Recitation 22

Thurseday November 30, 2022

1 Recap

1.0.1 Convex function

Convex Function: Let $X \subseteq \mathbb{R}^n$ be a convex set. A function $f: X \to \mathbb{R}$ is convex if

$$\forall x_1, x_2 \in X, \forall t \in [0, 1] : f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2),$$

i.e., the "graph is below the chord".

- 1. Sum: If $f_1(x)$ and $f_2(x)$ are convex functions, then for $c_1, c_2 \ge 0$, $c_1f_1(x) + c_2f_2(x)$ is also a convex function.
- 2. Pointwise maximum: If $f_1, ..., f_n$ are convex functions, then $f(x) = \max\{f_1(x), ..., f_n(x)\}$ is also convex.
- 3. Linear change of coordinates: If f is a convex function, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, then g(x) = f(Ax + b) is also convex.
- 4. Sublevel sets:

$$S_{\gamma} = \{ x \in \mathbb{R}^n : f(x) \le \gamma \}$$

If f(x) is convex, then S_{γ} is a convex set.

5. Epigraph of a function:

$$epif = \{(x, y) : x \in \mathbb{R}^n, y \in \mathbb{R} : \quad f(x) \le y\}.$$

If f is a convex function, then epi f is a convex set.

6. Convex Optimization Problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, \dots, m$

where f and g_1, \ldots, g_m are convex functions.

2 Hessian Matrix

- A Hessian matrix of a function f is $H(x) := \nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{ij}$.
- H(x) is always symmetric.
- A function f is convex if and only if H(x) is psd for any x.
- Warning: oftentimes H(x) depends on the values of x. In turns, its eigenvalues depends on the values of x.
- Practice: among the two functions $f(x, y) = 2x^2 4xy + y^2$ and $g(x, y) = e^{-2x-y}$, what are their Hessian matrices? Which function has Hessian matrix that depends on x, y and which one does not? Which function is convex?

2.1 Gradient Descent

Gradient descent is used to find the minimum of a function f(x) given access to its gradients $\nabla f(x)$ and a stepsize γ .

Algorithm 1 Gradient Descent

Input: initial guess x_0 , step size $\gamma > 0$

while $\nabla f(x_k) \neq 0$ do $x_{k+1} = x_k - \gamma \nabla f(x_k)$ return x_k ;

3 Exercises

1. For the following functions, what are their Hessian matrix? Are they convex?

(a) $f(x_1, x_2, x_3) = x_1 x_2 x_3$ for $x_1, x_2, x_3 \in \mathbb{R}$. (b) $f(x_1, x_2) = e^{-2x_1 - x_2}$ for $x_1, x_2 \in \mathbb{R}^+$. (c) $f(x_1, x_2) = x_1^2 + 5x_2^2 - 4x_1 x_2$ for $x_1, x_2 \in \mathbb{R}$. (d) $f(x_1, x_2) = 4x_1^2 + x_2^2 + 5x_1 x_2$ for $x_1, x_2 \in \mathbb{R}$. (e) $f(x_1, x_2) = x_1 + x_2 + \frac{1}{x_1 x_2}$ for $x_1, x_2 \in \mathbb{R}^+$.

- 2. Denote $f(x) = \frac{1}{2} \cdot x^2 3x$ has global minimum at $x^* = 3$.
 - (a) What is $\nabla f(x)$?
 - (b) Suppose that we apply gradient descent with step size $\gamma > 0$. How do we express x_{n+1} in terms of x_n and γ ?
- 3. More practice. Are the following functions convex? Explain your reasoning.

(a)
$$f(x,y) = e^{2x-y} + (3x^2 + 2y^2 - xy)$$

(b)
$$f(x, y, z) = xyz$$

(c) $f(x_1, ..., x_n) = \sum_{i=1}^n x_i \log x_i$