
18.721 PSet 1

Due: Feb 16, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. Let C be a plane curve of degree d ≥ 2.

(a) (1 point) Show that for any point p ∈ C, C has multiplicity at most
d− 1 at p.

Solution: Choose a point q ∈ C other than p. If L is the line
through p and q, then C cannot contain L as C is irreducible and not
itself a line (as it has degree at least 2). Therefore, C intersects L in
d total points (counted with multiplicity.) Since it also intersects L
at q, the intersection multiplicity with L at p must be at most d− 1,
so C has multiplicity at most d− 1 at p.

(b) (1 point) Show that there is at most one point where C has multi-
plicity > d

2 . Conclude that if C is of degree 3, then C has at most
one singular point.

Solution: We use the same idea. If there are two points p, q with
multiplicity > d

2 then C intersects the line through those two points
at more than d points (counted with multiplicity), which gives a
contradiction. If C is of degree 3, this tells us C has at most one
point with multiplicity > 1, which is equivalent to being singular.

2. Consider the set (P2)4 of 4-tuples (p, q, r, s) of points in P2. Call two such
4-tuples projectively equivalent if there is a projective transformation (i.e.,
change of projective coordinates) sending one to the other.

(a) (1 point) Classify all equivalence classes under projective equivalence
of 4-tuples where the points are NOT all collinear.

Solution: We will assume first that the points are distinct (this case
is sufficient for a submitted solution to this problem). First assume
no three of the points are collinear. Then p, q, and r correspond
to three linearly independent vectors in C3, so there is some linear
transformation sending them to (1, 0, 0), (0, 1, 0), and (0, 0, 1). Let the
coordinates of s be (x, y, z). Since no three of the points are collinear,
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x, y, and z are all nonzero. Multiplication by the matrixa 0 0
0 b 0
0 0 c


preserves p, q, and r and sends (x, y, z) to (ax, by, cz). So we can
choose a, b, and c to send s to (1, 1, 1). In conclusion, all such tuples
are equivalent to ((1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)).

Now assume that three of the points are collinear. We claim that
there is one equivalent class for every possible triple of collinear
points, for a total of four equivalent class. WLOG, assume p, q, and t
are collinear. As in the previous case, we can take a projective trans-
formation sending p to (1, 0, 0), q to (0, 1, 0), and r to (0, 0, 1). As t
is collinear with p and q (but does not coincide with either), it has
coordinates (x, y, 0) with x and y nonzero. Again, we can multiply
by a matrix a 0 0

0 b 0
0 0 1


to get t to have coordinates (1, 1, 0), so our tuple must be equivalent
to ((1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)).

In the case that the points are not all distinct, there are 6 extra
equivalence classes corresponding to which pair of points coincide.

(b) (1 point) When they are all collinear, we can assume without loss
of generality that the four points lie in some line P1 ⊂ P2. In that
case, show that each equivalence class contains a unique element
of the form (0, 1,∞, t). (Here, the points in P1 that we denote by
0, 1, and ∞ would be written as (1, 0), (1, 1), and (0, 1) in projective
coordinates.)

Solution: Any projective transformation of P2 that sends our line to
itself acts on the line by a projective transformation of P1. We thus
can think just about equivalence classes of four points in P1 under
projective transformations. We again assume that all the points are
distinct (otherwise, the problem statement is incorrect.)

As p and q are distinct, they correspond to linearly independent
vectors in C2. There is thus some linear transformation sending them
to (1, 0) and (0, 1). Say that r has coordinates (x, y). Then the matrix( 1

x 0
0 1

y

)
sends r to the point (1, 1). So every equivalence class contains a point
of the form (0, 1,∞, t).
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It remains to see that there are no projective transformations sending
a point (0, 1,∞, u) to another point (0, 1,∞, v) unless u = v. Assume
our transformation is given by a matrix

M =

(
a b
c d

)
.

That M sends 0 to 0 implies that b = 0, and that M sends ∞ to
∞ implies that c = 0. Finally, since M sends 1 to 1, we find that
a = d, so M is a multiple of the identity and hence induces the
trivial projective transformation.

3. Consider the map f : P1 → P3 sending (x, y) to (a, b, c, d) = (x4, x3y, xy3, y4).

(a) (1 point) Show that the image of f is an algebraic variety by exhibit-
ing some homogeneous polynomials which cut out the image. In other
words, write down a set of homogeneous polynomials Pi(a, b, c, d)
such that f(P1) is the loci where all the Pi vanish.

Solution: We claim that the polynomials a3d − b4, ad3 − c4, and
ad − bc cut out the image of f . A short calculation shows that
these polynomials vanish on the image of f . We need to show that
conversely, any point where all three polynomials vanish lies in the
image of P .

Consider a point (a, b, c, d) ∈ P3 with a3d = b4, ad3 = c4, and ad = bc.
If d = 0, our equations tell us that b = c = 0, so our point must equal
(1, 0, 0, 0), which is in the image of f. Otherwise, we can scale the
coordinates to assume that d = 1. Then we have a = c4. Plugging
this into our other equations, we get c4 = bc and c12 = b4. If c = 0,,
then b4 = 0 and b = 0 = c3. Otherwise, we can divide c out from
c4 = bc to also get b = c3. Thus (a, b, c, d) must coincide with the
point f(c, 1).

(b) (1 point) The image of f is a curve in P3, so one might expect it to
be possible to cut it out with only two polynomials. Conjecturally,
this is impossible. Check that no two of the polynomials you used in
(a) suffice to cut out the image.

Solution: Many answers are possible, depending on the polynomials
chosen in (a). Let us check that every pair of our polynomials have
a common root not on f(P1).

The polynomials a3d−b4 and ad3−c4 have the common zero (1, 1,−1, 1).
As ad does not equal bc at this point, it does not lie inside f(P1).

The polynomials a3d−b4 and ad−bc have the common zero (0, 0, 1, 0).
For this to equal f(x, y), we would need x = y = 0, but that would
imply c = 0, contradiction.

The polynomials ad3−c4 and ad−bc have the common zero (0, 1, 0, 0).
For this to equal f(x, y), we would need x = y = 0, but that would
imply b = 0, contradiction.
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4. (2 points) (Exercise 1.11.30, Artin) Find all singular points of the projec-
tive plane curve

x3y2 − x3z2 + y3z2 = 0

and classify them as nodes, cusps, or as other singularities.

Solution: The x, y, and z derivatives of our polynomial are 3x2y2−3x2z2,
2x3y + 3y2z2, and −3x2z2 + 2y3z, respectively. The singular points are
the points where all three of these polynomials vanish.

The equation 3x2y2 − 3x2z2 = 0 factors as

3x2(y − z)(y + z) = 0,

so either x = 0, y = z, or y = −z. If x = 0, we can plug that into one of
our other equations to see that y or z vanish. This gives us two singular
points (0, 0, 1) and (0, 1, 0).

Next, if y = z, the vanishing of 2x3y + 3y2z2 and −3x2z2 + 2y3z become
the equations

2x3y + 3y4 = 0

and
−3x2y2 + 2y4 = 0.

The case where y = 0 gives us another singular point (1, 0, 0). If y is
not zero, then we must have 2x3 = −3y3 and 2y2 = 3x2, which cannot
be satisfied simultaneously. A very similar analysis shows that the case
y = −z only gives the singular point (1, 0, 0) that we already found.

It remains to classify the singularity types. Luckily, the simple form of
the singular points makes it easy to see the local expansion around them.
For instance, around (0, 0, 1), we can dehomogenize by setting z = 1 to
get the equation

(−x3 + y3) + x3y2 = 0

which is already expanded around the origin. The lowest term is cubic, so
our curve has multiplicity 3 at (0, 0, 1), and so it has neither a node or a
cusp there.

Near (1, 0, 0), we set x = 1 to get the equation

y2 − z2 + y3z2 = 0.

As the quadratic term y2− z2 factors into two linearly independent linear
terms, this is a node singularity.

Finally, near (0, 1, 0), we set y = 1 and get

z2 + x3 − x3z2 = 0.

Here the lowest term is the degenerate quadratic z2. To see if this gives a
cusp, we need to look at the coefficient of x3. As this coefficient is nonzero,
we indeed get a cusp singularity at this point.
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5. (2 points) For most of this class, we will be focusing on varieties over C.
Some of our theorems do not apply over a field of positive characteristic.
As a broad heuristic, anything involving a derivative will work differently
in positive characteristic - here is one example.

Let C be a conic over F2, the algebraic closure of the field with 2 elements.
Show that the dual curve of C is a line. In particular, C is not its own
bidual.

Solution: Let P be the polynomial defining C. We can write it explicitly
as

ax2 + bxy + cy2 + dxz + eyz + fz2.

Because we are in characteristic 2, the x, y, and z derivatives of P are
by+dz, bx+ez, and dx+ey. The dual curve of C is the image of C under
the map

(x, y, z) 7→ (by + dz, bx+ ez, dx+ ey).

Note that
(e, d, b) · (by + dz, bx+ ez, dx+ ey) = 0

so the dual curve will lie in the line corresponding to the point (b, d, e), as
desired. Thus C is not its own bidual.

6. (1 point) Look through the later chapters of Artin’s notes (the class text)
and find a result or section that you find surprising. Explain what you
find surprising about it.

Solution: Up to you.

5


