Recitation 15

Tuesday Nov 1, 2022

1 TLDR

1.1 Eigenvalues and Eigenvectors

1.1.1 Definition

Let A be a square $n \times n$ matrix. A vector $x \in \mathbb{R}^{n}$ is called an eigenvector iff $A x=\lambda x$ for some scalar λ. All the scalars λ 's satisfying this equation is called an eigenvalue.

1.1.2 Characteristic polynomial

Given a square matrix $A \in \mathbb{R}^{n \times n}$. Its characteristic polynomial $p(\cdot)$ is defined as

$$
p(\lambda)=\operatorname{det}(\lambda I-A) .
$$

which is a degree- n polynomial in $\lambda . \lambda$ is an eigenvalue of A if and only if it is a root of $p(\lambda)$ - that is $p(\lambda)=0$.
A matrix $A \in \mathbb{R}^{n \times n}$ can have up to n distinct eigenvalues - as they are roots of a degree- n polynomial $p(\lambda)=0$.

1.1.3 Properties of Eigenvalues and Eigenvectors

1. The determinant of A is equal to the product of the eigenvalues of A.
2. The trace of A (sum of diagonal elements) is equal to the sum of the eigenvalues of A.
3. If v_{1}, \ldots, v_{k} are eigenvectors associated to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then v_{1}, \ldots, v_{k} are linearly independent.

2 Exercises

1. T / F
(a) If A has eigenvalue 0 , then A is singular.
(b) If v is an eigenvector of A, then $c v$ where c is a scalar, is also a eigenvector of A.
(c) If λ is an eigenvalue of A, then λ^{2} is an eigenvalue of A^{2}.
(d) If $\left(v_{1}, v_{2}, v_{3}\right)$ is an eigenvector of A, then $\left(v_{1}^{2}, v_{2}^{2}, v_{3}^{2}\right)$ is an eigenvector of A^{2}.
(e) If λ is an eigenvalue of A, then λ is also an eigenvalue of A^{T}.
(f) If we add 1 to every entry of A, the eigenvalues of A will all increase by 1 .
(g) If we shift A by I, the eigenvalues of A will all shift by 1 .
(h) The real eigenvalues of $A^{T} A$ must be non-negative.
(i) If two rows in matrix A are switched, the eigenvalues remain the same.
(j) If every row of A sum up to k, then k is an eigenvalue of A.
(k) If every column of A sum up to k, then k is an eigenvalue of A.
2.

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

(a) Find the eigenvalues and eigenvectors of A.
(b) Find the eigenvalues and eigenvectors $2 A$.
(c) Find the eigenvalues and eigenvectors A^{2}.
(d) Find the eigenvalues and eigenvectors A^{-1}.
(e) Find the eigenvalues and eigenvectors $A+4 I$.
3.

$$
A=\left[\begin{array}{lll}
4 & 1 & 6 \\
0 & 2 & 3 \\
0 & 0 & 9
\end{array}\right]
$$

(a) Write the characteristic polynomial for A, and find the eigenvalues.
(b) Find the eigenvector corresponding to each eigenvalue.
4.

$$
A=\left[\begin{array}{ll}
0.8 & 0.3 \\
0.2 & 0.7
\end{array}\right]
$$

(a) Find the eigenvalues and eigenvectors of A. What would you predict to be the eigenvalues of A^{∞} ?
(b) $A^{2}=\left[\begin{array}{ll}0.70 & 0.45 \\ 0.30 & 0.55\end{array}\right]$ Find the eigenvalues and eigenvectors of A^{2} using answers from part (a).
(c) $A^{\infty}=\left[\begin{array}{ll}0.6 & 0.6 \\ 0.4 & 0.4\end{array}\right]$ Find the eigenvalues and eigenvectors of A^{∞}. Does this match your prediction from part (a)?

3 Solutions

1. (a) True. $A v=0 v \Rightarrow A v=0$ has some nontrivial solution, i.e. the nullspace is more than just the zero vector. Therefore A is singular.
(b) True. $A v=\lambda v \Rightarrow A(c v)=c(A v)=c(\lambda v)=\lambda(c v)$. Therefore $c v$ is also an eigenvector.
(c) True. $A v=\lambda v \Rightarrow A^{2} v=A(A v)=A(\lambda v)=\lambda(A v)=\lambda^{2} v$. Therefore λ^{2} is also an eigenvalue.
(d) False. From (c) we see that v is an eigenvector of A^{2}.
(e) True. The eigenvalues of A are solutions to the equation $\operatorname{det}(\lambda I-A)=0$. Then $\operatorname{det}\left((\lambda I-A)^{T}\right)=0 \Rightarrow \operatorname{det}\left(\lambda I-A^{T}\right)=0$. Therefore λ is also an eigenvalue of A^{T}.
(f) False. Take the matrix A from problem 2 below as an example. You can check that this is not true.
(g) True. $A v=\lambda v \Rightarrow(A+I) v=\lambda v+v=(\lambda+1) v$. So $\lambda+1$ is now an eigenvalue.
(h) True. Let v be an eigenvector of $A^{T} A$, i.e. $A^{T} A v=\lambda v$. Then $\|A v\|^{2}=$ $(A v)^{T}(A v)=v^{T} A^{T} A v=v^{T} \lambda v=\lambda\|v\|^{2} \geq 0$. Since $\|A v\|^{2}$ and $\|v\|^{2}$ are nonnegative, λ must be nonnegative.
(i) False. Take matrix A from problem 4 below as an example and check that this is not true.
(j) True. Since every row sums to k, let $v=\left[\begin{array}{lll}1 & 1 & \ldots\end{array}\right]^{T}$, then $A v$ sums up every entry in each row and is equal to $[k k \ldots k]^{T}$. Therefore, $A v=k v . k$ is hence an eigenvalue of A.
(k) True. The same vector v from part (j) is an eigenvector for A^{T}, and $A^{T} v=k v$. So k is an eigenvalue of A^{T}. Then applying what we have shown in part (e), we see that k is also an eigenvalue of A.
2. (a)

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =0 \\
(2-\lambda)^{2}-(-1)^{2} & =0 \\
\lambda^{2}-4 \lambda+3 & =0 \\
(\lambda-1)(\lambda-3) & =0 \\
\lambda_{1}=1, \lambda_{2}=3 &
\end{aligned}
$$

To find the eigenvectors,

$$
\begin{aligned}
& A v_{1}=v_{1} \\
&(A-I) v_{1}=0 \\
& {\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] v_{1} }=0 \\
& v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Similarly, for v_{2}, we have $(A-3 I) v_{2}=0$ and $v_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
(b)

$$
\begin{aligned}
A v & =\lambda v \\
2 A v & =(2 \lambda) v
\end{aligned}
$$

The eigenvalues are double the value of those of A, i.e. $\lambda=2,6$, with eigenvectors v_{1}, v_{2} from part (a), respectively.
(c)

$$
A^{2} v=A A v=A(\lambda v)=\lambda(A v)=\lambda^{2} v
$$

The eigenvalues are 1 and 9 , with eigenvectors v_{1}, v_{2} from part (a), respectively.
(d)

$$
\begin{aligned}
A v & =\lambda v \\
A^{-1} \lambda v & =v \\
A^{-1} v & =\frac{1}{\lambda} v
\end{aligned}
$$

The eigenvalues are 1 and $1 / 3$, with eigenvectors v_{1} and v_{2} from part (a), respectively.
(e)

$$
\begin{aligned}
A v & =\lambda v \\
(A+4 I) v & =A v+4 v=(\lambda+4) v
\end{aligned}
$$

The eigenvalues are 5 and 7 , with eigenvectors v_{1} and v_{2} from part (a), respectively.
3. (a)

$$
\begin{aligned}
& \quad p(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-4)(\lambda-2)(\lambda-9)=0 \\
& \lambda_{1}=4, \lambda_{2}=2, \lambda_{3}=9 .
\end{aligned}
$$

(b) Solve for $(A-4 I) v_{1}=0,(A-2 I) v_{2}=0,(A-9 I) v_{3}=0$. We get $v_{1}=$ $(1,0,0), v_{2}=(-120), v_{3}=\left(\frac{9}{7}, \frac{3}{7}, 1\right)$.
4. (a) $\lambda_{1}=1, \lambda_{2}=0.5$. $v_{1}=(1,1), v_{2}=(1,-1)$. The eigenvalues of A^{∞} will approach 1 and $0 . \lambda_{1}^{\infty} \rightarrow 1, \lambda_{2}^{\infty} \rightarrow 0$.
(b) The eigenvalues of A^{2} will be 1 and 0.25 , with eigenvectors v_{1} and v_{2} from part (a) respectively.
(c) The eigenvalues are 1 and 0 . We know that 1 is an eigenvalue because both columns add up to 1.0 is an eigenvalue because A^{∞} is singular. This matches our prediction in (a).

