
18.721 PSet 2

Due: Feb 26, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. For the next two problems, we will need to be able to talk about varieties
in spaces other than affine or projective space. There is a general notion of
an algebraic variety, but for now let us just consider a few straightforward
cases.

(a) (1 point) Consider An ×Pm, with coordinates x1, · · · , xn for An and
y0, y1, · · · , ym for Pm. Call a polynomial P (x1, · · · , xn, y0, y1 · · · , ym)
homogeneous of degree d in the yi if for any monomial

xi1
1 · · ·xin

n yj00 yj11 · · · yjmm

appearing with a nonzero coefficient in P , we have j0 + j1 + · · · +
jm = d. Explain why it makes sense to talk about the locus in An ×
Pm where P vanishes. An algebraic variety in An × Pm is defined
as the common vanishing locus of some collection of polynomials
homogeneous in the yi.

Solution: To check that this locus is well defined in An × Pm, we need to
check that the condition P (x1, · · · , xn, y0, · · · , ym) = 0 stays true if we scale
all of the yi by some number c. Our homogeneity condition implies that

P (x1, · · · , xn, cy0, · · · , cym) = cdP (x1, · · · , xn, y0, · · · , ym) = 0,

as desired.

(b) (1 point) Now say we want to define a variety in Pn×Pm. The key no-
tion for this is that of a bihomogeneous polynomial of bidegree (d, e)
in some variables xi and yi. This is a polynomial which is homoge-
neous of degree d when considered as a polynomial in the xi (with
coefficients polynomials of the yi) and homogeneous of degree e when
considered as a polynomial in the yi (with coefficients polynomials of
the xi).
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Explain why it makes sense to talk about the vanishing locus in
Pn × Pm of a bihomogeneous polynomial. A variety in Pn × Pm will
be the common vanishing locus of some collection of bihomogeneous
polynomials.

Solution: This is similar to the previous part, but now we need to allow for
separate scaling of the xi and the yi. The vanishing locus is invariant under such
scaling because if P (x0, · · · , xn, y0, · · · , ym) is a bihomogeneous polynomial of
bidegree (d,e), then we have

P (ax0, · · · , axn, by0, · · · , bym) = adbeP (x0, · · · , xn, y0, · · · , ym).

(c) (2 point) We have an embedding (called the Segre embedding) of
P1 × P1 → P3 given by

((a, b), (c, d)) 7→ (w, x, y, z) = (ac, ad, bc, bd).

It’s image is cut out by the single polynomial wz = xy (you can use
this fact without proof.) Show that the image of a variety in P1 ×P1

under the Segre embedding is a projective variety.

Solution: We first do the case where our variety in P1 × P1 is cut out by a
single bihomogeneous polynomial P (a, b, c, d) with bidegree (m,n). Without loss
of generality, assume m ≤ n. Then as a and b cannot both be zero, our variety
is also the common zero locus of an−mP (a, b, c, d) and bn−mP (a, b, c, d), which
are both of bidegree (n, n).

We claim that for every bihomogeneous polynomial Q(a, b, c, d) of bidegree
(n, n), there is a (necessarily homogeneous) polynomialR(w, x, y, z) withQ(a, b, c, d) =
R(ac, ad, bc, bd). It suffices to check this for a monomial aibjckdl. The bidegree
condition tells us that i + j = k + l = n. WLOG, we can assume i ≤ k. Then,
note that

aibjckdl = (ac)i(bc)k−i(bd)l,

so in this case we can take R(w, x, y, z) = wiyk−izl.

If Q(a, b, c, d) = R(ac, ad, bc, bd), then the Segre embedding will send the zero
locus V (Q) of Q to the common zero locus V (wz − xy,R). In particular, V (Q)
is sent to an algebraic variety. Therefore, we see that V (an−mP ) and V (bn−mP
are sent to algebraic varieties, so their intersection V (an−mP, bn−mP ) = V (P )
is also sent to an algebraic variety, as desired.

In general, if our variety is the common zero locus V (P1, · · · , Pk) of multiple
polynomials, then it is sent to the intersection of the images of the V (Pi). As
the intersection of algebraic varieties is still a variety, this suffices to conclude.
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2. In 1.7 of Artin’s notes, he introduces the affine blow up of A2 at one point
and uses it to study singularities. Explicitly, his affine blowup is the map
π : A2 → A2 defined by

(x,w) 7→ (x, xw).

We will introduce the blow-up, which is more commonly used. Let X ⊂
A2 × P1 be the set of tuples

{((x, y) ∈ A2, (u, v) ∈ P1) | xv = uy}.

This is a variety in the sense of the previous problem. There is a natural
map π′ : X → A2 sending a tuple ((x, y), (u, v)) to (x, y). The space X,
with the map π′, is known as the blow-up of A2 at the origin.

(a) (1 point) Describe the image and fibers of π and π′.

Solution: The fibers are described by

π−1(x, y) =

 (x, y
x ) x ̸= 0

(1− p)n−1(1− p+ 4pαβ)n−1 x = 0, y ̸= 0
∅ x = y = 0

and

π′−1(x, y) =

{
((x, y), (x, y)) (x, y) ̸= (0, 0)
P1 x = y = 0

.

In particular, the image of π is the union of the open set x ̸= 0 with the origin,
while the image of π′ is the entire space A2. This is one indication that π′ is
a more symmetric object than π.

(b) (1 point) Define an injective map f : A2 → X such that π′ ◦ f = π.
(In fact, f is an open immersion (you do not need to prove this),
so this shows that the affine blowup is an open subspace of the full
blowup.)

Solution: We can define f by

f(x,w) = ((x, xw), (w, 1)).

This map is injective because x can be recovered from the tuple (x, xw) ∈ A2,
and w can be recovered from the tuple (w, 1) ∈ P1. It follows immediately
from the definition that π′ ◦ f = π.

(c) (2 points) In 1.7.7, Artin shows that for a generic curve C with a
node at the origin, there is a curve C ′ ⊆ A2 mapped to C by π
such that the fiber of C ′ → C at the origin is two smooth points.
Notably, he only shows this for generic curves (in his notation, he
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requires a parameter c to be nonzero.) The full blow-up will remove
this condition.

Show that for any curve C with a node at the origin, there is a
subvariety C ′ ⊆ X mapped to C by π′ such that the fiber of C ′ → C
at the origin is two points. (These will turn out to be smooth points
of C ′, but we haven’t defined what a smooth point of a general variety
is).

Solution: Assume that C is the vanishing locus of P (x, y). Write P as a sum
P0(x, y) + P1(x, y) + · · · + Pd(x, y), where Pi(x, y) is homogeneous of degree
i. Because we assume C has a node singularity, P0 = P1 = 0 and P2(x, y)
is the product of two linearly independent linear polynomials a1x + b1y and
a2x+ b2y.

We will construct a polynomial Q(u, v, x, y) homogeneous of degree 2 in u and
v such that

u2P (x, y) ≡ x2Q(u, v, x, y) (mod xv − uy).

It suffices to do the construction when P is a monomial xayb with a+ b ≥ 2.
If a ≥ 2, then we can take Q(x, y) = u2xa−2yb. On the other hand, if a < 2,
we can take Q(x, y) = v2−aya+b−2. In both cases, a quick computation verifies
the above identity. We can similarly construct R(u, v, x, y) homogeneous of
degree 2 in u and v such that

v2P (x, y) ≡ y2R(u, v, x, y) (mod xv − uy).

We define C ′ to be the common zero locus of Q,R, and xv− uy. As u2P (x, y)
and v2P (x, y) lie in the ideal generated by Q,R, and xv − uy, they must also
be zero on C ′. Since u and v cannot both be zero, this implies that P (x, y) is
zero at every point of C ′, so π′ maps C ′ to C, as desired. (Conversely, it is not
hard to show that at a point (x, y) ̸= (0, 0) of C, Q and R contain the fiber
π′−1(x, y).)

It remains to calculate the fiber of C ′ above (0, 0). Examining the construction
of Q and R, we see that only the P2(x, y) term contributes to Q(u, v, 0, 0) and
R(u, v, 0, 0). Then our assumption P2(x, y) = (a1x+ b1y)(a2x+ b2y) gives

Q(u, v, 0, 0) = R(u, v, 0, 0) = (a1u+ b1v)(a2u+ b2v),

so we get two points of C ′ above (0, 0), corresponding to (u, v) = (−b1, a1) and
(u, v) = (−b2, a2).

3. (2 points, will be easier after Thursday) Consider the product P1 × P1 of
two projective lines. A curve of bidegree (d, e) is a subvariety of P1 × P1

cut out by a single polynomial bihomogeneous of bidegree (d, e).

Assume we have two curves C and D which intersect in a finite number of
points. Give a formula for the number of intersections (with multiplicity)
of C and D, with proof.
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Note: a proof of this formula can be found online with only a moderate
amount of effort. While I encourage you to try to solve this problem
yourself first (you will learn more), it is allowed to consult online references
as long as you write your solution yourself. However, if you do so, you
MUST cite your reference, as indicated at the start of this problem set.

Solution: Let x and y be coordinates for the first P1 and let t and z be coor-
dinates for the second P1. We pick the coordinates so that C and D have no
intersections on the line z = 0. Assume that C and D have defining polyno-
mials P (x, y, t, z) and Q(x, y, t, z) of bidegrees (c1, c2) and (d1, d2). Because we
assumed that there are no intersections with z = 0, we can normalize z to be 1.
Write

P (x, y, t, 1) = P0(x, y)t
c2 + P1(x, y)t

c2−1 + · · ·+ Pc2(x, y)

and
Q(x, y, t, 1) = Q0(x, y)t

d2 +Q1(x, y)t
d2−1 + · · ·+Qd2(x, y).

By the assumption, the Pi are homogeneous of degree c1 and the Qi are homo-
geneous of degree c2.

For a given pair (x, y), there is a value of t such that P (x, y, t, 1) = Q(x, y, t, 1) =
0 if and only if the resultant Rest(P,Q) vanishes at (x, y). (Actually, we haven’t
carefully justified this in the case where P0 or Q0 vanishes — we will discuss
this at the end of this solution.)

We claim that the above resultant is a homogeneous polynomial of degree c1d2+
d1c2. It will thus give us c1d2 + d1c2 roots (and hence intersections), counted
with multiplicity.

To see this, we recall that the resultant is the determinant of the following
c2 + d2 × c2 + d2 matrix1:

P0 0 · · · 0 Q0 0 · · · 0
P1 P0 · · · 0 Q1 Q0 · · · 0

P2 P1
. . . 0 Q2 Q1

. . . 0
...

...
. . . P0

...
...

. . . Q0

Pc2 Pc2−1 · · ·
... Qd2 Qd2−1 · · ·

...

0 Pc2

. . .
... 0 Qd2

. . .
...

...
...

. . . Pc2−1

...
...

. . . Qd2−1

0 0 · · · Pc2 0 0 · · · Qd2


.

Every term in the determinant will be the product of entries, one from each
column. Each entry in the first d2 columns is of degree c1, and every entry in
the last c2 columns is of degree d2, so every term in the determinant will be of
degre c1d2 + d1c2, as desired.

1Latex code stolen from https://en.wikipedia.org/wiki/Resultant
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Let us now briefly discuss what happens if P0 or Q0 vanishes at a point (x, y)
(this is not required for a submission to receive full credit.) The argument from
class that the resultant is zero if and only if two polynomials have a common
root only works if the leading terms of both polynomials are nonzero (this was
not an issue in cl ass, because our leading term was just a constant, rather than
a function of x and y). However, this statement remains true as long as only
one of P0 and Q0 vanish - this can be shown by expanding the determinant by
minors along the first row.

On the other hand, if both P0 and Q0 vanish, then the resultant will be zero,
even if P (x, y, t, 1) and Q(x, y, t, 1) do not have a common root. However, this
is a feature, not a bug! In this case, C and D will intersect at the line at infinity
z = 0. We assumed that this does not happen, so P0 and Q0 do not have any
common roots. (On the other hand, when there is an intersection on the line
at infinity, this phenomenon is why the degree of the resultant still gives the
correct count.)

4. (1 point) Think about another area of mathematics that you’ve learned,
and tell a story about how an algebraic variety might show up in that
area, and what the singularities of that variety might mean. (Your story
will not be graded on correctness — the goal is to prime your brain to
start thinking about connections with other areas.).

Solution: Many possible answers.
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