Recitation 12

Thursday October 20, 2022

1 Recap

1.1 Orthogonality

A matrix $A \in \mathbb{R}^{m \times n}$ has orthonormal columns iff $A^{\top}A = I_n$. If in addition, A is square with m = n, we also have $AA^{\top} = I_n$ and $A^{-1} = A^{\top}$. In this case, we say that A is an *orthogonal matrix*.

1.2 Singular Values Decomposition (SVD)

Let A be an $n \times m$ matrix. Then, there exist a factorization $A = U \Sigma V^{\top}$ where

- 1. Dimensions: U is $n \times n$, Σ is $n \times m$, V is $m \times m$.
- 2. U and V are orthogonal matrices.
- 3. Σ is nonnegative and diagonal (as much as possible, since in general it is rectangular); that is all non-diagonal entries must be 0, and the diagonal entries must be non-negative. Usually Σ is written in terms of $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = 0$ where σ_i is the diagonal entry in the *i*th row.

Another way to express the decomposition is

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}$$

where u_i is the *i*th column of U and v_i is the *i*th column of V. The σ_i 's are called *singular* values, and the u_i 's and v_i 's are left and right *singular vectors*, respectively.

1.3 SVD Properties

- 1. The rank of A is equal to r, which is the number of non-zero singular values
- 2. The vectors $\{u_1, \ldots, u_r\}$ are an orthonormal basis of C(A).
 - Each u_i is in C(A) because $u_i = A(v_i/\sigma_i)$. They are linearly independent, and there are r of them which is equal to the dimension of C(A).
- 3. The vectors $\{v_{r+1}, v_{r+1}, ..., v_m\}$ are an orthonormal basis of N(A).
 - Each v_j is in N(A) because $Av_j = 0$. They are linearly independent, and there are m r of them which is equal to the dimension of N(A).

1.4 SVD and Matrix Inverses

Suppose a matrix A has an SVD: $A = U\Sigma V^{\top}$.

1. If A is invertible, then $A^{-1} = V \Sigma^{-1} U^{\top}$. This is because

$$(V\Sigma^{-1}U^{\top})A = (V\Sigma^{-1}U^{\top})(U\Sigma V^{\top}) = V\Sigma^{-1}(U^{\top}U)\Sigma V^{\top}$$
$$= V\Sigma^{-1}\Sigma V^{\top} = V(\Sigma^{-1}\Sigma)V^{\top} = VV^{\top} = I$$

2. If A is not invertible, we define the *pseudoinverse* of A, denoted A^+ , to be

$$A^+ = \sum_{i=1}^r \sigma_i^{-1} v_i u_i^\top$$

Some crucial properties of pseudoinverses include 1) AA^+ is the orthogonal projection matrix onto C(A), and 2) A^+A is the orthogonal projection matrix onto $N(A)^{\perp}$.

Oftentimes a pseudoinverse can be a great substitution of the (hypothetical) inverse for some functionalities. Note that we can create pseudoinverses of rectangular inverses, although only square matrices are invertible.

2 Exercises

- 1. Let $A \in \mathbb{R}^{m \times n}$ with SVD $A = U\Sigma V^{\top}$ with rank r. Write down an SVD for the following matrices. What are their non-zero singular values in terms of $\sigma_1, ..., \sigma_r$?
 - (a) cA when c is a scalar
 - (b) A^{\top}
 - (c) AA^{\top}
 - (d) A^+
- 2. Let A be a square matrix and invertible. Explain why $A^+ = A^{-1}$. Hint: we can explain it both algebraically and geometrically. You may want to use the uniqueness properties of the SVD.
- 3. Can you write an SVD of the following matrix A by hand?

$$A = \begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Compute the pseudoinverse of the following matrix. We haven't learned yet how to compute a pseudoinverse, so you'll have to improvise here! *Hint: Can you use the orthonormal nullspace and*

- 4. Show that for *every* matrix A, the following properties hold:
 - (a) $AA^+A = A$
 - (b) $A^+AA^+ = A^+$
 - (c) Both AA^+ and A^+A are symmetric matrices.

It can be shown that these properties *uniquely* define the pseudoinverse (sometimes also called the Moore-Penrose inverse).