Linear Algebra and Optimization

Recitation 20

Tuesday November 22, 2022

1 Recap

1.1 Unconstrained Quadratic Programming

Any quadratic function $f\left(x_{1}, \ldots, x_{n}\right)$ can be expressed as $x^{\top} A x+b^{\top} x$ where A is a symmetric matrix $\in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ are coefficient matrices, and $x=\left[x_{1} \ldots x_{n}\right]^{\top}$ represents a vector of n variables.
Our goal is to find x^{*} that minimizes the objective function f. In other words, we want to find

$$
x^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} x^{\top} A x+b^{\top} x
$$

We might also want to the minimum value of f attained by x^{*} which is $f\left(x^{*}\right)$.

1.1.1 Simplifying via Eigendecomposition

Using the fact that A is symmetric, we express $A=U D U^{\top}$, where U is orthogonal $\left(U U^{\top}=I\right)$ and D is diagonal of A 's eigenvalues. Now, our minimization problem looks like

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} x^{\top} A z+b^{T} x \\
& =\min _{x \in \mathbb{R}^{n}}\left(x^{\top} U\right) D\left(U^{\top} x\right)+b^{\top} U\left(U^{\top} x\right) \\
& =\min _{z \in \mathbb{R}^{n}} z^{\top} D z+\hat{b}^{\top} z
\end{aligned}
$$

where $z=U^{\top} x$ and $\hat{b}^{\top}=b^{\top} U$.
The expression is equivalent to

$$
\min _{z \in \mathbb{R}^{n}}\left(\sum_{i=1}^{n} \lambda_{i} z_{i}^{2}+\hat{b_{i}} z_{i}\right)=\sum_{i=1}^{n} \min _{z_{i}}\left(\lambda_{i} z_{i}^{2}+\hat{b_{i}} z_{i}\right)
$$

For each term of the summation,

- If $\lambda_{i}>0$, then the minimum value is $-\hat{b}_{i}^{2} /\left(4 \lambda_{i}\right)^{2}$ attained by $z_{i}=-\hat{b_{i}} /\left(2 \lambda_{i}\right)$.
- If $\lambda_{i}=0$, we can find a minimum only if $\hat{b}_{i}=0$, which yields the minimum value 0 attained by any $z_{i} \in \mathbb{R}$.
- If $\lambda_{i}<0$, then we cannot find a minimum since $\lambda_{i} z_{i}^{2}+\hat{b_{i}} z_{i} \rightarrow-\infty$ when $\left|z_{i}\right| \rightarrow+\infty$.

When A is symmetric:

- if all of A 's eigenvalues are strictly positive, we say A is positive definite ($p d$)
- if all of A 's eigenvalues are non-negative, we say A is positive semidefinite ($p s d$)

Altogether, we can find a solution if matrix A is either 1) pd, or 2) psd with additional conditions that $\hat{b}=0$ whenever $\lambda_{i}=0$.

Finally, if the minimum value (w.r.t z_{i} 's) is attainable by z^{*}, then we can retrive $x^{*}=$ $\left(U U^{\top}\right) x^{*}=U\left(U^{\top} x^{*}\right)=U z^{*}$.

1.2 Equality Constrained QP

We are interested in solving a quadratic program (QP) for which the set of feasible points is no longer the whole space \mathbb{R}^{n}, but is restricted to some subspace. In particular, we are interested in constraints of the form $\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ for a given $m \times n$ matrix A and m-dimensional vector b. In particular, we can state our problem as:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n} \text { s.t. } A x=b} \frac{1}{2} x^{\top} P x+q^{\top} x=: f(x) \tag{1}
\end{equation*}
$$

where P is an $n \times n$ symmetric matrix, and q is an n-dimensional vector.

2 Exercises

1. The formal definition of positive semidefinite (psd) matrix is given as follows. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be positive semidefinite iff any $x \in \mathbb{R}^{n}$ satisfies $x^{\top} A x \geq 0$. Show that if A is symmetric, then A is psd if and only if all of its eigenvalue is non-negative.
Remarks: a similiar analogy applies for positive definite matrices; however, the condition must have become $x^{\top} A x>0$.
2. True/False: explain or give a counter example. It might be easier to think within the framework of symmetric matrices.
(a) A non-negative matrix is always positive semidefinite.
(b) A positive semidefinite matrix is always non-negative.
(c) A positive definite matrix is always invertible.
3. (a) The sum of two positive semidefinite matrices is also positive semidefinite.
(b) Show that $A^{\top} A$ is positive semidefinite for any matrix A of any dimensions.
(c) Let $A \in \mathbb{R}^{n \times n}$ be a positive semidefinite matrix and $B \in \mathbb{R}^{n \times n}$ be another matrix. Show that $B^{\top} A B$ is also positive semidefinite.
Hint: an alternative defitiontion of psd from Question 1 could be helpful.
4.

$$
\min _{x, y, z} \frac{5}{2} x^{2}-2 x y-x z+2 y^{2}+3 y z+\frac{5}{2} z^{2}+2 x-35 y-47 z
$$

(a) Write the equation above in matrix-vector form $\mathbf{x}^{\top} A \mathbf{x}+b^{\top} \mathbf{x}$.
(b) Does it have a unique solution? If so, find the solution. If no, explain why not.

