Linear Algebra and Optimization

Recitation 12

Thursday October 20, 2022

1 Recap

1.1 Orthogonality

A matrix $A \in \mathbb{R}^{m \times n}$ has orthonormal columns iff $A^{\top} A=I_{n}$.
If in addition, A is square with $m=n$, we also have $A A^{\top}=I_{n}$ and $A^{-1}=A^{\top}$. In this case, we say that A is an orthogonal matrix.

1.2 Singular Values Decomposition (SVD)

Let A be an $n \times m$ matrix. Then, there exist a factorization $A=U \Sigma V^{\top}$ where

1. Dimensions: U is $n \times n, \Sigma$ is $n \times m, V$ is $m \times m$.
2. U and V are orthogonal matrices.
3. Σ is nonnegative and diagonal (as much as possible, since in general it is rectangular); that is all non-diagonal entries must be 0 , and the diagonal entries must be non-negative. Usually Σ is written in terms of $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=0$ where σ_{i} is the diagonal entry in the $i^{\text {th }}$ row.

Another way to express the decomposition is

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

where u_{i} is the $i^{\text {th }}$ column of U and v_{i} is the $i^{\text {th }}$ column of V. The σ_{i} 's are called singular values, and the u_{i} 's and v_{i} 's are left and right singular vectors, respectively.

1.3 SVD Properties

1. The rank of A is equal to r, which is the number of non-zero singular values
2. The vectors $\left\{u_{1}, \ldots, u_{r}\right\}$ are an orthonormal basis of $C(A)$.

- Each u_{i} is in $C(A)$ because $u_{i}=A\left(v_{i} / \sigma_{i}\right)$. They are linearly independent, and there are r of them which is equal to the dimension of $C(A)$.

3. The vectors $\left\{v_{r+1}, v_{r+1}, \ldots, v_{m}\right\}$ are an orthonormal basis of $N(A)$.

- Each v_{j} is in $N(A)$ because $A v_{j}=0$. They are linearly independent, and there are $m-r$ of them which is equal to the dimension of $N(A)$.

1.4 SVD and Matrix Inverses

Suppose a matrix A has an SVD: $A=U \Sigma V^{\top}$.

1. If A is invertible, then $A^{-1}=V \Sigma^{-1} U^{\top}$. This is because

$$
\begin{aligned}
\left(V \Sigma^{-1} U^{\top}\right) A & =\left(V \Sigma^{-1} U^{\top}\right)\left(U \Sigma V^{\top}\right)=V \Sigma^{-1}\left(U^{\top} U\right) \Sigma V^{\top} \\
& =V \Sigma^{-1} \Sigma V^{\top}=V\left(\Sigma^{-1} \Sigma\right) V^{\top}=V V^{\top}=I
\end{aligned}
$$

2. If A is not invertible, we define the pseudoinverse of A, denoted A^{+}, to be

$$
A^{+}=\sum_{i=1}^{r} \sigma_{i}^{-1} v_{i} u_{i}^{\top} .
$$

Some crucial properties of pseudoinverses include 1) $A A^{+}$is the orthogonal projection matrix onto $C(A)$, and 2) $A^{+} A$ is the orthogonal projection matrix onto $N(A)^{\perp}$.
Oftentimes a pseudoinverse can be a great substitution of the (hypothetical) inverse for some functionalities. Note that we can create pseudoinverses of rectangular inverses, although only square matrices are invertible.

2 Exercises

1. Let $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ with rank r. Write down an SVD for the following matrices. What are their non-zero singular values in terms of $\sigma_{1}, \ldots, \sigma_{r}$?
(a) $c A$ when c is a scalar
(b) A^{\top}
(c) $A A^{\top}$
(d) A^{+}
2. Let A be a square matrix and invertible. Explain why $A^{+}=A^{-1}$. Hint: we can explain it both algebraically and geometrically. You may want to use the uniqueness properties of the SVD.
3. Can you write an SVD of the following matrix A by hand?

$$
A=\left[\begin{array}{ccc}
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Compute the pseudoinverse of the following matrix. We haven't learned yet how to compute a pseudoinverse, so you'll have to improvise here! Hint: Can you use the orthonormal nullspace and
4. Show that for every matrix A, the following properties hold:
(a) $A A^{+} A=A$
(b) $A^{+} A A^{+}=A^{+}$
(c) Both $A A^{+}$and $A^{+} A$ are symmetric matrices.

It can be shown that these properties uniquely define the pseudoinverse (sometimes also called the Moore-Penrose inverse).

