Linear Algebra and Optimization

Recitation 13

Tuesday October 25, 2022

Directions Spend at most 15 minutes on the TLDR and then break up into groups to solve problems.

1 TLDR

1.1 Operator Norm

The operator norm, denoted $\|A\|$, is

$$
\|A\|=\max _{x \text { s.t. }\|x\| \leq 1}\|A x\| .
$$

In words, it is the maximum amount the matrix A can scale a unit vector x. It is also equal to the largest singular value of A.

1.2 Low Rank Approximation

We can find the best low rank approximation to B through its truncated singular value decomposition. Suppose $B=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}$ and we want to find, among all rank at most k matrices, the matrix C that minimizes $\|B-C\|$. The minimum is achieved by setting

$$
C=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{\top}
$$

in which case we have $\|B-C\|=\sigma_{k+1}$.

1.3 Principal Component Analysis (PCA)

The goal of PCA is to find a k dimensional subspace that maximizes the projected variance. Suppose we are given p data points a_{1}, \cdots, a_{p} and assume they are centered so that $\sum_{i=1}^{p} a_{i}=0$. Then we want to find a matrix C with k orthonormal columns so as to maximize

$$
\frac{1}{p} \sum_{i=1}^{p}\left\|C^{T} a_{i}\right\|^{2}
$$

If we collect the data points into a matrix $A=\left[a_{1}, \cdots, a_{p}\right]$ then the maximum is obtained by setting $c_{1}, \cdots, c_{k}=u_{1}, \cdots, u_{k}$ where u_{1}, \cdots, u_{k} are the first k left singular vectors from the SVD of A. This same choice also minimizes the reconstruction error

$$
\frac{1}{p} \sum_{i=1}^{p}\left\|a_{i}-C C^{T} a_{i}\right\|^{2}
$$

2 Exercises

1. Show that for any $n \times m$ and $m \times p$ matrices A and B we have

$$
\|A B\| \leq\|A\|\|B\|
$$

Can you give an example where the inequality is strict?
2. Let A be a matrix with $\|A\|=10$. For each of the following matrices, either determine the operator norm or argue that it cannot be determined from $\|A\|$ alone.
(a) $A A^{\top}$
(b) A^{+}
3. Let A be a 4×5 matrix with singular values $\sigma_{1}=5, \sigma_{2}=3, \sigma_{3}=2$ and the rest are zero.
(a) Find the dimension of the nullspace of A.
(b) Let B be the best rank two approximation to A. What is the operator norm of the noise $A-B$? What is the smallest non-zero singular value of B ?
4. Suppose your data a_{1}, \ldots, a_{p} is centered and spans a r dimensional space. If you perform PCA to find the best k dimensional subspace that minimizes reconstruction error. If $k<r$ can the reconstruction error be zero? Why or why not?

3 Solutions

1. By definition, the operator norm of $A B$ is $\max _{x}$ s.t. $\|x\| \leq 1\|A B x\|$. Suppose that x^{*} achieves the maximum. Now let $y^{*}=B x^{*}$. Then we have

$$
\left\|A B x^{*}\right\|=\left\|A y^{*}\right\| \leq\|A\|\left\|y^{*}\right\|
$$

where we have again invoked the definition of the operator norm. Similarly

$$
\left\|y^{*}\right\|=\left\|B x^{*}\right\| \leq\|B\|\left\|x^{*}\right\|
$$

and putting it all together, combined with the fact that $\left\|x^{*}\right\| \leq 1$, we have

$$
\left\|A B x^{*}\right\| \leq\|A\|\|B\|
$$

An example where the inequality is strict is

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

in which case $\|A\|=\|B\|=1$ but $\|A B\|=0$.
2. $\|A\|=10$ means A 's largest singular value is 10 . The relationship between singular values can be found in recitation 12 note.
(a) The singular values of $A A^{\top}$ are the square of those of A. This means $\left\|A A^{\top}\right\|$ is the largest singular value of $A A^{\top}$ which is $10^{2}=100$.
(b) The singular values of A^{+}are the reciprocal of those of A. This means $\left\|A^{+}\right\|$is the largest singular value of A^{+}which is the reciprocal of the smallest singular values of A. Therefore, $\left\|A^{+}\right\|$cannot be determined given $\|A\|$ alone.
3. (a) The rank of A is the number of non-zero singular values which is 3 . RankNullity Theorem then tells us that rank $N(A)=5-3=2$.
(b) The best rank-2 approximation is given by $B=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{2} u_{2} v_{2}^{\top}$. The noise is $A-B=\sigma_{3} u_{3} v_{3}^{\top}$ which has operator norm $\sigma_{3}=2$. Finally, B has two non-zero singular values $\sigma_{1}=5$ and $\sigma_{2}=3$.
4. The reconstruction error must be nonzero. For the sake of contradiction, suppose not. Then each individual reconstruction error

$$
\left\|a_{i}-C C^{T} a_{i}\right\|^{2}
$$

must be zero. But this can only happen if each a_{i} is in the subspace spanned by the columns of C. Since the a_{i} 's span an r dimensional subspace and $r>k$, there is no k dimensional subspace that contains them all.

