Linear Algebra and Optimization

Recitation 17

Tuesday November 8, 2022

Directions Go over problems from Recitation 16 if any were not covered before moving to this recitation.

1 Recap

1.1 Symmetric Matrices

Symmetric matrices are important to study, often appearing in applications such as the Hessian second derivative and optimization problems. A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A=A^{\top}$.
With real symmetric matrices, all eigenvalues λ_{i} are real and eigenvectors can always be chosen to be orthogonal. We can then create the eigendecomposition

$$
A=T D T^{\top} \quad \text { or equivalently } \quad A=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}
$$

where A is a real symmetric matrix, T is the matrix of orthogonal eigenvectors, and D is a diagonal matrix of eigenvalues.

1.2 Quadratic Functions as Matrices

Oftentimes, we want to express quadratic functions as matrices to solve in an optimization problem. Any quadratic function $f\left(x_{1}, \ldots, x_{n}\right)$ can be expressed as

$$
x^{\top} A x+b^{\top} x
$$

where A is a symmetric matrix $\in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ are coefficient matrices, and $x=$ $\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{\top}$ represents a vector of n variables.

2 Exercises

Initially go over exercises from previous recitation not covered

1. True or False
(a) If a matrix A is symmetric and invertible, so is A^{-1}.
(b) For any matrix A, the matrix $A A^{T}$ is symmetric.
2. Write the following equations in matrix-vector form $x^{T} A x+b^{T} x$
(a) $4 x^{2}-6 x y+2 y^{2}+7 x-35 y$
(b) $\frac{5}{2} x^{2}-2 x y-x z+2 y^{2}+3 y z+\frac{5}{2} z^{2}+2 x-35 y-47 z$
3. Solve the following linear ODE. Use Julia to calculate any inverses of matrices.

$$
\begin{aligned}
\frac{d x(t)}{d t} & =-6 x(t)+3 y(t) \\
\frac{d y(t)}{d t} & =4 x(t)+5 y(t)
\end{aligned}
$$

3 Solutions

1. (a) True. We need to check $\left(A^{-1}\right)^{T}=A^{-1}$. We know $A=A^{T}$. Since $A A^{-1}=I_{n}$, transposing both sides we have $\left(A A^{-1}\right)^{T}=I$, so $\left.A^{-1}\right)^{T} A^{T}=I_{n}$. This mean that the inverse of A^{T} is $\left(A^{-1}\right)^{T}$. So $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=A^{-1}$.
(b) True. Symmetric means equal to its transpose, and $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=$ $A A^{T}$.
2. (a) $A=\left[\begin{array}{cc}4 & -3 \\ -3 & 2\end{array}\right], b^{T}=\left[\begin{array}{lll}2 & -35 & -47\end{array}\right]$
(b) $A=\frac{1}{2}\left[\begin{array}{ccc}5 & -2 & -1 \\ -2 & 4 & 3 \\ -1 & 3 & 5\end{array}\right], b^{T}=\left[\begin{array}{lll}2 & -35 & -47\end{array}\right]$
3. $\left[\begin{array}{c}\frac{d x(t)}{d t} \\ \frac{d y(t)}{d t}\end{array}\right]=\left[\begin{array}{cc}-6 & 3 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$. The eigenvalues of the A matrix are 6 and -7 and the eigenvectors are $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}3 \\ -1\end{array}\right]$ respectively.
Then, we can say that $\left[\begin{array}{l}\frac{d x(t)}{d t} \\ \frac{d y(t)}{d t}\end{array}\right]=V\left[\begin{array}{cc}6 & 0 \\ 0 & -7\end{array}\right] V^{-1}\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ where $V=\left[\begin{array}{cc}1 & 3 \\ 4 & -1\end{array}\right]$.
We can then do a change of base to say that

$$
\begin{gathered}
r(t)=r(0) e^{6 t} \\
s(t)=s(0) e^{-7 t}
\end{gathered}
$$

, where

$$
\left[\begin{array}{l}
\frac{d r(t)}{d t} \\
\frac{d s(t)}{d t}
\end{array}\right]=V^{-1}\left[\begin{array}{l}
\frac{d x(t)}{d t} \\
\frac{d y(t)}{d t}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
r(0) \\
s(0)
\end{array}\right]=V^{-1}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]
$$

Substituting our change of base back into our original equation, we obtain:

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=V\left[\begin{array}{cc}
e^{6 t} & 0 \\
0 & e^{-7 t}
\end{array}\right]\left[\begin{array}{l}
r(0) \\
s(0)
\end{array}\right]=\left[\begin{array}{c}
e^{6 t} r(0)-3 e^{-7 t} s(0) \\
4 e^{6 t} r(0)-e^{-7 t} s(0)
\end{array}\right]
$$

