18.C06 Linear Algebra and Optimization

Recitation 16

Thursday Nov 3, 2022

1 Recap

1.1 Eigendecomposition

Let $A \in \mathbb{R}^{n \times n}$. A is diagonalizable if A can be written as

$$
\begin{equation*}
A=T D T^{-1} \tag{1}
\end{equation*}
$$

where $D=\operatorname{Diagonal}\left(\lambda_{1}, \ldots, \lambda_{n}\right), T=\left[v_{1} \ldots v_{n}\right]$, and v_{1}, \ldots, v_{n} are the associated eigenvectors. In order for T to be invertible, $\left\{v_{1}, \ldots, v_{n}\right\}$ must be linearly independent.
We know that this is true if the eigenvalues are distinct. However, this is not a necessary condition for A to be diagonalizable.

1.2 Algebraic vs. Geometric Multiplicity

1.2.1 Algebraic Multiplicity

The eigenvalue λ has algebraic multiplicity k if the characteristic polynomial $p(t)$ has a factor $(t-\lambda)^{k}$.

1.2.2 Geometric Multiplicity

The eigenvalue λ has geometric multiplicity K if $\operatorname{dim}(N(\lambda I-A))=K$.

1.2.3 Diagonalization

Theorem 1. A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if every eigenvalue λ has the same algebraic and geometric multiplicity.

1.3 Power of Matrices

- For a diagonalizable matrix $A=T D T^{-1}$, we can compute $A^{k}=T D^{k} T^{-1}$.
- Suppose A is diagonalizable, with eigenvectors v_{1}, \ldots, v_{n} and eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then v_{1}, \ldots, v_{n} and $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$ and are the eigenvectors and eigenvalues of A^{k}.

1.3.1 Polynomial

Define a polynomial in matrix A as:

$$
q(A)=q_{k} A^{k}+q_{k-1} A^{k-1}+\cdots+q_{1} A+q_{0} I
$$

We can also consider such polynomials with "infinitely many terms". These are called power series.

- For example, $e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}=I+A+\frac{1}{2} A^{2}+\cdots$ is a power series in A.
- If A is diagonalizable, then $q(A)$ can be computed as $q(A)=T D_{q} T^{-1}$, where $D_{q}=$ $\operatorname{diagonal}\left(q\left(\lambda_{1}\right), \ldots, q\left(\lambda_{n}\right)\right)$.

1.3.2 Characteristic Polynomial

Cayley-Hamilton Theorem: if $p(\lambda)=\operatorname{det}(\lambda I-A)$, then $p(A)=0$.

1.3.3 Applications - Linear Dynamical System

The recursion $x_{k+1}=A x_{k}$ defines a linear dynamical system. Assume that A is diagonalizable $A=T D T^{-1}$. Oftentimes we are interested in its long-term behavior, i.e., what is x_{k} as $k \rightarrow \infty$?

$$
x_{k}=A^{k} x_{0}=T D^{k} T^{-1} x_{0}=T\left[\begin{array}{cccc}
\lambda_{1}^{k} & & & \\
& \lambda_{2}^{k} & & \\
& & \ddots & \\
& & & \lambda_{n}^{k}
\end{array}\right] T^{-1} x_{0}
$$

Notice that D^{k} is the only factor that has dependency on k; that is the behavior of x_{k} depends on D^{k}.

- If $\left|\lambda_{i}\right|>1$, then $\lambda_{i}^{k} \rightarrow \infty$.
- If $\left|\lambda_{i}\right|<1$, then $\lambda_{i}^{k} \rightarrow 0$.
- If $\left|\lambda_{i}\right|<1$ for every $i=1, \ldots, n$, then $D^{k} \rightarrow 0$ as $k \rightarrow \infty$, and hence $x_{k} \rightarrow 0$. Sometimes we say this is a stable system.
- If x_{0} is an eigenvector of A, then $A^{k} x_{0}=\lambda_{0}^{k} x_{0}$.
- If x_{0} is a linear combination of eigenvectors, e.g. $x_{0}=c_{1} v_{1}+c_{2} v_{2}$, then $A^{k} x_{0}=$ $\lambda_{1}^{k} c_{1} v_{1}+\lambda_{2}^{k} c_{2} v_{2}$.

2 Exercises

2.1 Eigenvalues

1. Let $A \in \mathbb{R}^{n \times n}$. Show that if A has only one eigenvalue with algebraic multiplicity n and is diagonalizable, then A is a multiple of the identity matrix.
2. Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
4 & 2 & 0 \\
6 & 0 & 2
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) For each eigenvalue, find its algebraic and geometric multiplicity.
(c) Is A diagonalizable? If so, find its diagonalization.
3. In this problem, we will explore one of many applications of diagonalization - solving a recurrence relation. In particular, suppose that we have a sequence of real numbers $x_{0}=x_{1}=-1$, and $x_{n+1}=5 x_{n}-6 x_{n-1}$ for any $n \geq 1$. We want to determine a closed form of x_{k} for any $k \geq 0$.
(a) Compute x_{2}, x_{3}.
(b) Let $y_{i}=\left[\begin{array}{c}x_{i+1} \\ x_{i}\end{array}\right]$. What is y_{0} ?
(c) The relationship $x_{n+2}=5 x_{n+1}-6 x_{n}$ implies $y_{n+1}=A y_{n}$ for a proper choice of 2×2 matrix A. Find A. In other words, find the 2×2 matrix A such that

$$
\left[\begin{array}{l}
x_{n+2} \\
x_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right]\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right] \quad \text { for any } n \geq 0
$$

(d) Given the relationship $y_{i+1}=A y_{i}$ for any $i \geq 0$, show that $y_{k}=A^{k} y_{0}$.
(e) Find the eigenvalues λ_{1}, λ_{2} and and their associated eigenvectors v_{1}, v_{2} of A. Find its diagonalization.
(f) Compute $y_{k}=A^{k} y_{0}$. What is x_{k} ?
(g) Compute $x_{0}, x_{1}, x_{2}, x_{3}$ by the formula in part g . Do they match the answers from part a?
(h) Alternatively, write y_{0} as a linear combination of v_{1} and v_{2}. How does it aid us in computing $y_{k}=A^{k} y_{0}$?
4. Consider the matrix

$$
A=\left[\begin{array}{cccc}
0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & -1
\end{array}\right]
$$

(a) What is the sum of the eigenvalues of A ?
(b) What is the product of the eigenvalues of A ?
(c) What is the sum and product of the eigenvalues of $A A^{T}$?

