Recitation 13

Tuesday October 25, 2022

Directions Spend at most 15 minutes on the TLDR and then break up into groups to solve problems.

1 TLDR

1.1 Operator Norm

The operator norm, denoted ||A||, is

$$||A|| = \max_{x \text{ s.t. } ||x|| \le 1} ||Ax||.$$

In words, it is the maximum amount the matrix A can scale a unit vector x. It is also equal to the largest singular value of A.

1.2 Low Rank Approximation

We can find the best low rank approximation to B through its truncated singular value decomposition. Suppose $B = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}$ and we want to find, among all rank at most k matrices, the matrix C that minimizes ||B - C||. The minimum is achieved by setting

$$C = \sum_{i=1}^{k} \sigma_i u_i v_i^{\top}$$

in which case we have $||B - C|| = \sigma_{k+1}$.

1.3 Principal Component Analysis (PCA)

The goal of PCA is to find a k dimensional subspace that maximizes the projected variance. Suppose we are given p data points a_1, \dots, a_p and assume they are centered so that $\sum_{i=1}^{p} a_i = 0$. Then we want to find a matrix C with k orthonormal columns so as to maximize

$$\frac{1}{p} \sum_{i=1}^{p} \|C^T a_i\|^2$$

If we collect the data points into a matrix $A = [a_1, \dots, a_p]$ then the maximum is obtained by setting $c_1, \dots, c_k = u_1, \dots, u_k$ where u_1, \dots, u_k are the first k left singular vectors from the SVD of A. This same choice also minimizes the reconstruction error

$$\frac{1}{p} \sum_{i=1}^{p} \|a_i - CC^T a_i\|^2$$

2 Exercises

1. Show that for any $n \times m$ and $m \times p$ matrices A and B we have

 $\|AB\| \le \|A\| \|B\|$

Can you give an example where the inequality is strict?

- 2. Let A be a matrix with ||A|| = 10. For each of the following matrices, either determine the operator norm or argue that it cannot be determined from ||A|| alone.
 - (a) AA^{\top}
 - (b) A^+
- 3. Let A be a 4×5 matrix with singular values $\sigma_1 = 5, \sigma_2 = 3, \sigma_3 = 2$ and the rest are zero.
 - (a) Find the dimension of the nullspace of A.
 - (b) Let B be the best rank two approximation to A. What is the operator norm of the noise A B? What is the smallest non-zero singular value of B?
- 4. Suppose your data a_1, \ldots, a_p is centered and spans a r dimensional space. If you perform PCA to find the best k dimensional subspace that minimizes reconstruction error. If k < r can the reconstruction error be zero? Why or why not?

3 Solutions

1. By definition, the operator norm of AB is $\max_{x \text{ s.t. } \|x\| \le 1} \|ABx\|$. Suppose that x^* achieves the maximum. Now let $y^* = Bx^*$. Then we have

$$||ABx^*|| = ||Ay^*|| \le ||A|| ||y^*||$$

where we have again invoked the definition of the operator norm. Similarly

$$||y^*|| = ||Bx^*|| \le ||B|| ||x^*||$$

and putting it all together, combined with the fact that $||x^*|| \leq 1$, we have

 $\|ABx^*\| \le \|A\| \|B\|$

An example where the inequality is strict is

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

in which case ||A|| = ||B|| = 1 but ||AB|| = 0.

- 2. ||A|| = 10 means A's largest singular value is 10. The relationship between singular values can be found in recitation 12 note.
 - (a) The singular values of AA^{\top} are the square of those of A. This means $||AA^{\top}||$ is the largest singular value of AA^{\top} which is $10^2 = 100$.
 - (b) The singular values of A^+ are the reciprocal of those of A. This means $||A^+||$ is the largest singular value of A^+ which is the reciprocal of the *smallest* singular values of A. Therefore, $||A^+||$ cannot be determined given ||A|| alone.
- 3. (a) The rank of A is the number of non-zero singular values which is 3. Rank-Nullity Theorem then tells us that rank N(A) = 5 3 = 2.
 - (b) The best rank-2 approximation is given by $B = \sigma_1 u_1 v_1^{\top} + \sigma_2 u_2 v_2^{\top}$. The noise is $A B = \sigma_3 u_3 v_3^{\top}$ which has operator norm $\sigma_3 = 2$. Finally, *B* has two non-zero singular values $\sigma_1 = 5$ and $\sigma_2 = 3$.
- 4. The reconstruction error must be nonzero. For the sake of contradiction, suppose not. Then each individual reconstruction error

$$||a_i - CC^T a_i||^2$$

must be zero. But this can only happen if each a_i is in the subspace spanned by the columns of C. Since the a_i 's span an r dimensional subspace and r > k, there is no k dimensional subspace that contains them all.