Linear Algebra and Optimization

Recitation 19

Thursday November 17, 2022

1 Recap

1.1 Non-negative matrices

1. Definition. A non-negative matrix is a square matrix with only non-negative entries.
2. Perron's Theorem

Let A be a positive matrix; then A has a positive eigenvalue λ such that
(a) λ has algebraic and geometric multiplicity 1
(b) the value of λ is greater than the absolute value of any other eigenvalue of A (dominant eigenvalue)
(c) the corresponding eigenvector v is positive (up to a scalar factor)
3. Markov Matrices

A Markov matrix is a non-negative matrix where the sum of each row or column is equal to 1 .
(a) If the row elements add up to 1 , it is called row stochastic. If the column elements add up to 1 , then it is called column stochastic.
(b) It has eigenvalue 1, and the corresponding eigenvector is non-negative.
(c) All other eigenvalues have absolute value less than or equal to 1 .

4. Applications

(a) Page Rank

Suppose we have a system of n pages T_{1}, \ldots, T_{n}. Let $B\left(T_{i}\right)$ be the set of links pointing to page T_{i}, and let $C\left(T_{i}\right)$ be the number of links going out of page T_{i}. The rank of page T_{i} is defined as:

$$
\begin{equation*}
\operatorname{PR}\left(T_{i}\right)=(1-d) \frac{1}{n}+d \sum_{j \in B\left(T_{i}\right)} \frac{P R\left(T_{j}\right)}{\left|C\left(T_{j}\right)\right|} \tag{1}
\end{equation*}
$$

d is a damping parameter between 0 and 1 . Smaller d makes the distribution more uniform.
We want to express the page rank of all pages in matrix form. Let G be an
$n \times n$ matrix where each entry $G_{i j}=\mathbb{1}_{j \in B\left(T_{i}\right)} \times \frac{1}{\left|C\left(T_{j}\right)\right|}$, i.e. $G_{i j}=\frac{1}{\left|C\left(T_{j}\right)\right|}$ if page T_{i} points to T_{j}, otherwise $G_{i j}=0$. Let \mathbf{e} be a vector of 1's.

$$
\begin{align*}
{\left[\begin{array}{c}
P R\left(T_{i}\right) \\
\ldots \\
P R\left(T_{n}\right)
\end{array}\right] } & =\left(\frac{1-d}{n}\right) \mathbf{e}+d \mathbf{G}\left[\begin{array}{c}
P R\left(T_{i}\right) \\
\ldots \\
P R\left(T_{n}\right)
\end{array}\right] \tag{2}\\
\mathbf{p} & =\left(\frac{1-d}{n} \mathbf{e e}^{T}+d \mathbf{G}\right) \mathbf{p}=\mathbf{M} \mathbf{p} \tag{3}
\end{align*}
$$

We go from equation (2) to (3) using the fact that $e^{T} p$ is equal to 1 (the page ranks of all pages add up to 1). Matrix \mathbf{M} in equation (2) is a Markov matrix.
(b) Probability Transition

More generally, we can use a Markov matrix to represent the probability transition between states.
i. Column Stochastic (Hopping Rabbit)

Let $A_{i j}$ be the probability of jumping to state i given that you are currently in state j. In this case, the total transition probability from some state j to any other state i must be 1, i.e. each column adds up to 1 . The probability update is $x_{k+1}=A x_{k}$.
ii. Row Stochastic

Let $A_{i j}$ be the probability of jumping to state j given that you are currently in state i. Since the total transition probability from state i to all other states must be 1, i.e. each row adds up to 1 . The probability update is $x_{k+1}^{T}=x_{k}^{T} A$.

2 Exercises

1. True/False: explain or give a counter example
(a) A markov matrix can have negative eigenvalues.
(b) The transpose of a markov matrix can also be a markov matrix.
(c) The product of two column-stochastic matrices is also column-stochastic.
(d) The product of two row-stochastic matrices is also row-stochastic.
2. Show that all eigenvalues of a row stochastic matrix are in absolute value smaller or equal to 1 .

(a) Write the transition matrix A associated with the state diagram above.
(b) The initial state is $x_{0}=(1,0,0)$, i.e. we start in state 1 . What is the probability vectors for the next time step x_{1} ?
(c) In the long-term, which state do you think is more probable?
(d) Find the steady state vector, i.e. what is x such that $x_{k+1}=x_{k}$? Does this match your expectation in part c? Is it unique?
