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1 Recap - Gradient Descent

Algorithm 1: Gradient Descent
Input: initial guess x0, step size γ > 0;
while ∇f(xk) ̸= 0 do

xk+1 = xk − γ∇f(xk)
end
return xk;

1.1 Convergence

1. Quadratic function: 1
2
xTAx GD converges when the eigenvalues of (I − γA) have

magnitude less than 1. Let λ1 be the largest eigenvalue of A and λn be the smallest.
Then when 0 < γ < 2

|λ1| , GD converges.

(a) Convergence rate R = ∥I − γA∥
(b) γ = 2

λ1+λn
gives the best (minimum) convergence rate.

(c) Q = |λ1|
|λn| is the condition number of the matrix A. Smaller Q indicates more

uniform convergence and hence faster convergence (lower rate). R = Q−1
Q+1

.

2. Convex functions: More generally, we look at the eigenvalues λ1, ..., λn of the Hessian
matrix.

(a) Smooth function: λi ≤ L ∀i. Choose step size γ = 1
L
. Then by the properties

of f , f(xk)− f(x∗) ≤ L
2k
∥x0 − x∗∥2

(b) Smooth and Strongly Convex: m ≤ λi ≤ L ∀i. Condition number Q = L
m

Choose step size γ = 2
m+L

. Then f(xk)− f(x∗) ≤ L
2
Q−1
Q+1

2k∥x0 − x∗∥2

1.2 Computing Gradient

1. Symbolic computation using rules of calculus

2. Numerical approximation using definition of derivatives

3. Automatic differentiation using composition of functions
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1.3 Jacobian

The Jacobian matrix of a vector function f : Rn → Rm is the matrix of all its first-order

partial derivatives. J =

[
∂f

∂x1

· · · ∂f

∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂fm
∂x1

· · · ∂fm
∂xn


1.4 Stochastic GD

In Vanilla Gradient Descent (Batch Gradient Descent), we compute the gradient using
all the data points in each iteration. This can be slow and redundant for large data
sets. Stochastic gradient descent (SGD) in contrast performs gradient update for one
randomly chosen training example at each iteration. Moreover, a method called mini-
batch gradient descent combines both of them and computes the gradient based on a
small batch of data points at each iteration.

1.5 Logistic Regression

Gradient descent is used for solving many machine learning problems, and one example is
logistic regression. In the logistic regression model, we first apply a linear transformation
on the input points x: z = wx + b. Then, we use the sigmoid function (aka logistic
function) to classify the transformed points: σ(z) = 1

1+e−z .

1. Sigmoid
The sigmoid function σ(z) = 1

1+e−z takes a real-valued number and maps it to the
range [0,1], as if we are assigning a probability.

2. Decision Boundary
We model σ(z) as the probability that the corresponding label y = 1, and 1− σ(z)
as the probability that y = 0. Then we predict ŷ = 1 if σ(z) > 0.5, and ŷ = 0
otherwise.

3. Loss function
Because of this relationship with probability, we choose a loss function called the
cross entropy, or negative log likelihood:

L(x, y;w) = −
∑

y log(σ(wx+ b)) + (1− y) log(1− σ(wx+ b)).

This loss function is conveniently convex, and we can find the global minimum using
gradient descent.
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2 Exercises
1. Find the gradient:

(a) f(x) = 4x1x2 + x2
1 + 4x2

2

(b) g(x) = 2x1x2 + 2x2
1 + 2x2

2

2. Find the Jacobian:

(a) F (x) =

[
f(x)
g(x)

]
(b)

x = r cosφ;

y = r sinφ.
Find the Jacobian with respect to r and φ

3. Are f(x) and g(x) smooth? Are they strongly convex?

4. Gradient Descent on g(x):

(a) What step size would you choose?
(b) What is the condition number of the associated matrix?
(c) What is the rate of convergence?

5. Logistic Regression example:
Suppose we are doing binary sentiment classification on movie reviews, and we would
like to know whether to assign the sentiment class + or - to each review. We use
two features: the number of positive words and the number of negative words. We
have three data points: ((3, 2), +), ((5, 1), -), ((2, 1), -). We want to develop a
logistic regression model given these samples.

(a) Suppose we have weights w = (2,−1), b = −1. What is our prediction on the
first data point?

(b) What is the gradient of the loss function?
(c) Using stochastic gradient descent, what is the gradient after one iteration?

6. (Projected Gradient Descent). In this problem we explore gradient descent with
convex constraints.

(a) Let S = Span({(1, 0)}). Write down a matrix A such that S is the nullspace
of A.

(b) Write down a quadratic optimization with linear constraints for finding the
closest point in S to the point (0, 1). That is come up with a function f(x, y)
such that

min
(x,y)∈S

f(x, y)

Write down the Hessian of this optimization.
(c) If we move in the direction of the negative gradient ∇f(x, y) do we stay in S?
(d) The projected gradient descent algorithm takes a step in the direction of the

negative gradient x∗
t+1 = xt − γ∇f(xt) and then sets xt+1 to be the projection

of x∗
t+1 onto the subspace S. Write down the projected gradient descent update

using A from part (a).
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3 Solutions

1. (a) ∇f(x) = 2

[
1 2
2 4

]
x = Ax

(b) ∇g(x) = 2

[
2 1
1 2

]
x = Bx

2. (a) J(x) =

[
2xTAT

2xTBT

]
(b)

J(r, φ) =


∂x

∂r

∂x

∂φ

∂y

∂r

∂y

∂φ

 =

[
cosφ −r sinφ
sinφ r cosφ

]

3. A has eigenvalues 0,10. B has eigenvalues 2,6. f(x) and g(x) are both smooth. g(x)
is strongly convex,

4. (a) Since g is smooth and strongly convex, we can choose γ = 2
2+6

= 0.25.

(b) The condition number of B is 3.

(c) The rate of convergence is the largest singular value of I − 2B, which is 0.5.

5. (a) z = wx+ b = (6− 2)− 1 = 3. σ(z) = 0.95 > 0.5 ⇒ ŷ = 1

(b) ∇Lw(x, y, w, b) = (σ(wx+ b)− y)x, ∇Lb(x, y, w, b) = σ(wx+ b)− y

(c) Suppose we initialize w = 0, b = 0 and choose learning rate 0.1. Assume the
first iteration we perform the update on the first data point. The gradient

is ∇Lw(x, y, w, b) =

[
−1.5
−1.0

]
. So w1 = w0 − 0.1Lw(x, y, w, b) =

[
0.15
0.1

]
. And

b = 0− (−1.5) = 1.5

6. (a) A = (0, 1)

(b) f(x, y) = x2 + (y − 1)2 with hessian
[
2 0
0 2

]
.

(c) No, we leave S.

(d)
x∗
t+1 = xt − γ∇f(xt)

xt+1 =

[
1 0
0 0

]
x∗
t+1
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