Linear Algebra and Optimization

Recitation 21

Tuesday November 28, 2022

1 Recap

1.1 Convexity

1.1.1 Convex Set

A set C is convex if

$$
\forall x_{1}, x_{2} \in C, \forall t \in[0,1]: t x_{1}+(1-t) x_{2} \in C
$$

In other words, it contains line segment between any two points in the set.

1. If C_{1} and C_{2} are convex sets, then $C_{1} \cap C_{2}$ is also a convex set.
2. If C is a convex set and ϕ is a linear or affine map, then $\phi(C)$ is also convex.

1.1.2 Convex function

Convex Function: Let $X \subseteq \mathbb{R}^{n}$ be a convex set. A function $f: X \rightarrow \mathbb{R}$ is convex if

$$
\forall x_{1}, x_{2} \in X, \forall t \in[0,1]: f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right),
$$

i.e., the "graph is below the chord".

1. Sum: If $f_{1}(x)$ and $f_{2}(x)$ are convex functions, then for $c_{1}, c_{2} \geq 0, c_{1} f_{1}(x)+c_{2} f_{2}(x)$ is also a convex function.
2. Pointwise maximum: If f_{1}, \ldots, f_{n} are convex functions, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ is also convex.
3. Linear change of coordinates: If f is a convex function, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, then $g(x)=f(A x+b)$ is also convex.
4. Sublevel sets:

$$
S_{\gamma}=\left\{x \in \mathbb{R}^{n}: f(x) \leq \gamma\right\}
$$

If $f(x)$ is convex, then S_{γ} is a convex set.
5. Epigraph of a function:

$$
\text { epi } f=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}: \quad f(x) \leq y\right\} .
$$

If f is a convex function, then epi f is a convex set.
6. Convex Optimization Problem:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } g_{i}(x) \leq 0 \quad i=1, \ldots, m
\end{aligned}
$$

where f and g_{1}, \ldots, g_{m} are convex functions.

2 Hessian Matrix

- A Hessian matrix of a function f is $H(x):=\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{i j}$.
- $H(x)$ is always symmetric.
- A function f is convex if and only if $H(x)$ is psd for any x.
- Warning: oftentimes $H(x)$ depends on the values of x. In turns, its eigenvalues depends on the values of x.
- Practice: among the two functions $f(x, y)=2 x^{2}-4 x y+y^{2}$ and $g(x, y)=e^{-2 x-y}$, what are their Hessian matrices? Which function has Hessian matrix that depends on x, y and which one does not? Which function is convex?

3 Exercises

1. Suppose U, V are convex sets, and f_{1}, f_{2} are convex functions.
(a) (*) Is $U \cup V$ always a convex set?
(b) Let $W=\{4 u+2: \forall u \in U\}$. Is W a convex set?
(c) Is $f_{1}+f_{2}$ always convex?
(d) Is $f_{1}-f_{2}$ always convex?
(e) $\left(^{*}\right)$ Is $f_{1} f_{2}$ always convex?
(f) Let $g(x)=\min \left\{f_{1}(x), f_{2}(x)\right\}$. Is $g(x)$ always a convex function?
(g) $\left(^{*}\right)$ Suppose that $f_{1} \circ f_{2}$ is properly defined. Is $f_{1} \circ f_{2}$ always convex? S
2. Let f and g be convex functions and f is non-decreasing; that is $f(x) \leq f(y)$ if $x \leq y$. Show that $f \circ g$ is also convex.
3. Let $C \subseteq \mathbb{R}^{n}$ be the solution set to a quadratic inequality.

$$
C=\left\{x \in \mathbb{R}^{n}: x^{T} A x+b^{T} x+c \leq 0\right\}
$$

with $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$. Show that C is a convex set if A is positive semidefinite.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, and γ be a real number. Are the following sets convex? Give a proof or counterexample (you can assume the sets are nonempty)
(a) The sub-level set $\left\{x \in \mathbb{R}^{n}: f(x) \leq \gamma\right\}$
(b) The super-level set $\left\{x \in \mathbb{R}^{n}: f(x) \geq \gamma\right\}$
5. (*) Are the following functions convex? Explain your reasoning.
(a) $f(x, y)=e^{2 x-y}+\left(3 x^{2}+2 y^{2}-x y\right)$
(b) $f(x, y, z)=x y z$
(c) $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \log x_{i}$

4 Solutions

1. (a) (This solution is possibly wrong) No. For example, if the two sets are disjoint, then the union does not contain line segment between every two points.
(b) Yes. $\phi: U \rightarrow W$ is an affine transformation.
(c) Yes. It's a linear combination of convex functions with non-negative coefficients.
(d) No. Let $f_{1}(x)=4 x^{2}, f_{2}(x)=6 x^{2}$. Then $f_{1}(x)-f_{2}(x)=-2 x^{2}$ is not convex.
(e) No. Let $f_{1}(x)=x$ and $f_{2}(x)=-x$. Then $f_{1}(x) f_{2}(x)=-x^{2}$ is not convex.
(f) No. Counter example is $f_{1} \equiv 0$ and $f_{2}(x)=x^{2}-1$.
(g) No. Counter example is $f_{1} \equiv x^{2}$ and $f_{2}(x)=x^{2}-1$. Then $f_{1}\left(f_{2}(x)\right)=$ $\left(x^{2}-1\right)^{2}=x^{4}-2 x^{2}+1$, which is not convex (try to take the second derivative or graph the function).
2. $f_{1} \cdot f_{2}$ is convex because

$$
\begin{aligned}
f_{1} \cdot f_{2}(t x+(1-t) y) & =f_{1}\left(f_{2}(t x+(1-t) y)\right) \\
& \leq f_{1}\left(t f_{2}(x)+(1-t) f_{2}(y)\right) \\
& \leq t\left(f_{1} \circ f_{2}\right)(x)+(1-t)\left(f_{1} \circ f_{2}\right)(y)
\end{aligned}
$$

where the first to second line uses the fact that f_{2} is convex and f_{1} is increasing, and the second to third line uses the fact that f_{3} is convex.
3. We want to show that for any $x, y \in \mathrm{C}, t \in[0,1], t x+(1-t) y$ is in C. Let $f(x)=$ $x^{T} A x+b^{T} x+c$. Then,

$$
\begin{aligned}
f(t x+(1-t) y) & =(t x+(1-t) y)^{T} A(t x+(1-t) y)+b^{T}(t x+(1-t) y)+c \\
& =t^{2} x^{T} A x+(1-t)^{2} y^{T} A y+t(1-t) x^{T} A y+t(1-t) y^{T} A x+t b^{T} x \\
& +(1-t) b^{T} y+t c+(1-t) c \\
& =t x^{T} A x+t b^{T} x+t c+(1-t) y^{T} A y+(1-t) b^{T} y+(1-t) c \\
& +t(1-t) x^{T} A y+t(1-t) y^{T} A x-t(1-t) x^{T} A x-(1-t) t y^{T} A y \\
& \leq t(0)+(1-t)(0)-t(1-t)(x-y)^{T} A(x-y) \\
& \leq 0
\end{aligned}
$$

4. (a) Convex. $e^{2 x-y}$ is convex because $f(t)=e^{t}$ is convex and $(x, y) \rightarrow 2 x-y$ is a change of coordinates. $3 x^{2}+2 y^{2}-x y$ is also convex because $\left[\begin{array}{cc}3 & -1 / 2 \\ -1 / 2 & 2\end{array}\right]$ is psd.
(b) Not convex. Consider the points $a, b=(1,-1,1),(-1,1,1)$. The we have, $f\left(\frac{1}{2} a+\frac{1}{2} b\right)=f(0,0,1)=0>\frac{1}{2} f(a)+\frac{1}{2} f(b)=-1$. Another proof is to restrict $z=1$, which is $f(x, y, 1)=x y$. This function is not convex (try to plot it).
(c) Convex. Each $x_{i} \log x_{i}$ term is convex. The sum of convex functions remains convex.
