Recitation 12

Thursday October 20, 2022

1 Recap

1.1 Orthogonality

A matrix $A \in \mathbb{R}^{m \times n}$ has orthonormal columns iff $A^{\top}A = I_n$. If in addition, A is square with m = n, we also have $AA^{\top} = I_n$ and $A^{-1} = A^{\top}$. In this case, we say that A is an *orthogonal matrix*.

1.2 Singular Values Decomposition (SVD)

Let A be an $n \times m$ matrix. Then, there exist a factorization $A = U \Sigma V^{\top}$ where

- 1. Dimensions: U is $n \times n$, Σ is $n \times m$, V is $m \times m$.
- 2. U and V are orthogonal matrices.
- 3. Σ is nonnegative and diagonal (as much as possible, since in general it is rectangular); that is all non-diagonal entries must be 0, and the diagonal entries must be non-negative. Usually Σ is written in terms of $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > \sigma_{r+1} = \cdots = 0$ where σ_i is the diagonal entry in the *i*th row.

Another way to express the decomposition is

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}$$

where u_i is the *i*th column of U and v_i is the *i*th column of V. The σ_i 's are called *singular* values, and the u_i 's and v_i 's are left and right singular vectors, respectively.

1.3 SVD Properties

- 1. The rank of A is equal to r, which is the number of non-zero singular values
- 2. The vectors $\{u_1, \ldots, u_r\}$ are an orthonormal basis of C(A).
 - Each u_i is in C(A) because $u_i = A(v_i/\sigma_i)$. They are linearly independent, and there are r of them which is equal to the dimension of C(A).
- 3. The vectors $\{v_{r+1}, v_{r+1}, ..., v_m\}$ are an orthonormal basis of N(A).
 - Each v_j is in N(A) because $Av_j = 0$. They are linearly independent, and there are m r of them which is equal to the dimension of N(A).

1.4 SVD and Matrix Inverses

Suppose a matrix A has an SVD: $A = U\Sigma V^{\top}$.

1. If A is invertible, then $A^{-1} = V \Sigma^{-1} U^{\top}$. This is because

$$(V\Sigma^{-1}U^{\top})A = (V\Sigma^{-1}U^{\top})(U\Sigma V^{\top}) = V\Sigma^{-1}(U^{\top}U)\Sigma V^{\top}$$
$$= V\Sigma^{-1}\Sigma V^{\top} = V(\Sigma^{-1}\Sigma)V^{\top} = VV^{\top} = I$$

2. If A is not invertible, we define the *pseudoinverse* of A, denoted A^+ , to be

$$A^+ = \sum_{i=1}^r \sigma_i^{-1} v_i u_i^\top$$

Some crucial properties of pseudoinverses include 1) AA^+ is the orthogonal projection matrix onto C(A), and 2) A^+A is the orthogonal projection matrix onto $N(A)^{\perp}$.

Oftentimes a pseudoinverse can be a great substitution of the (hypothetical) inverse for some functionalities. Note that we can create pseudoinverses of rectangular inverses, although only square matrices are invertible.

2 Exercises

- 1. Let $A \in \mathbb{R}^{m \times n}$ with SVD $A = U\Sigma V^{\top}$ with rank r. Write down an SVD for the following matrices. What are their non-zero singular values in terms of $\sigma_1, ..., \sigma_r$?
 - (a) cA when c is a scalar
 - (b) A^{\top}
 - (c) AA^{\top}
 - (d) A^+
- 2. Let A be a square matrix and invertible. Explain why $A^+ = A^{-1}$. Hint: we can explain it both algebraically and geometrically. You may want to use the uniqueness properties of the SVD.
- 3. Can you write an SVD of the following matrix A by hand?

$$A = \begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Compute the pseudoinverse of the following matrix. We haven't learned yet how to compute a pseudoinverse, so you'll have to improvise here! *Hint: Can you use the orthonormal nullspace and*

- 4. Show that for *every* matrix A, the following properties hold:
 - (a) $AA^+A = A$
 - (b) $A^+AA^+ = A^+$
 - (c) Both AA^+ and A^+A are symmetric matrices.

It can be shown that these properties *uniquely* define the pseudoinverse (sometimes also called the Moore-Penrose inverse).

3 Solutions

- 1. (a) $cA = U(c\Sigma)V^{\top}$ that is the singular values are multiplied by c.
 - (b) $A^{\top} = (U\Sigma V^{\top})^{\top} = V\Sigma^{\top}U$ which is an SVD because the dimensions match, both V and U are orthonormal matrices, and Σ^{\top} is nonnegative and diagonal. The singular values are those values in diagonal entries of Σ^{\top} which are the same as Σ 's which are $\sigma_1, ..., \sigma_r$.
 - (c) $AA^{\top} = (U\Sigma V^{\top})(V\Sigma^{\top}U^{\top}) = U\Sigma(V^{\top}V)\Sigma^{\top}U^{\top} = U(\Sigma\Sigma^{\top})U^{\top}$ which is an SVD form. Its singular values are those values in diagonal entries of $\Sigma\Sigma^{\top}$ which are $\sigma_1^2, ..., \sigma_r^2$. Furthurmore, it tells us that AA^{\top} has r non-zero singular values which means $\operatorname{rank}(AA^{\top}) = r = \operatorname{rank}(A)$.
 - (d) Recall that $A^+ = \sum_{i=1}^r \sigma_i^{-1} v_i u_i^{\top}$ which can also be expressed as $V\Sigma^+U^{\top}$ where Σ^+ is Σ^{\top} with a non-zero diagonal entry replaced with its reciprocal. This means A^+ 's singular values are $\sigma_1^+ = 1/\sigma_1, \sigma_2^+ = 1/\sigma_2, ..., \sigma_r^+ = 1/\sigma_r$ and 0 otherwise.
- 2. Algebraic explanation: If A is invertible, then r = n which means none of the singular values is 0. Recall the question 1d. If Σ is $n \times n$ and none of the diagonal entries is 0, so is Σ^+ . It follows that $\Sigma\Sigma^+ = I_n$ which means $\Sigma^+ = \Sigma^{-1}$. This means (from 1d) that $A^+ = V\Sigma^+U^\top = V\Sigma^{-1}U^\top = A^{-1}$.

Geometric explanation: If A is invertible, then $C(A) = \mathbb{R}^n$. This means any vector $x \in \mathbb{R}^n$ has the projection onto C(A) to be x itself – as it is already in C(A). In other words, the orthogonal projection matrix onto $C(A) = I_n$.

On the other hand, we know that AA^+ is the orthogonal projection matrix onto C(A). This means $AA^+ = I_n$ which implies $A^+ = A^{-1}$.

3. We observe that $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Therefore, $A = \sigma_1 u_1 v_1^{\top} = U \Sigma V^{\top}$ when $\begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$

 $U = \begin{bmatrix} 1 & ? \\ 0 & ? \end{bmatrix}, \Sigma = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ and } V = \begin{bmatrix} 0 & ? & ? \\ 1 & ? & ? \\ 0 & ? & ? \end{bmatrix}.$ Note that the "?"s are whatever

values needed to make U and V orthogonal. Their exact numerical values do not matter since the only non-zero singular value is $\sigma_1 = -2$. We can notice further that the singular value is negative (-2). This is not a major issue; we can resolve

it by re-writing
$$U = \begin{bmatrix} -1 & ? \\ 0 & ? \end{bmatrix}$$
, $\Sigma = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $V = \begin{bmatrix} 0 & ? & ? \\ 1 & ? & ? \\ 0 & ? & ? \end{bmatrix}$.
It follows that $A^+ = \sigma_1^{-1} v_1 u_1^\top = (1/2) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -1/2 & 0 \\ 0 & 0 \end{bmatrix}$.

4. We know that $A^+ = V\Sigma^+ U^\top$, where Σ^+ is Σ^\top with a non-zero diagonal entry replaced with its reciprocal.

For the first two parts, it suffices to show that the identities hold for Σ and Σ^+ instead of A and A^+ , since for example

$$AA^{+}A = U\Sigma V^{\top}V\Sigma^{+}U^{\top}U\Sigma V^{\top} = U\Sigma\Sigma^{+}\Sigma V^{\top}.$$

Suppose Σ is rank r, so it can be written as $\Sigma = \begin{bmatrix} D & 0_{r \times q} \\ 0_{p \times r} & 0_{p \times q} \end{bmatrix}$ where D is an invertible diagonal matrix. Thus $\Sigma^+ = \begin{bmatrix} D^{-1} & 0_{r \times p} \\ 0_{q \times r} & 0_{q \times p} \end{bmatrix}$, $\Sigma^+ \Sigma = \begin{bmatrix} I_r & 0_{r \times q} \\ 0_{q \times r} & 0_{q \times q} \end{bmatrix}$ and $\Sigma\Sigma^+ = \begin{bmatrix} I_r & 0_{r \times p} \\ 0_{p \times r} & 0_{p \times p} \end{bmatrix}$. Then it is easy to see that $\Sigma\Sigma^+\Sigma = \Sigma$ and $\Sigma^+\Sigma\Sigma^+ = \Sigma^+$. For the last part, $AA^+ = U\Sigma\Sigma^+U^\top$ and $A^+A = V\Sigma^+\Sigma V^\top$, and the result follows from $\Sigma\Sigma^+$ and $\Sigma^+\Sigma$ both being symmetric matrices.