
Linear Algebra and Optimization
MIT 18.C06 Fall 2022

Recitation 14
Thursday October 27, 2022

Directions Spend at most 10 minutes on the TLDR and then break up into groups to
solve problems. Even if you have read the midterm solutions, test your understanding by
trying to explain the solution to someone else.

1 TLDR

1.1 Word Embeddings

Yet another application of the SVD is computing word embeddings. Given a collection
of m documents, we form the word-by-word co-occurrence matrix A and let A = UΣV T

be its SVD. Let U1:k be the first k columns of U . Then the rows of U1:k represents each
word as a k-dimensional vector. Now we can solve analogies like

Man:Woman :: King:?

by forming the vector difference vking +(vwoman− vman) and searching for the word whose
vector is closest. As we saw in lecture, word embeddings can reveal hidden biases in your
data.

2 Midterm Revisit and Exercises

Q4 Suppose T is an invertible matrix. Let B = AT . Then N(B) = N(A). True or
False?

Q6 Consider two n× n projection matrices

P = I − v1v
⊤
1 and Q = I − v2v

⊤
2

where v1 and v2 have unit norm and are orthogonal to each other. Let A = PQ

(a) What is the dimension of N(A)? Find an orthonormal basis for N(A).

(b) What is the rank of A?

(c) Is A a projection matrix?

Q8 We want to measure the mass m of a bunny. Since in practice measurements always
have errors, we weigh the bunny 4 times, obtaining slightly different results each
time. This procedure gives rise to the system of equations

m = w1, m = w2, m = w3, m = w4,

where wi is the result of the i-th measurement.
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(a) Write this as a linear system in matrix form Ax = b. What are the sizes of
your matrices A and b?

Hint: How many variables are there? How many linear equations? Does this
tell you what the dimensions of your linear system should be?

(b) Is this system solvable for every right-hand side? When the system is solvable,
is the solution necessarily unique?

(c) Give bases for the subspaces C(A) and C(A)⊥. What are their dimensions?

(d) Compute the projection of b onto C(A), and (optionally) interpret the results.

1. If you understand it deeply, the SVD gives a unified way to understand a lot of linear
algebraic statements. Let’s revisit some assertions we’ve made in class (particularly
in the context of least squares) and give a direct argument via the SVD:

(a) If A has full column rank then ATA is invertible.

(b) If A has full row rank then it has right-inverse.

(c) Let A be an n ×m matrix and λ > 0. Then, A⊤A + λIn is invertible. Is this
true when λ can be negative? Show a counter example. Hint: What is an SVD
of A⊤A? What would happen if we try to add λIn?
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3 Solutions

Q4 False. Consider the following matrices

A =

1 1 0
1 1 0
0 0 1

 and T =

0 0 1
0 1 0
1 0 0

 which implies B =

0 1 1
0 1 1
1 0 0


It is easy to see that

N(A) = span
( 1

−1
0

)
but N(B) = span

( 0
1
−1

)

Q6 (a) The dimension of N(A) is two and {v1, v2} forms an orthonormal basis. It is
easy to see that Avi = 0. Moreover for any vector v we can form an orthogonal
decomposition v = u + w where u is in the span of v1 and v2 and w is in the
orthogonal complement. Then Av = u and so if v is not in the span of v1 and
v2 it is not in the nullspace.

(b) By the rank-nullity theorem, we have that

rank(A) + dimN(A) = n.

By the previous item, dimN(A) = 2, and thus the rank of A is n− 2.

(c) Yes. We can write out

A = (I − v1v
⊤
1 )(I − v2v

⊤
2 ) = I − v1v

⊤
1 − v2v

⊤
2 ,

so this is the projection onto the orthogonal complement of span{v1, v2}. We
can also verify that A2 = A.

Q8 (a) In this problem the measurements wi are given, and we are trying to find the
value of the mass m (i.e., m is the variable to solve for). The given equations
can then be written as the linear system Am = b, where

A =


1
1
1
1

 , b =


w1

w2

w3

w4

 .

Both matrices A and b have size 4× 1.

(b) The system is only solvable for some particular right-hand sides, namely when
all the measurements wi are equal. If that’s the case, the solution is unique:
m = w1 = · · · = w4.

(c) We have

C(A) = span



1
1
1
1


 , C(A)⊥ = N(AT ) = span




1
−1
0
0

 ,


0
1
−1
0

 ,


0
0
1
−1


 ,

which have dimensions 1 and 3, respectively.
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(d) The orthogonal projection of [w1, w2, w3, w4] onto C(A) is [w̄, w̄, w̄, w̄], where
w̄ := (w1 + w2 + w3 + w4)/4 is the average of the measurements.

1. (a) Let A = UΣV T be the SVD. Suppose A is n ×m. If A has full column rank
then it has m nonzero singular values, because the dimension of N(A) is m
minus the rank. Now we compute

ATA = V ΣTΣV T

It is easy to see that ΣTΣ is an m × m matrix whose singular values are σ2
i .

Since all its m singular values are nonzero, we know that ATA is invertible.

(b) If A is n×m and has full row rank, its SVD and pseudoinverse must have the
form

A = U
[
Σ 0

]
V T , A+ = V

[
Σ−1

0

]
UT ,

where Σ is n × n, diagonal, and nonsingular. Then, we can easily verify that
AA+ = In, and thus A+ is a right-inverse of A.

(For comparison, here’s an “old style” proof: since A is full row rank, the matrix AAT is

invertible (why?). Then, an explicit right inverse is R = AT (AAT )−1, since AR = In. The

SVD approach seems simpler – no theorems or formulas to remember!)

(c) Consider the SVD A = UΣV ⊤. As derived earlier, we have A⊤A = V Σ⊤ΣV ⊤.
Notice that In = V (λIn)V

⊤; therefore

A⊤A+ λIn = V (Σ⊤Σ + λIn)V
⊤

The above expression is the SVD and thus the singular values of A⊤A + λIn
are σ2

i +λ. Since λ > 0 all these singular values are positive which implies that
A⊤A+ λIn has rank m, or, equivalently, invertible.
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