Linear Algebra and Optimization

Recitation 20

Tuesday November 28, 2022

1 Recap

1.1 Convexity

1.1.1 Convex Set

A set C is convex if

$$
\forall x_{1}, x_{2} \in C, \forall t \in[0,1]: t x_{1}+(1-t) x_{2} \in C
$$

In other words, it contains line segment between any two points in the set.

1. If C_{1} and C_{2} are convex sets, then $C_{1} \cap C_{2}$ is also a convex set.
2. If C is a convex set and ϕ is a linear or affine map, then $\phi(C)$ is also convex.

1.1.2 Convex function

Convex Function: Let $X \subseteq \mathbb{R}^{n}$ be a convex set. A function $f: X \rightarrow \mathbb{R}$ is convex if

$$
\forall x_{1}, x_{2} \in X, \forall t \in[0,1]: f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

i.e., the "graph is below the chord".

1. Sum: If $f_{1}(x)$ and $f_{2}(x)$ are convex functions, then for $c_{1}, c_{2} \geq 0, c_{1} f_{1}(x)+c_{2} f_{2}(x)$ is also a convex function.
2. Pointwise maximum: If f_{1}, \ldots, f_{n} are convex functions, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ is also convex.
3. Linear change of coordinates: If f is a convex function, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, then $g(x)=f(A x+b)$ is also convex.
4. Sublevel sets:

$$
S_{\gamma}=\left\{x \in \mathbb{R}^{n}: f(x) \leq \gamma\right\}
$$

If $f(x)$ is convex, then S_{γ} is a convex set.
5. Epigraph of a function:

$$
\text { epi } f=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}: \quad f(x) \leq y\right\} .
$$

If f is a convex function, then epi f is a convex set.
6. Convex Optimization Problem:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } g_{i}(x) \leq 0 \quad i=1, \ldots, m
\end{aligned}
$$

where f and g_{1}, \ldots, g_{m} are convex functions.

2 Hessian Matrix

- A Hessian matrix of a function f is $H(x):=\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{i j}$.
- $H(x)$ is always symmetric.
- A function f is convex if and only if $H(x)$ is psd for any x.
- Warning: oftentimes $H(x)$ depends on the values of x. In turns, its eigenvalues depends on the values of x.
- Practice: among the two functions $f(x, y)=2 x^{2}-4 x y+y^{2}$ and $g(x, y)=e^{-2 x-y}$, what are their Hessian matrices? Which function has Hessian matrix that depends on x, y and which one does not? Which function is convex?

3 Exercises

1. Suppose U, V are convex sets, and f_{1}, f_{2} are convex functions.
(a) (*) Is $U \cup V$ always a convex set?
(b) Let $W=\{4 u+2: \forall u \in U\}$. Is W a convex set?
(c) Is $f_{1}+f_{2}$ always convex?
(d) Is $f_{1}-f_{2}$ always convex?
(e) $\left(^{*}\right)$ Is $f_{1} f_{2}$ always convex?
(f) Let $g(x)=\min \left\{f_{1}(x), f_{2}(x)\right\}$. Is $g(x)$ always a convex function?
(g) $\left(^{*}\right)$ Suppose that $f_{1} \circ f_{2}$ is properly defined. Is $f_{1} \circ f_{2}$ always convex? S
2. Let f and g be convex functions and f is non-decreasing; that is $f(x) \leq f(y)$ if $x \leq y$. Show that $f \circ g$ is also convex.
3. Let $C \subseteq \mathbb{R}^{n}$ be the solution set to a quadratic inequality.

$$
C=\left\{x \in \mathbb{R}^{n}: x^{T} A x+b^{T} x+c \leq 0\right\}
$$

with $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$. Show that C is a convex set if A is positive semidefinite.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, and γ be a real number. Are the following sets convex? Give a proof or counterexample (you can assume the sets are nonempty)
(a) The sub-level set $\left\{x \in \mathbb{R}^{n}: f(x) \leq \gamma\right\}$
(b) The super-level set $\left\{x \in \mathbb{R}^{n}: f(x) \geq \gamma\right\}$
5. (*) Are the following functions convex? Explain your reasoning.
(a) $f(x, y)=e^{2 x-y}+\left(3 x^{2}+2 y^{2}-x y\right)$
(b) $f(x, y, z)=x y z$
(c) $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \log x_{i}$

