Linear Algebra and Optimization

Recitation 11

Tuesday October 19, 2022

1 Recap

1.1 Orthogonal Decomposition Revisited

Given a matrix $A \in \mathbb{R}^{m \times n}$. Any vector $b \in \mathbb{R}^{m}$ can be uniquely expressed as $b=x+y$ for which $x \in C(A)$ and $y \in N\left(A^{\top}\right)$. In particular, x and y are the orthogonal projections of b onto $C(A)$ and $N\left(A^{\top}\right)$ respectively.
When A is tall $(m \geq n)$ and has linearly independent columns, we can write

$$
x=A\left(A^{\top} A\right)^{-1} A^{\top} b \quad \text { and } \quad y=\left(I-A\left(A^{\top} A\right)^{-1} A^{\top}\right) b .
$$

In other words, the projection matrix onto $C(A)$ is $P=A\left(A^{\top} A\right)^{-1} A^{\top}$ and onto $N\left(A^{\top}\right)=$ $Q=I-P$.
It is a good exercise to verify that such decomposition makes sense; that is to explain why $\left(A^{\top} A\right)^{-1}$ exists, $x \in C(A), y \in N\left(A^{\top}\right)$, and $b=x+y$.

1.2 Inverses

Given a tall matrix $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and linearly independent columns; i.e. $\operatorname{rank}(A)=n$. Then A has a left inverse $\left(A^{\top} A\right)^{-1} A^{\top}$.

Given a wide matrix $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ and linearly independent rows; i.e. $\operatorname{rank}(A)=$ m. Then A has a right inverse $A^{\top}\left(A A^{\top}\right)^{-1}$.

1.3 Overdetermined System

Consider the linear system $A x=b$, where we have more equations than variables; i.e. A is tall with more rows than columns. The system may not have a solution that satisfies all equations.

Least Squares Approximate Solution: Assume linearly independent columns

1. Orthogonal projection: Project b onto the column space of A, i.e. $\tilde{b}=\operatorname{proj}_{C(A)} b=$ $A\left(A^{\top} A\right)^{-1} A^{\top} b$. Then solve $A x=\tilde{b} \Rightarrow x=\left(A^{\top} A\right)^{-1} A^{\top} b$. This vector minimizes the norm of the residual $r=A x-b$.
2. Left Inverse: Consider the (specific) left inverse $B=\left(A^{\top} A\right)^{-1} A^{\top}$. Then approximate $x=B b=\left(A^{\top} A\right)^{-1} A^{\top} b$.
3. Optimization: Want to find x that minimizes $\|A x-b\|^{2}$. Setting gradient to zero gives $x=\left(A^{\top} A\right)^{-1} A^{\top} b$.
All these approaches give the same result - the least-squares approximate solution is $x_{\star}=\left(A^{\top} A\right)^{-1} A^{\top} b$.

1.4 Underdetermined System

More variables than equations; i.e. A has more columns than rows. The system has infinitely many solutions, and we need to pick a specific one.

Minimum Norm Solution: Assuming linearly independent rows, we pick the "smallest" solution, i.e. we minimize $\|x\|^{2}$ subject to the constraint $A x=b$. The solution of minimum norm is $x_{\star}=A^{\top}\left(A A^{\top}\right)^{-1} b$.

1.5 Regularization

Our goal remains the same: to solve the system $A x=b$; however, the solution we want now is the one that minimizes $T(x):=\|A x-b\|^{2}+\lambda\|x\|^{2}$ where $\lambda>0$ is a regularization parameter. The unique optimal solution is given by $x^{*}=\left(A^{\top} A+\lambda I\right)^{-1} A^{\top} b$. It can be shown that the inverse is well-defined for all $\lambda>0$.

2 Exercises

You may use Julia as a computational tool.

1. Consider the function values

$$
f(-2)=0, \quad f(-1)=0, \quad f(0)=1, \quad f(1)=0, \quad f(2)=0 .
$$

(a) Find the straight line $f(t)=C+D t$ that is closest (in the least squares sense) to these values.
(b) Find the parabola $f(t)=C+D t+E t^{2}$ that is closest (in the least squares sense) to these values. Hint: Write down the system of equations $A \mathbf{x}=\mathbf{b}$ in three unknowns $x=(C, D, E)$ for the parabola $f(t)$ to go through the points.
(c) Find the closest 4th degree polynomial for these points. What is the least squares error?
2. Two points in \mathbb{R}^{3} have (x, y, z) coordinates as follows.

$$
a=(1,0,0), \quad b=(0,1,1),
$$

(a) Find the plane $z=C+D x+E y$ that gives the best fit to the two points a and b that minimizes $C^{2}+D^{2}+E^{2}$.
(b) What is the least squares error?
(c) Predict the value of z when $(x, y)=(2,-1)$.
3. Tim has a large number of data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$. He plots the N data points on the $x y$-plane and finds out that they do not look linear but rather are exponential - that is $y_{i} \approx a b^{x_{i}}$ for some constants a, b. Describe a procedure to help Tim determine a reasonable choice of a, b given the values of x_{i} 's and y_{i} 's.

3 Solutions

1. (a) We want to solve an overdetermined system $A \mathbf{x}=b$ for which

$$
A=\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right], b=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \text { with variables } \mathbf{x}=\left[\begin{array}{l}
C \\
D
\end{array}\right]
$$

The least square answer is given by

$$
\left[\begin{array}{l}
C \\
D
\end{array}\right]=\mathbf{x}=\left(A^{\top} A\right)^{-1} A^{\top} b=\left[\begin{array}{c}
1 / 5 \\
0
\end{array}\right]
$$

which means the closest line is $f(t)=1 / 5$.
(b) We want to solve an overdetermined system $A \mathbf{x}=b$ for which

$$
A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right], b=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \text { with variables } \mathbf{x}=\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]
$$

The least square answer is given by

$$
\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]=\mathbf{x}=\left(A^{\top} A\right)^{-1} A^{\top} b=\left[\begin{array}{c}
17 / 35 \\
0 \\
-1 / 7
\end{array}\right]
$$

which means the closest parabola is $f(t)=\frac{17}{35}-\frac{t^{2}}{7}$.
(c) Suppose that we want to solve for $f(t)=C+D t+E t^{2}+F t^{3}+G t^{4}$. We want to solve an overdetermined system $A \mathbf{x}=b$ for which

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 4 & -8 & 16 \\
1 & -1 & 1 & -1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16
\end{array}\right], b=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \text { with variables } \mathbf{x}=\left[\begin{array}{c}
C \\
D \\
E \\
F \\
G
\end{array}\right] .
$$

We note that A is square and invertible, which means that we can solve x exactly and uniquely. By solving $\mathbf{x}=A^{-1} b$, we derive $\mathbf{x}=\left[\begin{array}{llll}1 & 0 & -5 / 4 & 0\end{array} 1 / 4\right]^{\top}$ which gives $f(t)=1-\frac{5}{4} t^{2}+\frac{1}{4} t^{4}$.
Since the system can be solve to the exact, we must have $A x=b$ which means that the residual $r=A x-b$ is zero. The least square error is thus $\|r\|^{2}=0$.
(d) Construct the system of equations $A \mathbf{x}=b$ in a similar fashion to previous parts. When the degree is 5 , we have 5 equations with 6 variables which make the system underdetermined. This means we have infinitely many answers and the smallest answer is given by $\mathbf{x}=A^{\top}\left(A A^{\top}\right)^{-1} b=\left[\begin{array}{llllll}1 & 0 & -5 / 4 & 0 & 1 / 4 & 0\end{array}\right]^{\top}$ which gives $f(t)=1-\frac{5}{4} t^{2}+\frac{1}{4} t^{4}$.
(e) With degree at least 4, we get the exact fit. On the other hand, the lower the degree is, the more general the best-fit line is. Note that there is no absolute best model/degree for data fitting. In this case, one might argue that linear fitting is the best because every point but $f(1)=1$ yields value 0 which may lead us into thinking that $f(1)=1$ is an outlier. Others may argue that it is absolutely needed to fit every point (or almost every point) onto the line so they tend to choose higher degree fitting. This; however, may lead to the overfitting problem.
2. (a) We have

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

and $b=(0,1)$ we wish to solve $A x=b$ which minimizes $\|x\|^{2}$. The solution is $A^{T}\left(A A^{T}\right)^{-1} b=(1 / 3,-1 / 3,2 / 3)$
(b) least squares error is 0 because the system is underdetermined.
(c) $2(-1 / 3)-1(2 / 3)=-4 / 3$
3. Although the relationship $y_{i} \approx a b^{x_{i}}$ is not linear, what we can do is to rearrange it as $\log y_{i} \approx \log a+x_{i} \cdot \log b$. This creates a linear relationship between x_{i} versus $\log y_{i}$. In other words, we want to solve an overdetermined system $A \mathbf{x}=\mathbf{b}$ for which

$$
A=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\ldots & \ldots \\
1 & x_{N}
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
\log y_{1} \\
\log y_{2} \\
\ldots \\
\log y_{N}
\end{array}\right] \text { with variables } \mathbf{x}=\left[\begin{array}{c}
\log a \\
\log b
\end{array}\right]
$$

We can solve $\mathbf{x}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}$ and use it to calculate a and b as wished.

