Linear Algebra and Optimization

Recitation 22

Thurseday November 30, 2022

1 Recap

1.0.1 Convex function

Convex Function: Let $X \subseteq \mathbb{R}^{n}$ be a convex set. A function $f: X \rightarrow \mathbb{R}$ is convex if

$$
\forall x_{1}, x_{2} \in X, \forall t \in[0,1]: f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

i.e., the "graph is below the chord".

1. Sum: If $f_{1}(x)$ and $f_{2}(x)$ are convex functions, then for $c_{1}, c_{2} \geq 0, c_{1} f_{1}(x)+c_{2} f_{2}(x)$ is also a convex function.
2. Pointwise maximum: If f_{1}, \ldots, f_{n} are convex functions, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ is also convex.
3. Linear change of coordinates: If f is a convex function, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, then $g(x)=f(A x+b)$ is also convex.
4. Sublevel sets:

$$
S_{\gamma}=\left\{x \in \mathbb{R}^{n}: f(x) \leq \gamma\right\}
$$

If $f(x)$ is convex, then S_{γ} is a convex set.
5. Epigraph of a function:

$$
\text { epi } f=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}: \quad f(x) \leq y\right\} .
$$

If f is a convex function, then epi f is a convex set.
6. Convex Optimization Problem:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } g_{i}(x) \leq 0 \quad i=1, \ldots, m
\end{aligned}
$$

where f and g_{1}, \ldots, g_{m} are convex functions.

2 Hessian Matrix

- A Hessian matrix of a function f is $H(x):=\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{i j}$.
- $H(x)$ is always symmetric.
- A function f is convex if and only if $H(x)$ is psd for any x.
- Warning: oftentimes $H(x)$ depends on the values of x. In turns, its eigenvalues depends on the values of x.
- Practice: among the two functions $f(x, y)=2 x^{2}-4 x y+y^{2}$ and $g(x, y)=e^{-2 x-y}$, what are their Hessian matrices? Which function has Hessian matrix that depends on x, y and which one does not? Which function is convex?

2.1 Gradient Descent

Gradient descent is used to find the minimum of a function $f(x)$ given access to its gradients $\nabla f(x)$ and a stepsize γ.

```
Algorithm 1 Gradient Descent
Input: initial guess \(x_{0}\), step size \(\gamma>0\)
```


3 Exercises

1. For the following functions, what are their Hessian matrix? Are they convex?
(a) $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}$ for $x_{1}, x_{2}, x_{3} \in \mathbb{R}$.
(b) $f\left(x_{1}, x_{2}\right)=e^{-2 x_{1}-x_{2}}$ for $x_{1}, x_{2} \in \mathbb{R}^{+}$.
(c) $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+5 x_{2}^{2}-4 x_{1} x_{2}$ for $x_{1}, x_{2} \in \mathbb{R}$.
(d) $f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+x_{2}^{2}+5 x_{1} x_{2}$ for $x_{1}, x_{2} \in \mathbb{R}$.
(e) $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}+\frac{1}{x_{1} x_{2}}$ for $x_{1}, x_{2} \in \mathbb{R}^{+}$.
2. Denote $f(x)=\frac{1}{2} \cdot x^{2}-3 x$ has global minimum at $x^{*}=3$.
(a) What is $\nabla f(x)$?
(b) Suppose that we apply gradient descent with step size $\gamma>0$. How do we express x_{n+1} in terms of x_{n} and γ ?
3. More practice. Are the following functions convex? Explain your reasoning.
(a) $f(x, y)=e^{2 x-y}+\left(3 x^{2}+2 y^{2}-x y\right)$
(b) $f(x, y, z)=x y z$
(c) $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \log x_{i}$
