
18.721 PSet 3 Solutions

Due: Mar 1, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. Let R ⊂ C[x, y] be the subring of polynomials P such that every monomial
xiyj appearing with nonzero coefficient in P has even total degree i+ j.

(a) (1 point) Prove that R is a finite type C-algebra.

Solution: We claim it is generated by the monomials x2, xy, and y2. Indeed,
for a monomial xiyj with even total degree, if i and j are even, then we have

xiyj = (x2)
i
2 (y2)

j
2 . If i and j are odd, then xiyj = xy(x2)

i−1
2 (y2)

j−1
2 . Thus,

every element of R can be written as a polynomial in terms of x2, xy, and y2,
so R is generated by those three elements and hence finite type.

(b) (1 point) Find, with proof, an embedded affine variety V ⊆ An whose
coordinate algebra is isomorphic to R.

Solution: There is a map C[u, v, w] sending u to x2, v to xy, and w to y2. By
the previous part, this map is surjective, so it corresponds to quotienting by
some ideal I of C[u, v, w]. We claim that I is the ideal generated by uw − v2.
It follows that I contains uw− v2 from the fact that (x2)(y2)− (xy)2 = 0. Let
P (u, v, w) be a polynomial with P (x2, xy, y2) = 0. There is a unique way of
writing P as a sum (uw− v2)Q(u, v, w) +R(u, v, w) such that the degree of v
in R is at most 1. Every monomial in u, v, and w with at most one power of
v corresponds to a different monomial in x and y, so R(x2, xy, y2) cannot be
zero unless R = 0. Thus, if P (x2, xy, y2) = 0, then R is the zero polynomial
and P is a multiple of (uw − v2), as desired.

Because R is evidently an integral domain and C[u, v, w]/(uw − v2) ∼= R, we
see that (uw − v2) is a radical ideal. Thus, R is the coordinate algebra of the
vanishing locus of uw − v2.

2. (2 points) Let A and B be finite type C-algebras. Show that Spec(A⊕B)
is the disjoint union of Spec(A) and SpecB as topological spaces. In
particular, Spec(A ⊕ B) is disconnected. (It is conversely true that the
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spectrum of a ring R is disconnected only if R is a direct sum of two other
rings, but you do not need to show this.)

Solution: For every maximal ideal m of Spec(A), we get an ideal m ⊕ B
of A ⊕ B. As (A ⊕ B)/(m ⊕ B) is isomorphic to A/m, which is a field, we
see that m ⊕ B is a maximal ideal. Simiarly, for any maximal ideal m′ of
Spec(B), the ideal A ⊕ m′ is also maximal. Together, these give us a map of
sets f : Spec(A)⊕ Spec(B) → Spec(A⊕B).

To show that this map is an isomorphism, we will first prove that every ideal I
of A⊕B is a direct sum of ideals IA⊕ IB . Indeed, let IA be the intersection of I
with A ⊆ A⊕B and let IB be the intersection of I with B ⊆ A⊕B. As IA and
IB are clearly in I, we see that IA ⊕ IB ⊆ I. Conversely, if (x, y) is an element
of I, then multiplying by (1, 0), we see that (x, 0) is an element of I and thus x
is an element of IA. Similarly, y is an element of IB . Thus, (x, y) is an element
of IA ⊕ IB , so I must be equal to IA ⊕ IB .

Assume I is maximal. It is contained in the ideal A ⊕ IB , so either we must
have I = A ⊕ IB (in which case IA = A) or A ⊕ IB = A ⊕ B (in which case
IB = B.) If IA = A, then for I to be maximal IB must be a maximal ideal,
and I comes from SpecB. Simiarly, if IB = B, then I comes from SpecA. This
concludes the proof that f is an isomorphism of sets.

It remains to show that the topological structures on both sides agree. The
closed sets of Spec(A⊕B) are exactly the sets of the form V (I) = V (IA ⊕ IB).
But these are the sets which are the union of sets of the form, V (IA) and V (IB),
so it coincides with the topology on the disjoint union of SpecA and SpecB.

3. One major philosophy of algebraic geometry is that every aspect of the
geometry of a variety can be understood via its coordinate algebra. Let’s
try to understand smoothness of plane curves this way.

(a) (1 point) Let P (x, y) ̸= 0 be a polynomial such that P (0, 0) = 0, and
let C be the vanishing locus of P . Then C is the spectrum of the
ring

R = C[x, y]/(P (x, y)).

Let m be the ideal (x, y) ⊆ R. Show that m is a maximal ideal.

Solution: The quotient R/m coincides with the quotient R/(x, y) ∼= C, so m
is a maximal ideal.

(b) (2 points) Recall that one can multiply ideals, and in particular one
can multiply m by itself to get an ideal m2. Show that C is smooth
at the origin if and only if the vector space quotient m/m2 is 1-
dimensional.
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Solution: Let P (x, y) = P1(x, y) + P2(x, y) + · · · , where Pi is homogeneous
of degree i. Then C is smooth at the origin if and only if P1 ̸= 0.

The ideal m2 in R is the ideal generated by products of two elements in m. As
m is generated by x and y, m2 = (x2, xy, y2). Let f be the map C[x, y] → R.
Then f−1(m) is the ideal (x, y, P (x, y)) = (x, y) and f−1(m2) is the ideal
(x2, xy, y2, P (x, y)). If P1 = 0, then P (x, y) is already in (x2, xy, y2) and so
f−1(m2) = (x2, xy, y2). Then we have

m/m2 ∼= f−1(m)/f−1(m2) ∼= (x, y)/(x2, xy, y2) ∼= Cx⊕ Cy,

and we see that m/m2 is not 1-dimensional.

Conversely, if P1 is not zero, we have

m/m2 ∼= f−1(m)/f−1(m2) ∼= (x, y)/(x2, xy, y2, P (x, y)) ∼= Cx⊕Cy/CP1(x, y),

and m/m2 is 1-dimensional.

4. To study singularities in more depth algebraically, it is helpful to introduce
rings of formal power series. The ring C[[x1, · · · , xn]] is the ring of infinite
sums ∑

ai1,··· ,inx
i1
1 · · ·xin

n ,

with the natural addition and multiplication operations.

Let C be the vanishing locus of a polynomial P (x, y) ̸= 0. We will relate
how singular C is at (0, 0) to the structure of the ring

R = C[[x, y]]/(P (x, y)).

(This ring is the so-called formal completion of C[x, y]/((P (x, y)) at the
origin.)

Letm be the ideal (x, y) ⊆ C[[x, y]]. The ring C[[x, y]] has a natural metric,
where the distance d(a, b) between two elements a, b ∈ C[[x, y]] is defined
to be 2−i, where i is the largest nonnegative integer with a− b ∈ mi. (The
number 2 is not important here, and can be replaced with any real number
> 1.)

(a) (1 point) Show that d defines a metric on C[[x, y]], and that C[[x, y]]
is complete with respect to this metric.

Solution: Let us check that d satisfies the axioms of a metric. It is clear
that d is symmetric. Let us check that the intersection of all the ideals mi is
zero. The ideal mi contains all formal power series where every term has total
degree ≥ i. As each possible monomial has some finite total degree, it follows
that the only element in all the mi is 0, and thus that d(a, b) = 0 if and only
if a = b.

Now we treat the triangle inequality. Let a, b, and c be distinct elements of
C[x, y]. Assume d(a, b) = 2−i and d(b, c) = 2−j . Then a−b ∈ mi and b−c ∈ mj ,

3



so a− c = a− b+ b− c ∈ mmin(i,j), and d(a, c) ≤ 2−min(i,j) ≤ d(a, b) + d(b, c),
as desired.

Finally, let us show that C[[x, y]] is complete. Let ai be a Cauchy sequence in
C[[x, y]]. Then for any integer n, there is some integer N such that for i, j > N,
we have d(ai, aj) ≤ 2−n, or equivalently ai − aj ∈ mn. Therefore, all the ai
for large enough i are the same mod mn, or equivalently have the same terms
of degree < i. Thus, the coefficient aic,d of xcyd in ai is the same for all large
enough i and must stabilize to some fixed ac,d. Then the sequence ai must
stabilize to the formal power series∑

ac,dx
cyd.

For parts (b) and (c), assume that C contains and is smooth at
the origin. After a change of coordinates, we can assume P (x, y) =
y+S(x, y), where S(x, y) only contains terms of total degree at least
2.

(b) (1 point) Let a be an element of C[[x, y]]. Show that for any non-
negative integer n, there are elements bn ∈ C[[x, y]], cn ∈ C[[x]], and
dn ∈ mn satisfying

a = P (x, y)bn + cn + dn.

Solution: We show this by induction. It’s true for n = 0 by setting b0 = c0 = 0
and d0 = a. Assume we have an expression

a = P (x, y)bn + cn + dn

satisfying the conditions. Let the degree n term of dn be the polynomial
Q(x, y) = sxn + yR(x, y). Then we have

a = P (x, y)bn + cn + dn

= P (x, y)bn + cn + (dn −Q(x, y)) + sxn + yR(x, y)

= P (x, y)(bn +R(x, y)) + (cn + sxn) + (dn −Q(x, y)− S(x, y)R(x, y)),

so we can take bn+1 = bn+R(x, y), cn+1 = cn+sxn, and dn+1 = dn−Q(x, y)−
S(x, y)−R(x, y).

(c) (1 point) Show in fact that there are elements b ∈ C[[x, y]] and c ∈
C[[x]] satisfying

a = P (x, y)b+ c.

Conclude that the natural map C[[x]] → R is an isomorphism. In
summary, the formal completion of a curve at a smooth point is
always isomorphic to C[[x]], no matter the curve.
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Solution:We will show that the bn, cn, and dn of the previous problem
each form a Cauchy sequence. More precisely, we show that for i, j > n,
the elements bi − bj , ci − cj , and di − dj lie in mn. For the di this is clear
by definitions. For the others, we take the difference of

a = P (x, y)bi + ci + di

and
a = P (x, y)bj + cj + dj

to get
0 = P (x, y)(bi − bj) + (ci − cj) + (di − dj),

which implies
P (x, y)(bi − bj) + (ci − cj) ∈ mn+1.

Let xrys be a term in bi − bj of minimal total degree. Then there is a
term xrys+1 in P (x, y)(bi − bj) of minimal total degree, and it cannot be
cancelled out by a term in the (ci − cj) (as the ci are power series in x
only.) Therefore, we must have r+s+1 ≥ n+1, so bi−bj ∈ mn. Plugging
this in, we see that ci − cj is also in mn, as desired.

We can now let b and c be the limits of the bn and the cn. By definition,
the dn limit to zero, so we get

a = P (x, y)b+ c.

Therefore, every element in C[[x, y]] is equivalent to an element of C[[x]
mod P (x, y). This implies that the map C[[x]] → R is surjective. To see
injectivity, it suffices to observe that no element of C[[x]] is a multiple of
P (x, y). As y is the lowest degree term of P (x, y), any nonzero multiple of
P (x, y) would have to have a term of minimal degree which is a multiple
of y, so could not be an element of C[[x]].

(d) (Extra credit, harder, 1 pt) Assume that C has a node at the origin.
Show that the ring R is isomorphic to C[[x, y]]/(xy). In particular, it
does not depend on C.

This suggests an approach towards classifying singularities: We can
say that a singularity of C at p and a singularity of D at q have the
same singularity type iff their formal completions are isomorphic.

Solution: Do a coordinate change so that P (x, y) = xy + S(x, y), with S
having only terms of total degree at least 3. The key to this problem is to
find u = x+R1(x, y) and v = y +R2(x, y) with P (x, y) = uv and the Ri only
having terms of total degree at least 2. This can be done with an argument
similar to the previous parts, building up the Ri via successive approximation.
Once this is done, u and v define a map

C[[u, v]]/(uv) → R,
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and another approximation argument will show that it is an isomorphism.

We note that the hard part of this problem is that there is no a priori natural
map of rings C[[x, y]]/(xy) → R, though one can write down a natural map of
vector spaces, which is easier to prove is an isomorphism.

5. (1 point) Technically, this unit (Chapter 2) does not depend logically on
the previous unit (Chapter 1). Imagine that you were teaching a version
of this class starting from Chapter 2, instead of Chapter 1. How would
that affect how you teach it? Name a specific change you would make.

Solution: Many possible answers.
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