Recitation 20

Tuesday November 28, 2022

1 Recap

1.1 Convexity

1.1.1 Convex Set

A set C is *convex* if

$$\forall x_1, x_2 \in C, \forall t \in [0, 1] : tx_1 + (1 - t)x_2 \in C$$

In other words, it contains line segment between any two points in the set.

- 1. If C_1 and C_2 are convex sets, then $C_1 \cap C_2$ is also a convex set.
- 2. If C is a convex set and ϕ is a linear or affine map, then $\phi(C)$ is also convex.

1.1.2 Convex function

Convex Function: Let $X \subseteq \mathbb{R}^n$ be a convex set. A function $f: X \to \mathbb{R}$ is convex if

 $\forall x_1, x_2 \in X, \forall t \in [0, 1] : f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2),$

i.e., the "graph is below the chord".

- 1. Sum: If $f_1(x)$ and $f_2(x)$ are convex functions, then for $c_1, c_2 \ge 0$, $c_1f_1(x) + c_2f_2(x)$ is also a convex function.
- 2. Pointwise maximum: If $f_1, ..., f_n$ are convex functions, then $f(x) = \max\{f_1(x), ..., f_n(x)\}$ is also convex.
- 3. Linear change of coordinates: If f is a convex function, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, then g(x) = f(Ax + b) is also convex.
- 4. Sublevel sets:

$$S_{\gamma} = \{ x \in \mathbb{R}^n : f(x) \le \gamma \}$$

If f(x) is convex, then S_{γ} is a convex set.

5. Epigraph of a function:

$$epif = \{(x, y) : x \in \mathbb{R}^n, y \in \mathbb{R} : f(x) \le y\}.$$

If f is a convex function, then epi f is a convex set.

6. Convex Optimization Problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, \dots, m$

where f and g_1, \ldots, g_m are convex functions.

2 Hessian Matrix

- A Hessian matrix of a function f is $H(x) := \nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{ij}$.
- H(x) is always symmetric.
- A function f is convex if and only if H(x) is psd for any x.
- Warning: oftentimes H(x) depends on the values of x. In turns, its eigenvalues depends on the values of x.
- Practice: among the two functions $f(x, y) = 2x^2 4xy + y^2$ and $g(x, y) = e^{-2x-y}$, what are their Hessian matrices? Which function has Hessian matrix that depends on x, y and which one does not? Which function is convex?

3 Exercises

- 1. Suppose U, V are convex sets, and f_1, f_2 are convex functions.
 - (a) (*) Is $U \cup V$ always a convex set?
 - (b) Let $W = \{4u + 2 : \forall u \in U\}$. Is W a convex set?
 - (c) Is $f_1 + f_2$ always convex?
 - (d) Is $f_1 f_2$ always convex?
 - (e) (*) Is $f_1 f_2$ always convex?
 - (f) Let $g(x) = \min\{f_1(x), f_2(x)\}$. Is g(x) always a convex function?
 - (g) (*) Suppose that $f_1 \circ f_2$ is properly defined. Is $f_1 \circ f_2$ always convex? S
- 2. Let f and g be convex functions and f is non-decreasing; that is $f(x) \leq f(y)$ if $x \leq y$. Show that $f \circ g$ is also convex.
- 3. Let $C \subseteq \mathbb{R}^n$ be the solution set to a quadratic inequality.

$$C = \{x \in \mathbb{R}^n : x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. Show that C is a convex set if A is positive semidefinite.

- 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function, and γ be a real number. Are the following sets convex? Give a proof or counterexample (you can assume the sets are nonempty)
 - (a) The sub-level set $\{x \in \mathbb{R}^n : f(x) \le \gamma\}$
 - (b) The super-level set $\{x \in \mathbb{R}^n : f(x) \ge \gamma\}$
- 5. (*) Are the following functions convex? Explain your reasoning.
 - (a) $f(x,y) = e^{2x-y} + (3x^2 + 2y^2 xy)$
 - (b) f(x, y, z) = xyz
 - (c) $f(x_1, ..., x_n) = \sum_{i=1}^n x_i \log x_i$