Recitation 16

Thursday Nov 3, 2022

1 Recap

1.1 Eigendecomposition

Let $A \in \mathbb{R}^{n \times n}$. A is diagonalizable if A can be written as

$$A = TDT^{-1},\tag{1}$$

where $D = Diagonal(\lambda_1, ..., \lambda_n)$, $T = [v_1 ... v_n]$, and $v_1, ..., v_n$ are the associated eigenvectors. In order for T to be invertible, $\{v_1, ..., v_n\}$ must be linearly independent.

We know that this is true if the eigenvalues are distinct. However, this is not a necessary condition for A to be diagonalizable.

1.2 Algebraic vs. Geometric Multiplicity

1.2.1 Algebraic Multiplicity

The eigenvalue λ has algebraic multiplicity k if the characteristic polynomial p(t) has a factor $(t - \lambda)^k$.

1.2.2 Geometric Multiplicity

The eigenvalue λ has geometric multiplicity K if dim $(N(\lambda I - A)) = K$.

1.2.3 Diagonalization

Theorem 1. A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if every eigenvalue λ has the same algebraic and geometric multiplicity.

1.3 Power of Matrices

- For a diagonalizable matrix $A = TDT^{-1}$, we can compute $A^k = TD^kT^{-1}$.
- Suppose A is diagonalizable, with eigenvectors $v_1, ..., v_n$ and eigenvalues $\lambda_1, ..., \lambda_n$. Then $v_1, ..., v_n$ and $\lambda_1^k, ..., \lambda_n^k$ and are the eigenvectors and eigenvalues of A^k .

1.3.1 Polynomial

Define a polynomial in matrix A as:

$$q(A) = q_k A^k + q_{k-1} A^{k-1} + \dots + q_1 A + q_0 I$$

We can also consider such polynomials with "infinitely many terms". These are called power series.

- For example, $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{1}{2}A^2 + \cdots$ is a power series in A.
- If A is diagonalizable, then q(A) can be computed as $q(A) = TD_qT^{-1}$, where $D_q = diagonal(q(\lambda_1), ..., q(\lambda_n))$.

1.3.2 Characteristic Polynomial

Cayley-Hamilton Theorem: if $p(\lambda) = \det(\lambda I - A)$, then p(A) = 0.

1.3.3 Applications - Linear Dynamical System

The recursion $x_{k+1} = Ax_k$ defines a linear dynamical system. Assume that A is diagonalizable $A = TDT^{-1}$. Oftentimes we are interested in its long-term behavior, i.e., what is x_k as $k \to \infty$?

Notice that D^k is the only factor that has dependency on k; that is the behavior of x_k depends on D^k .

- If $|\lambda_i| > 1$, then $\lambda_i^k \to \infty$.
- If $|\lambda_i| < 1$, then $\lambda_i^k \to 0$.
- If $|\lambda_i| < 1$ for every i = 1, ..., n, then $D^k \to 0$ as $k \to \infty$, and hence $x_k \to 0$. Sometimes we say this is a **stable** system.
- If x_0 is an eigenvector of A, then $A^k x_0 = \lambda_0^k x_0$.
- If x_0 is a linear combination of eigenvectors, e.g. $x_0 = c_1v_1 + c_2v_2$, then $A^kx_0 = \lambda_1^k c_1v_1 + \lambda_2^k c_2v_2$.

2 Exercises

2.1 Eigenvalues

- 1. Let $A \in \mathbb{R}^{n \times n}$. Show that if A has only one eigenvalue with algebraic multiplicity n and is diagonalizable, then A is a multiple of the identity matrix.
- 2. Consider the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 0 & 2 \end{bmatrix}$$

- (a) Find the eigenvalues of A.
- (b) For each eigenvalue, find its algebraic and geometric multiplicity.
- (c) Is A diagonalizable? If so, find its diagonalization.
- 3. In this problem, we will explore one of many applications of diagonalization solving a recurrence relation. In particular, suppose that we have a sequence of real numbers $x_0 = x_1 = -1$, and $x_{n+1} = 5x_n 6x_{n-1}$ for any $n \ge 1$. We want to determine a closed form of x_k for any $k \ge 0$.
 - (a) Compute x_2, x_3 .
 - (b) Let $y_i = \begin{bmatrix} x_{i+1} \\ x_i \end{bmatrix}$. What is y_0 ?
 - (c) The relationship $x_{n+2} = 5x_{n+1} 6x_n$ implies $y_{n+1} = Ay_n$ for a proper choice of 2×2 matrix A. Find A. In other words, find the 2×2 matrix A such that

$$\begin{bmatrix} x_{n+2} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} \text{ for any } n \ge 0.$$

- (d) Given the relationship $y_{i+1} = Ay_i$ for any $i \ge 0$, show that $y_k = A^k y_0$.
- (e) Find the eigenvalues λ_1, λ_2 and and their associated eigenvectors v_1, v_2 of A. Find its diagonalization.
- (f) Compute $y_k = A^k y_0$. What is x_k ?
- (g) Compute x_0, x_1, x_2, x_3 by the formula in part g. Do they match the answers from part a?
- (h) Alternatively, write y_0 as a linear combination of v_1 and v_2 . How does it aid us in computing $y_k = A^k y_0$?
- 4. Consider the matrix

$$A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$

- (a) What is the sum of the eigenvalues of A?
- (b) What is the product of the eigenvalues of A?
- (c) What is the sum and product of the eigenvalues of AA^{T} ?