^{T}\right)$ and derive the following result.

Theorem 3 Suppose that we are given a matrix $A \in \mathbb{R}^{m \times n}$. Any vector $v \in \mathbb{R}^{n}$ can be written uniquely as $v=v_{1}+v_{2}$ where $v_{1} \in N(A)$ and $v_{2} \in C\left(A^{\top}\right)$.

1.6 Relationship to Projection

Suppose that we want to project a vector v onto a unit vector w, then the projection is

$$
\operatorname{proj}_{w} v=(v \cdot w) w .
$$

We note that $v \cdot w$ is a scalar - which ensures that the projection is on w.
In general cases where w is not necessarily a unit vector, we have

$$
\operatorname{proj}_{w} v=\left(\frac{v \cdot w}{\|w\|^{2}}\right) w
$$

1.7 Gram-Schmidt

Let's suppose that we a set $\mathcal{V}=\left\{v_{1}, \ldots, v_{k}\right\}$ of linearly independent vectors. Our goal is to transform it into a set of orthonormal vectors \mathcal{W}.

```
Algorithm 1 GRAM-SCHMIDT
Input: a set \(\mathcal{V}=\left\{v_{1}, \ldots, v_{k}\right\}\) of linearly independent vectors
    \(w_{1}:=\) normalize \(\left(v_{1}\right)\)
    \(w_{2}:=\operatorname{normalize}\left(v_{2}-\operatorname{proj}_{w_{1}} v_{2}\right)\)
    \(w_{3}:=\operatorname{normalize}\left(v_{3}-\operatorname{proj}_{w_{1}} v_{3}-\operatorname{proj}_{w_{2}} v_{3}\right)\)
    \(\begin{aligned} & \cdots \\ & w_{k}\end{aligned}:=\) normalize \(\left(v_{k}-\sum_{i=1}^{k-1} \operatorname{proj}_{w_{i}} v_{k}\right)\)
    Output \(\mathcal{W}=\left\{w_{1}, \ldots, w_{k}\right\}\)
```

One crucial property is that \mathcal{V} and \mathcal{W} span the same subspace. In other words, if we are given a subspace \mathcal{S} which is the span of basis \mathcal{V}, we can use Gram-Schmidt to derive its orthonormal basis \mathcal{W} - meaning that \mathcal{W} is a basis of \mathcal{S} and is orthonormal.

2 Exercises

1. Among the following six 3 -dimensional vectors, which pairs are orthogonal?

$$
a=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
-6 \\
-3
\end{array}\right], c=\left[\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right], d=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right], e=\left[\begin{array}{c}
-3 \\
-2 \\
2
\end{array}\right], f=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

2. Denote a subspace $V=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]: 2 v_{1}+3 v_{3}+5 v_{5}=0\right\}$. Find V^{\perp}.
3. Suppose that we have a subspace \mathcal{S} with an orthongonal basis $\left\{v_{1}, \ldots, v_{k}\right\}$. By the definition of basis, any vector $v \in \mathcal{S}$ can be expressed as

$$
v=\sum_{i=1}^{k} \alpha_{i} v_{i}=\alpha_{1} v_{1}+\ldots \alpha_{k} v_{k}
$$

for some constants $\alpha_{1}, \ldots, \alpha_{k}$. Determine each α_{j} in terms of v_{1}, \ldots, v_{k} and v. Will the same derivation work if it not for the orthogonality of $\left\{v_{1}, \ldots, v_{k}\right\}$?
4. Suppose that a set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ generates a subspace \mathcal{S}. In other words, $\mathcal{S}=\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$. Describe a procedure to derive an orthonormal basis of \mathcal{S}.
5. In this problem, we will explore the effect of ordering on the Gram-Schmidt algorithm. Denote

$$
u_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{c}
4 \\
0 \\
-1
\end{array}\right]
$$

and

$$
v_{1}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], v_{2}=\left[\begin{array}{c}
4 \\
0 \\
-1
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

for which each $\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a set of three linearly independent vectors. Moreover, the two sets $\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ are identical, but are in different orders. This means both sets are bases of the same subspace \mathcal{S}.
(a) Perform Gram-Schmidt on $\left\{u_{1}, u_{2}, u_{3}\right\}$ to derive an orthonormal basis of \mathcal{S}.
(b) Perform Gram-Schmidt on $\left\{v_{1}, v_{2}, v_{3}\right\}$ to derive an orthonormal basis of \mathcal{S}.
(c) Each of the answer to the previous parts is an orthonormal basis of \mathcal{S}. Are they identical? What can we conclude about the effect of order to the GramSchmidt?

3 Solutions

1. Two vectors are orthogonal iff their inner product is 0 . Those pairs are $(a, c),(a, d)$, $(a, f),(b, e),(b, f),(c, d),(c, f),(d, e),(d, f),(e, f)$.
2. There are several ways to solve this problem. First, we realize that V resides in an ambient space \mathbb{R}^{3} and has dimension 2. This means V^{\perp} has dimension $3-2=1$, which means that if we can find a non-zero vector $w \in V^{\perp}$, we can write $V^{\perp}=$ $\operatorname{Span}\{w\}$.
Any $\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in V$ must satisfy $2 v_{1}+3 v_{2}+5 v_{3}=0$, i.e. $\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right] \cdot\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=0$. By definition, $V^{\perp}=\{w: w \cdot v=0$ for any $v \in V\}$. This implies that $w=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$ works, which means $V^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]\right\}$.
Another way to solve this problem is to notice that $V=N(A)$ when $A=\left[\begin{array}{lll}2 & 3 & 5\end{array}\right]$. This means $V^{\perp}=C\left(A^{T}\right)=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]\right\}$.
3. To derive α_{j}, we take inner product, for both sides of the equation, with v_{j}.

$$
\left\langle v, v_{j}\right\rangle=\sum_{i=1}^{k}\left\langle\alpha_{i} v_{i}, v_{j}\right\rangle=\alpha_{j}\left\langle v_{j}, v_{j}\right\rangle+\sum_{\substack{1 \leq i \leq k \\ i \neq j}} \alpha_{i}\left\langle v_{i}, v_{j}\right\rangle=\alpha_{j}\left\|v_{j}\right\|^{2} .
$$

This implies $\alpha_{j}=\frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}$. We make a crucial note that this derivation only works when $\left\{v_{1}, \ldots, v_{k}\right\}$ are orthogonal as we use the fact that $\left\langle v_{i}, v_{j}\right\rangle=0$ for any $i \neq j$.
4. At the very first glance, it seems like Gram-Schmidt would do the job for us; however, it is not always the case. Recall that the input to Gram-Schmidt must be a set of linearly independent vectors, while such property is not guaranteed for $\left\{v_{1}, \ldots, v_{n}\right\}$. This means in order to derive an orthonormal basis for \mathcal{S}, we can do as follows.
I. Find a basis \mathcal{B} of \mathcal{S} from $\left\{v_{1}, \ldots, v_{n}\right\}$. This can be done in several ways. We already proposed two ways of doing it in Recitation 6 - by an algorithm or by Gaussian elimination.
II. Use \mathcal{B} as an input to Gram-Schmidt which will output an orthonormal basis to \mathcal{S}.
5. (a) $\left\|u_{1}\right\|=1$ so $w_{1}=\operatorname{normalize}\left(u_{1}\right)=\frac{u_{1}}{\left\|u_{1}\right\|}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Next, $\operatorname{proj}_{w_{1}} u_{2}=\left(u_{2}\right.$. $\left.w_{1}\right) w_{1}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]$, so $u_{2}-\operatorname{proj}_{w_{1}} u_{2}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]-\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$. Therefore,
$w_{2}=$ normalize $\left(\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right]$. Finally, $\operatorname{proj}_{w_{1}} u_{3}=\left(u_{3} \cdot w_{1}\right) w_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
and $\operatorname{proj}_{w_{2}} u_{3}=\left(u_{3} \cdot w_{2}\right) w_{2}=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$, so $u_{3}-\operatorname{proj}_{w_{1}} u_{3}-\operatorname{proj}_{w_{2}} u_{3}=\left[\begin{array}{c}4 \\ 0 \\ -1\end{array}\right]-$ $\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]-\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right]$. Therefore, $w_{3}=$ normalize $\left(\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0\end{array}\right]$.
Thus, Gran-Schmidt yields an orthogonal basis $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right],\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0\end{array}\right]\right\}$.
(b) $\left\|v_{1}\right\|=3$ so $w_{1}=\operatorname{normalize}\left(v_{1}\right)=\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ -1 / 3\end{array}\right]$. Next, $\operatorname{proj}_{w_{1}} v_{2}=\left(v_{2}\right.$. $\left.w_{1}\right) w_{1}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$, so $v_{2}-\operatorname{proj}_{w_{1}} v_{2}=\left[\begin{array}{c}4 \\ 0 \\ -1\end{array}\right]-\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]=\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right]$. Therefore, $w_{2}=$ normalize $\left(\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2} \\ 0\end{array}\right]$. Finally, $\operatorname{proj}_{w_{1}} v_{3}=\left(v_{3} \cdot w_{1}\right) w_{1}=\left[\begin{array}{c}-2 / 9 \\ -2 / 9 \\ 1 / 9\end{array}\right]$ and $\operatorname{proj}_{w_{2}} v_{3}=\left(v_{3} \cdot w_{2}\right) w_{2}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, so $v_{3}-\operatorname{proj}_{w_{1}} v_{3}-\operatorname{proj}_{w_{2}} v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]-$ $\left[\begin{array}{c}-2 / 9 \\ -2 / 9 \\ 1 / 9\end{array}\right]-\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}2 / 9 \\ 2 / 9 \\ 8 / 9\end{array}\right]$. Therefore, $w_{3}=$ normalize $\left(\left[\begin{array}{l}2 / 9 \\ 2 / 9 \\ 8 / 9\end{array}\right]\right)=\left[\begin{array}{l}1 / \sqrt{18} \\ 1 / \sqrt{18} \\ 4 / \sqrt{18}\end{array}\right]$. Thus, Gran-Schmidt yields an orthogonal basis $\left\{\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ -1 / 3\end{array}\right],\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2} \\ 0\end{array}\right],\left[\begin{array}{l}1 / \sqrt{18} \\ 1 / \sqrt{18} \\ 4 / \sqrt{18}\end{array}\right]\right\}$.
(c) As we can see, the answers from two parts are not identical. This means the ordering of vectors affects the output orthogonal basis of the subspace.

