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1 Recap

1.1 Orthogonality of Vectors

Let u and v be vectors of the same dimension. We say u and v are orthogonal iff their
angle is 90◦, or equivalently u · v = u⊤v = v⊤u = 0.
In addition, we say that a set of vectors {v1, v2, ..., vn} is pairwise orthogonal iff vi and vj
are orthogonal for any i ̸= j ∈ {1, 2, ..., n}. A set of pairwise orthogonal (nonzero) vectors
is always linearly independent.
A set of vectors {u1, u2, ..., un} is pairwise orthonormal if it is pairwise orthogonal, and
each ui is a unit vector.

1.2 Orthogonality of Subspaces

Two subspaces U and V of Rn are orthogonal if u · v = 0 for all u ∈ U and v ∈ V . In
addition, it follows that dimU + dimV ≤ n.

1.3 Orthogonal Complement of Subspaces

Given a subspace V , its orthogonal complement V ⊥ is defined as:

V ⊥ = {w : w · v = 0 for any v ∈ V } .

Intuitively, V ⊥ is the largest subspace that is orthogonal to V .
Some important properties include

1. dimV + dimV ⊥ = n

2.
(
V ⊥)⊥ = V

1.4 Decomposition

Theorem 1 Let V,W ⊆ Rn are orthogonal complements – that is V = W⊥ and W = V ⊥.
Then every vector x ∈ Rn has a unique decomposition x = v+w where v ∈ V and w ∈ W .
In addition, it follows that v · w = 0.
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1.5 Some Familiar Orthogonal Complements

We have already seen and worked on orthogonal complements, but we just didn’t realize
that they are!

Theorem 2 N(A) and C(A⊤) are orthogonal complements in Rn. Similarly, C(A) and
N(A⊤) are orthogonal complements in Rm.

In relation to Theorem 1, we can plug in V = N(A) and W = C(AT ) and derive the
following result.

Theorem 3 Suppose that we are given a matrix A ∈ Rm×n. Any vector v ∈ Rn can be
written uniquely as v = v1 + v2 where v1 ∈ N(A) and v2 ∈ C(A⊤).

1.6 Relationship to Projection

Suppose that we want to project a vector v onto a unit vector w, then the projection is

projwv = (v · w)w.

We note that v · w is a scalar – which ensures that the projection is on w.
In general cases where w is not necessarily a unit vector, we have

projwv =

(
v · w
∥w∥2

)
w.

1.7 Gram-Schmidt

Let’s suppose that we a set V = {v1, ..., vk} of linearly independent vectors. Our goal is
to transform it into a set of orthonormal vectors W .

Algorithm 1 GRAM-SCHMIDT
Input: a set V = {v1, ..., vk} of linearly independent vectors
w1 := normalize(v1)
w2 := normalize(v2 − projw1

v2)
w3 := normalize(v3 − projw1

v3 − projw2
v3)

...
wk := normalize

(
vk −

∑k−1
i=1 projwi

vk

)
Output W = {w1, ..., wk}

One crucial property is that V and W span the same subspace. In other words, if we are
given a subspace S which is the span of basis V , we can use Gram-Schmidt to derive its
orthonormal basis W – meaning that W is a basis of S and is orthonormal.
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2 Exercises
1. Among the following six 3-dimensional vectors, which pairs are orthogonal?

a =

 1
2
−1

 , b =

 2
−6
−3

 , c =

 3
−2
−1

 , d =

21
4

 , e =

−3
−2
2

 , f =

00
0

 .

2. Denote a subspace V =


v1v2
v3

 : 2v1 + 3v3 + 5v5 = 0

. Find V ⊥.

3. Suppose that we have a subspace S with an orthongonal basis {v1, ..., vk}. By the
definition of basis, any vector v ∈ S can be expressed as

v =
k∑

i=1

αivi = α1v1 + ...αkvk

for some constants α1, ..., αk. Determine each αj in terms of v1, ..., vk and v. Will
the same derivation work if it not for the orthogonality of {v1, ..., vk}?

4. Suppose that a set of vectors {v1, ..., vn} generates a subspace S. In other words,
S = Span{v1, ..., vn}. Describe a procedure to derive an orthonormal basis of S.

5. In this problem, we will explore the effect of ordering on the Gram-Schmidt algo-
rithm. Denote

u1 =

00
1

 , u2 =

 2
2
−1

 , u3 =

 4
0
−1


and

v1 =

 2
2
−1

 , v2 =

 4
0
−1

 , v3 =

00
1


for which each {u1, u2, u3} and {v1, v2, v3} is a set of three linearly independent
vectors. Moreover, the two sets {u1, u2, u3} and {v1, v2, v3} are identical, but are in
different orders. This means both sets are bases of the same subspace S.

(a) Perform Gram-Schmidt on {u1, u2, u3} to derive an orthonormal basis of S.

(b) Perform Gram-Schmidt on {v1, v2, v3} to derive an orthonormal basis of S.

(c) Each of the answer to the previous parts is an orthonormal basis of S. Are
they identical? What can we conclude about the effect of order to the Gram-
Schmidt?

3
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3 Solutions
1. Two vectors are orthogonal iff their inner product is 0. Those pairs are (a, c), (a, d),

(a, f), (b, e), (b, f), (c, d), (c, f), (d, e), (d, f), (e, f).

2. There are several ways to solve this problem. First, we realize that V resides in an
ambient space R3 and has dimension 2. This means V ⊥ has dimension 3 − 2 = 1,
which means that if we can find a non-zero vector w ∈ V ⊥, we can write V ⊥ =
Span{w}.

Any

v1v2
v3

 ∈ V must satisfy 2v1 + 3v2 + 5v3 = 0, i.e.

23
5

 ·

v1v2
v3

 = 0. By definition,

V ⊥ = {w : w · v = 0 for any v ∈ V } . This implies that w =

23
5

 works, which

means V ⊥ = Span


23
5

 .

Another way to solve this problem is to notice that V = N(A) when A =
[
2 3 5

]
.

This means V ⊥ = C(AT ) = Span


23
5

 .

3. To derive αj, we take inner product, for both sides of the equation, with vj.

⟨v, vj⟩ =
k∑

i=1

⟨αivi, vj⟩ = αj⟨vj, vj⟩+
∑
1≤i≤k
i ̸=j

αi⟨vi, vj⟩ = αj∥vj∥2.

This implies αj =
⟨v,vj⟩
∥vj∥2 . We make a crucial note that this derivation only works

when {v1, ..., vk} are orthogonal as we use the fact that ⟨vi, vj⟩ = 0 for any i ̸= j.

4. At the very first glance, it seems like Gram-Schmidt would do the job for us; however,
it is not always the case. Recall that the input to Gram-Schmidt must be a set of
linearly independent vectors, while such property is not guaranteed for {v1, ..., vn}.
This means in order to derive an orthonormal basis for S, we can do as follows.

I. Find a basis B of S from {v1, ..., vn}. This can be done in several ways. We
already proposed two ways of doing it in Recitation 6 – by an algorithm or by
Gaussian elimination.

II. Use B as an input to Gram-Schmidt which will output an orthonormal basis
to S.

5. (a) ∥u1∥ = 1 so w1 = normalize(u1) = u1

∥u1∥ =

00
1

 . Next, projw1
u2 = (u2 ·

w1)w1 =

 0
0
−1

, so u2 − projw1
u2 =

 2
2
−1

 −

 0
0
−1

 =

22
0

. Therefore,

4
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w2 = normalize

22
0

 =

 1√
2
1√
2

0

 . Finally, projw1
u3 = (u3 · w1)w1 =

00
1


and projw2

u3 = (u3 · w2)w2 =

22
0

, so u3 − projw1
u3 − projw2

u3 =

 4
0
−1

 − 0
0
−1

−

22
0

 =

 2
−2
0

. Therefore, w3 = normalize

 2
−2
0

 =

 1√
2

− 1√
2

0

 .

Thus, Gran-Schmidt yields an orthogonal basis


00
1

 ,

 1√
2
1√
2

0

 ,

 1√
2

− 1√
2

0

 .

(b) ∥v1∥ = 3 so w1 = normalize(v1) = v1
∥v1∥ =

 2/3
2/3
−1/3

 . Next, projw1
v2 = (v2 ·

w1)w1 =

 2
2
−1

, so v2 − projw1
v2 =

 4
0
−1

−

 2
2
−1

 =

 2
−2
0

. Therefore, w2 =

normalize

 2
−2
0

 =

 1/
√
2

−1/
√
2

0

 . Finally, projw1
v3 = (v3 · w1)w1 =

−2/9
−2/9
1/9


and projw2

v3 = (v3 · w2)w2 =

00
0

, so v3 − projw1
v3 − projw2

v3 =

00
1

 −−2/9
−2/9
1/9

−

00
0

 =

2/92/9
8/9

. Therefore, w3 = normalize

2/92/9
8/9

 =

1/√18

1/
√
18

4/
√
18

 .

Thus, Gran-Schmidt yields an orthogonal basis


 2/3

2/3
−1/3

 ,

 1/
√
2

−1/
√
2

0

 ,

1/√18

1/
√
18

4/
√
18

 .

(c) As we can see, the answers from two parts are not identical. This means the
ordering of vectors affects the output orthogonal basis of the subspace.
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