Recitation 22

Thurseday November 30, 2022

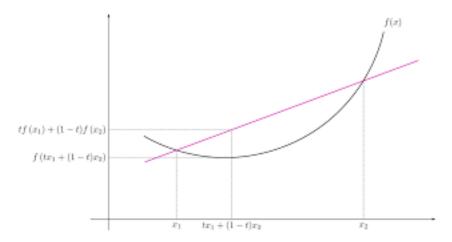
1 Recap

1.0.1 Convex function

Convex Function: Let $X \subseteq \mathbb{R}^n$ be a convex set. A function $f: X \to \mathbb{R}$ is convex if

$$\forall x_1, x_2 \in X, \forall t \in [0, 1] : f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2),$$

i.e., the "graph is below the chord".



- 1. Sum: If $f_1(x)$ and $f_2(x)$ are convex functions, then for $c_1, c_2 \ge 0$, $c_1f_1(x) + c_2f_2(x)$ is also a convex function.
- 2. Pointwise maximum: If $f_1, ..., f_n$ are convex functions, then $f(x) = \max\{f_1(x), ..., f_n(x)\}$ is also convex.
- 3. Linear change of coordinates: If f is a convex function, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, then g(x) = f(Ax + b) is also convex.
- 4. Sublevel sets:

$$S_{\gamma} = \{ x \in \mathbb{R}^n : f(x) \le \gamma \}$$

If f(x) is convex, then S_{γ} is a convex set.

5. Epigraph of a function:

$$epif = \{(x, y) : x \in \mathbb{R}^n, y \in \mathbb{R} : \quad f(x) \le y\}.$$

If f is a convex function, then epi f is a convex set.

6. Convex Optimization Problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, \dots, m$

where f and g_1, \ldots, g_m are convex functions.

2 Hessian Matrix

- A Hessian matrix of a function f is $H(x) := \nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{ij}$.
- H(x) is always symmetric.
- A function f is convex if and only if H(x) is psd for any x.
- Warning: oftentimes H(x) depends on the values of x. In turns, its eigenvalues depends on the values of x.
- Practice: among the two functions $f(x, y) = 2x^2 4xy + y^2$ and $g(x, y) = e^{-2x-y}$, what are their Hessian matrices? Which function has Hessian matrix that depends on x, y and which one does not? Which function is convex?

2.1 Gradient Descent

Gradient descent is used to find the minimum of a function f(x) given access to its gradients $\nabla f(x)$ and a stepsize γ .

Algorithm 1 Gradient Descent

Input: initial guess x_0 , step size $\gamma > 0$

while $\nabla f(x_k) \neq 0$ do $x_{k+1} = x_k - \gamma \nabla f(x_k)$ return x_k ;

3 Exercises

1. For the following functions, what are their Hessian matrix? Are they convex?

(a) $f(x_1, x_2, x_3) = x_1 x_2 x_3$ for $x_1, x_2, x_3 \in \mathbb{R}$. (b) $f(x_1, x_2) = e^{-2x_1 - x_2}$ for $x_1, x_2 \in \mathbb{R}^+$. (c) $f(x_1, x_2) = x_1^2 + 5x_2^2 - 4x_1 x_2$ for $x_1, x_2 \in \mathbb{R}$. (d) $f(x_1, x_2) = 4x_1^2 + x_2^2 + 5x_1 x_2$ for $x_1, x_2 \in \mathbb{R}$. (e) $f(x_1, x_2) = x_1 + x_2 + \frac{1}{x_1 x_2}$ for $x_1, x_2 \in \mathbb{R}^+$.

- 2. Denote $f(x) = \frac{1}{2} \cdot x^2 3x$ has global minimum at $x^* = 3$.
 - (a) What is $\nabla f(x)$?
 - (b) Suppose that we apply gradient descent with step size $\gamma > 0$. How do we express x_{n+1} in terms of x_n and γ ?
- 3. More practice. Are the following functions convex? Explain your reasoning.

(a)
$$f(x,y) = e^{2x-y} + (3x^2 + 2y^2 - xy)$$

(b)
$$f(x, y, z) = xyz$$

(c) $f(x_1, ..., x_n) = \sum_{i=1}^n x_i \log x_i$

4 Solutions

- 1. (a) $H(x_1, x_2, x_3) = \begin{bmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & x_1 \\ x_2 & x_1 & 0 \end{bmatrix}$ which is not psd when we substitute (x_1, x_2, x_3) with (1, 1, 1). $H(1, 1, 1) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, thus, f is not convex.
 - (b) $H(x) = e^{-2x_1-x_2} \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$ with eigenvalues 0 and $5e^{-2x_1-x_2} > 0$. Thus, f is convex. In addition, $\lambda_1 = 5e^{-2x_1-x_2} < 5$ meaning that f is smooth with L = 5.
 - (c) $H(x) = \begin{bmatrix} 2 & -4 \\ -4 & 10 \end{bmatrix}$ with eigenvalues $6 \pm 4\sqrt{2} > 0$. f is smooth with $L = 6 + 4\sqrt{2}$.

 - (d) $H(x) = \begin{bmatrix} 8 & 5 \\ 5 & 2 \end{bmatrix}$ with eigenvalues $5 \pm \sqrt{34}$. Thus, f is not convex. (e) $H(x) = \begin{bmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{bmatrix}$. The two eigenvalues λ_1, λ_2 satisfies $\lambda_1 + \lambda_2 = tr(A) > 0$ det A < 0 for x_1, x_2 large.
- 2. (a) $\nabla f(x) = \frac{\partial f}{\partial x} = x 3.$ (b) $x_{n+1} = x_n - \gamma \cdot \nabla f(x_n) = x_n - \gamma(x_n - 3) = (1 - \gamma)x_n + 3\gamma.$
- 3. (a) Convex. e^{2x-y} is convex because $f(t) = e^t$ is convex and $(x, y) \to 2x y$ is a change of coordinates. $3x^2 + 2y^2 xy$ is also convex because $\begin{bmatrix} 3 & -1/2 \\ -1/2 & 2 \end{bmatrix}$ is psd.
 - (b) Not convex. Consider the points a, b = (1, -1, 1), (-1, 1, 1). The we have, $f(\frac{1}{2}a + \frac{1}{2}b) = f(0, 0, 1) = 0 > \frac{1}{2}f(a) + \frac{1}{2}f(b) = -1$. Another proof is to restrict z = 1, which is f(x, y, 1) = xy. This function is not convex (try to plot it).
 - (c) Convex. Each $x_i \log x_i$ term is convex. The sum of convex functions remains convex.