Recitation 19

Thursday November 17, 2022

1 Recap

1.1 Non-negative matrices

- 1. Definition. A non-negative matrix is a **square** matrix with only **non-negative entries**.
- 2. Perron's Theorem

Let A be a positive matrix; then A has a **positive eigenvalue** λ such that

- (a) λ has algebraic and geometric multiplicity 1
- (b) the value of λ is greater than the absolute value of any other eigenvalue of A (dominant eigenvalue)
- (c) the corresponding **eigenvector** v **is positive** (up to a scalar factor)

3. Markov Matrices

A Markov matrix is a **non-negative** matrix where the **sum of each row or column is equal to 1**.

- (a) If the row elements add up to 1, it is called row stochastic. If the column elements add up to 1, then it is called column stochastic.
- (b) It has eigenvalue 1, and the corresponding eigenvector is non-negative.
- (c) All other eigenvalues have absolute value less than or equal to 1.

4. Applications

(a) Page Rank

Suppose we have a system of n pages $T_1, ..., T_n$. Let $B(T_i)$ be the set of links pointing to page T_i , and let $C(T_i)$ be the number of links going out of page T_i . The rank of page T_i is defined as:

$$PR(T_i) = (1 - d)\frac{1}{n} + d\sum_{j \in B(T_i)} \frac{PR(T_j)}{|C(T_j)|}$$
(1)

d is a damping parameter between 0 and 1. Smaller d makes the distribution more uniform.

We want to express the page rank of all pages in matrix form. Let G be an

LAOP: Recitation 19 Nov 17, 2022

 $n \times n$ matrix where each entry $G_{ij} = \mathbb{1}_{j \in B(T_i)} \times \frac{1}{|C(T_j)|}$, i.e. $G_{ij} = \frac{1}{|C(T_j)|}$ if page T_i points to T_j , otherwise $G_{ij} = 0$. Let **e** be a vector of 1's.

$$\begin{bmatrix} PR(T_i) \\ \dots \\ PR(T_n) \end{bmatrix} = \left(\frac{1-d}{n}\right) \mathbf{e} + d\mathbf{G} \begin{bmatrix} PR(T_i) \\ \dots \\ PR(T_n) \end{bmatrix}$$
(2)

$$\mathbf{p} = \left(\frac{1-d}{n}\mathbf{e}\mathbf{e}^T + d\mathbf{G}\right)\mathbf{p} = \mathbf{M}\mathbf{p}$$
 (3)

We go from equation (2) to (3) using the fact that $e^T p$ is equal to 1 (the page ranks of all pages add up to 1). Matrix **M** in equation (2) is a Markov matrix.

(b) Probability Transition

More generally, we can use a Markov matrix to represent the probability transition between states.

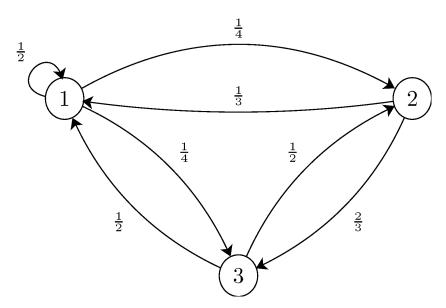
- i. Column Stochastic (Hopping Rabbit)
 - Let A_{ij} be the probability of jumping to state i given that you are currently in state j. In this case, the total transition probability from some state j to any other state i must be 1, i.e. each column adds up to 1. The probability update is $x_{k+1} = Ax_k$.
- ii. Row Stochastic

Let A_{ij} be the probability of jumping to state j given that you are currently in state i. Since the total transition probability from state i to all other states must be 1, i.e. each row adds up to 1. The probability update is $x_{k+1}^T = x_k^T A$.

LAOP: Recitation 19 Nov 17, 2022

2 Exercises

- 1. True/False: explain or give a counter example
 - (a) A markov matrix can have negative eigenvalues.
 - (b) The transpose of a markov matrix can also be a markov matrix.
 - (c) The product of two column-stochastic matrices is also column-stochastic.
 - (d) The product of two row-stochastic matrices is also row-stochastic.
- 2. Show that all eigenvalues of a row stochastic matrix are in absolute value smaller or equal to 1.



- 3.
- (a) Write the transition matrix A associated with the state diagram above.
- (b) The initial state is $x_0 = (1, 0, 0)$, i.e. we start in state 1. What is the probability vectors for the next time step x_1 ?
- (c) In the long-term, which state do you think is more probable?
- (d) Find the steady state vector, i.e. what is x such that $x_{k+1} = x_k$? Does this match your expectation in part c? Is it unique?