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1 Recap - Gradient Descent

Algorithm 1: Gradient Descent
Input: initial guess x0, step size γ > 0;
while ∇f(xk) ̸= 0 do

xk+1 = xk − γ∇f(xk)
end
return xk;

1.1 Stochastic GD

In Vanilla Gradient Descent (Batch Gradient Descent), we compute the gradient using
all the data points in each iteration. This can be slow and redundant for large data
sets. Stochastic gradient descent (SGD) in contrast performs gradient update for one
randomly chosen training example at each iteration. Moreover, a method called mini-
batch gradient descent combines both of them and computes the gradient based on a
small batch of data points at each iteration.

1.2 Logistic Regression

Gradient descent is used for solving many machine learning problems, and one example is
logistic regression. In the logistic regression model, we first apply a linear transformation
on the input points x: z = wx + b. Then, we use the sigmoid function (aka logistic
function) to classify the transformed points: σ(z) = 1

1+e−z .

1. Sigmoid
The sigmoid function σ(z) = 1

1+e−z takes a real-valued number and maps it to the
range [0,1], as if we are assigning a probability.

2. Decision Boundary
We model σ(z) as the probability that the corresponding label y = 1, and 1− σ(z)
as the probability that y = 0. Then we predict ŷ = 1 if σ(z) > 0.5, and ŷ = 0
otherwise.

3. Loss function
Because of this relationship with probability, we choose a loss function called the
cross entropy, or negative log likelihood:

L(x, y;w) = −
∑

y log(σ(wx+ b)) + (1− y) log(1− σ(wx+ b)).

This loss function is conveniently convex, and we can find the global minimum using
gradient descent.
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1.3 Perceptron

Algorithm 2: Perceptron
Input: initialize w0 = 0 ∈ Rd, step size η ∈ [0, 1];
for i ∈ [N ] do

Predict: y′i = sgn(⟨wt, xi⟩)
If y′i ̸= yi: wt+1 = wt + ηyixi

end
return wN ;
Margin Assumption: Suppose there is a unit vector u that satisfies

1. for all xi labeled +1 we have ⟨u, xi⟩ ≥ γ

2. For all xi labeled −1 we have ⟨u, xi⟩ ≤ −γ

Given the margin assumption the following theorem holds

Theorem: Suppose the margin assumption holds and furthermore each example xi

satisfies ∥xi∥ ≤ R. Setting η = 1 we have the number of mistakes where yi ̸= y′i is upper
bounded by (R

γ
)2.
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2 Exercises
1. For a dataset {(xi, yi)}i∈[N ] for xi ∈ Rd, there exists z ∈ Rd such that

sgn(⟨u, xi − z⟩) = yi. How can we modify the input to the perceptron to learn u
and z?

2. Consider the dataset of (x, y) pairs for x ∈ R and y ∈ {±1} as follows
{(−4,+1), (−3,+1), (−2,−1), (−1,−1), (0,−1), (1,−1), (2,−1), (3,+1), (4,+1)} The
data is not linearly separable. How does applying the mapping ϕ(x) = (x, x2) change
this?
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3 Solutions
1. Take input covariates {xi}i∈[N ] and pad them by a scalar −1 so that the covariates

become {(xi,−1)}i∈[N ]. The perceptron on the modified dataset learns (u, b) for
some scalar b such that ⟨u, z⟩ = b. Given u and b we can solve for z.

2. After applying the mapping ϕ(x) = (x, x2) = (ϕ(x)1, ϕ(x)2) the data is linearly
separable across the line ϕ(x)2 = 4 in 2 dimensions.
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