Recitation 15

Tuesday Nov 1, 2022

1 TLDR

1.1 Eigenvalues and Eigenvectors

1.1.1 Definition

Let A be a square $n \times n$ matrix. A vector $x \in \mathbb{R}^n$ is called an *eigenvector* iff $Ax = \lambda x$ for some scalar λ . All the scalars λ 's satisfying this equation is called an *eigenvalue*.

1.1.2 Characteristic polynomial

Given a square matrix $A \in \mathbb{R}^{n \times n}$. Its characteristic polynomial $p(\cdot)$ is defined as

$$p(\lambda) = \det(\lambda I - A).$$

which is a degree-*n* polynomial in λ . λ is an eigenvalue of *A* if and only if it is a root of $p(\lambda)$ – that is $p(\lambda) = 0$.

A matrix $A \in \mathbb{R}^{n \times n}$ can have up to *n* distinct eigenvalues – as they are roots of a degree-*n* polynomial $p(\lambda) = 0$.

1.1.3 Properties of Eigenvalues and Eigenvectors

- 1. The determinant of A is equal to the product of the eigenvalues of A.
- 2. The trace of A (sum of diagonal elements) is equal to the sum of the eigenvalues of A.
- 3. If $v_1, ..., v_k$ are eigenvectors associated to distinct eigenvalues $\lambda_1, ..., \lambda_k$, then $v_1, ..., v_k$ are linearly independent.

2 Exercises

1. T/F

- (a) If A has eigenvalue 0, then A is singular.
- (b) If v is an eigenvector of A, then cv where c is a scalar, is also a eigenvector of A.
- (c) If λ is an eigenvalue of A, then λ^2 is an eigenvalue of A^2 .
- (d) If (v_1, v_2, v_3) is an eigenvector of A, then (v_1^2, v_2^2, v_3^2) is an eigenvector of A^2 .
- (e) If λ is an eigenvalue of A, then λ is also an eigenvalue of A^T .
- (f) If we add 1 to every entry of A, the eigenvalues of A will all increase by 1.
- (g) If we shift A by I, the eigenvalues of A will all shift by 1.
- (h) The real eigenvalues of $A^T A$ must be non-negative.
- (i) If two rows in matrix A are switched, the eigenvalues remain the same.
- (j) If every row of A sum up to k, then k is an eigenvalue of A.
- (k) If every column of A sum up to k, then k is an eigenvalue of A.

2.

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Find the eigenvalues and eigenvectors 2A.
- (c) Find the eigenvalues and eigenvectors A^2 .
- (d) Find the eigenvalues and eigenvectors A^{-1} .
- (e) Find the eigenvalues and eigenvectors A + 4I.

3.

$$A = \begin{bmatrix} 4 & 1 & 6 \\ 0 & 2 & 3 \\ 0 & 0 & 9 \end{bmatrix}$$

- (a) Write the characteristic polynomial for A, and find the eigenvalues.
- (b) Find the eigenvector corresponding to each eigenvalue.

4.

$$A = \begin{bmatrix} 0.8 & 0.3\\ 0.2 & 0.7 \end{bmatrix}$$

- (a) Find the eigenvalues and eigenvectors of A. What would you predict to be the eigenvalues of A^{∞} ?
- (b) $A^2 = \begin{bmatrix} 0.70 & 0.45 \\ 0.30 & 0.55 \end{bmatrix}$ Find the eigenvalues and eigenvectors of A^2 using answers from part (a).
- (c) $A^{\infty} = \begin{bmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{bmatrix}$ Find the eigenvalues and eigenvectors of A^{∞} . Does this match your prediction from part (a)?

3 Solutions

- 1. (a) True. $Av = 0v \Rightarrow Av = 0$ has some nontrivial solution, i.e. the nullspace is more than just the zero vector. Therefore A is singular.
 - (b) True. $Av = \lambda v \Rightarrow A(cv) = c(Av) = c(\lambda v) = \lambda(cv)$. Therefore cv is also an eigenvector.
 - (c) True. $Av = \lambda v \Rightarrow A^2 v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda^2 v$. Therefore λ^2 is also an eigenvalue.
 - (d) False. From (c) we see that v is an eigenvector of A^2 .
 - (e) True. The eigenvalues of A are solutions to the equation $det(\lambda I A) = 0$. Then $det((\lambda I A)^T) = 0 \Rightarrow det(\lambda I A^T) = 0$. Therefore λ is also an eigenvalue of A^T .
 - (f) False. Take the matrix A from problem 2 below as an example. You can check that this is not true.
 - (g) True. $Av = \lambda v \Rightarrow (A+I)v = \lambda v + v = (\lambda+1)v$. So $\lambda + 1$ is now an eigenvalue.
 - (h) True. Let v be an eigenvector of $A^T A$, i.e. $A^T A v = \lambda v$. Then $||Av||^2 = (Av)^T (Av) = v^T A^T A v = v^T \lambda v = \lambda ||v||^2 \ge 0$. Since $||Av||^2$ and $||v||^2$ are nonnegative, λ must be nonnegative.
 - (i) False. Take matrix A from problem 4 below as an example and check that this is not true.
 - (j) True. Since every row sums to k, let $v = [1 \ 1 \ ... \ 1]^T$, then Av sums up every entry in each row and is equal to $[k \ k... \ k]^T$. Therefore, Av = kv. k is hence an eigenvalue of A.
 - (k) True. The same vector v from part (j) is an eigenvector for A^T , and $A^T v = kv$. So k is an eigenvalue of A^T . Then applying what we have shown in part (e), we see that k is also an eigenvalue of A.

2.
$$(a)$$

$$det(\lambda I - A) = 0$$
$$(2 - \lambda)^2 - (-1)^2 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$
$$(\lambda - 1)(\lambda - 3) = 0$$
$$\lambda_1 = 1, \lambda_2 = 3$$

To find the eigenvectors,

$$Av_{1} = v_{1}$$
$$(A - I)v_{1} = 0$$
$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} v_{1} = 0$$
$$v_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Similarly, for v_2 , we have $(A - 3I)v_2 = 0$ and $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(b)

$$Av = \lambda v$$
$$2Av = (2\lambda)v$$

The eigenvalues are double the value of those of A, i.e. $\lambda = 2, 6$, with eigenvectors v_1, v_2 from part (a), respectively.

(c)

$$A^{2}v = AAv = A(\lambda v) = \lambda(Av) = \lambda^{2}v$$

The eigenvalues are 1 and 9, with eigenvectors v_1, v_2 from part (a), respectively. (d)

$$Av = \lambda v$$
$$A^{-1}\lambda v = v$$
$$A^{-1}v = \frac{1}{\lambda}v$$

The eigenvalues are 1 and 1/3, with eigenvectors v_1 and v_2 from part (a), respectively.

(e)

$$Av = \lambda v$$

(A+4I)v = Av + 4v = (\lambda + 4)v

The eigenvalues are 5 and 7, with eigenvectors v_1 and v_2 from part (a), respectively.

3. (a)

$$p(\lambda) = det(\lambda I - A) = (\lambda - 4)(\lambda - 2)(\lambda - 9) = 0$$

 $\lambda_1 = 4, \lambda_2 = 2, \lambda_3 = 9.$

- (b) Solve for $(A 4I)v_1 = 0, (A 2I)v_2 = 0, (A 9I)v_3 = 0$. We get $v_1 = (1, 0, 0), v_2 = (-120), v_3 = (\frac{9}{7}, \frac{3}{7}, 1)$.
- 4. (a) $\lambda_1 = 1, \lambda_2 = 0.5$. $v_1 = (1, 1), v_2 = (1, -1)$. The eigenvalues of A^{∞} will approach 1 and 0. $\lambda_1^{\infty} \to 1, \lambda_2^{\infty} \to 0$.
 - (b) The eigenvalues of A^2 will be 1 and 0.25, with eigenvectors v_1 and v_2 from part (a) respectively.
 - (c) The eigenvalues are 1 and 0. We know that 1 is an eigenvalue because both columns add up to 1. 0 is an eigenvalue because A^{∞} is singular. This matches our prediction in (a).