Recitation 15

Tuesday Nov 1, 2022

1 TLDR

1.1 Eigenvalues and Eigenvectors

1.1.1 Definition

Let A be a square $n \times n$ matrix. A vector $x \in \mathbb{R}^{n}$ is called an eigenvector iff $A x=\lambda x$ for some scalar λ. All the scalars λ 's satisfying this equation is called an eigenvalue.

1.1.2 Characteristic polynomial

Given a square matrix $A \in \mathbb{R}^{n \times n}$. Its characteristic polynomial $p(\cdot)$ is defined as

$$
p(\lambda)=\operatorname{det}(\lambda I-A) .
$$

which is a degree-n polynomial in $\lambda . \lambda$ is an eigenvalue of A if and only if it is a root of $p(\lambda)$ - that is $p(\lambda)=0$.
A matrix $A \in \mathbb{R}^{n \times n}$ can have up to n distinct eigenvalues - as they are roots of a degree- n polynomial $p(\lambda)=0$.

1.1.3 Properties of Eigenvalues and Eigenvectors

1. The determinant of A is equal to the product of the eigenvalues of A.
2. The trace of A (sum of diagonal elements) is equal to the sum of the eigenvalues of A.
3. If v_{1}, \ldots, v_{k} are eigenvectors associated to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then v_{1}, \ldots, v_{k} are linearly independent.

2 Exercises

1. T / F
(a) If A has eigenvalue 0 , then A is singular.
(b) If v is an eigenvector of A, then $c v$ where c is a scalar, is also a eigenvector of A.
(c) If λ is an eigenvalue of A, then λ^{2} is an eigenvalue of A^{2}.
(d) If $\left(v_{1}, v_{2}, v_{3}\right)$ is an eigenvector of A, then $\left(v_{1}^{2}, v_{2}^{2}, v_{3}^{2}\right)$ is an eigenvector of A^{2}.
(e) If λ is an eigenvalue of A, then λ is also an eigenvalue of A^{T}.
(f) If we add 1 to every entry of A, the eigenvalues of A will all increase by 1 .
(g) If we shift A by I, the eigenvalues of A will all shift by 1 .
(h) The real eigenvalues of $A^{T} A$ must be non-negative.
(i) If two rows in matrix A are switched, the eigenvalues remain the same.
(j) If every row of A sum up to k, then k is an eigenvalue of A.
(k) If every column of A sum up to k, then k is an eigenvalue of A.
2.

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

(a) Find the eigenvalues and eigenvectors of A.
(b) Find the eigenvalues and eigenvectors $2 A$.
(c) Find the eigenvalues and eigenvectors A^{2}.
(d) Find the eigenvalues and eigenvectors A^{-1}.
(e) Find the eigenvalues and eigenvectors $A+4 I$.
3.

$$
A=\left[\begin{array}{lll}
4 & 1 & 6 \\
0 & 2 & 3 \\
0 & 0 & 9
\end{array}\right]
$$

(a) Write the characteristic polynomial for A, and find the eigenvalues.
(b) Find the eigenvector corresponding to each eigenvalue.
4.

$$
A=\left[\begin{array}{ll}
0.8 & 0.3 \\
0.2 & 0.7
\end{array}\right]
$$

(a) Find the eigenvalues and eigenvectors of A. What would you predict to be the eigenvalues of A^{∞} ?
(b) $A^{2}=\left[\begin{array}{ll}0.70 & 0.45 \\ 0.30 & 0.55\end{array}\right]$ Find the eigenvalues and eigenvectors of A^{2} using answers from part (a).
(c) $A^{\infty}=\left[\begin{array}{ll}0.6 & 0.6 \\ 0.4 & 0.4\end{array}\right]$ Find the eigenvalues and eigenvectors of A^{∞}. Does this match your prediction from part (a)?

