
18.721 PSet 5

Due: Mar 15, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. (1 point, Exercise 3.8.14 in Artin) Describe all morphisms P2 → P1.

2. In Artin’s Section 3.5.26, he considers the projection map

π : Pn − {(0, · · · , 0, 1)} → Pn−1

defined by
π(x0, x1, · · · , xn) = (x0, x1, · · · , xn).

The fibers of π are the lines through {0, · · · , 0, 1} (minus the point itself,
which is not in the domain of π.)

(a) (1 point) Show that for any point p ∈ Pn, there is a map Pn−{p} →
Pn−1 whose fibers are lines through p (minus p itself).

(b) (1 point) Show that every plane curve has a non-constant map to P1.

3. In the previous problem, we showed that every plane curve (in fact, any
curve) has a nontrivial to P1. Conversely, it is very rare that a curve
admits a nontrivial map from P1 - in fact, later in the class we’ll see
that P1 does not map to any other smooth curve. For now, let us give
an ad hoc argument that the projective cubic plane curve C defined by
x3 + y3 + z3 = 0 has no nontrivial map from P1.

(a) (1 point) Show that every map P1 → P2 corresponds to a triple (up
to scaling) of polynomials (f(x, y), g(x, y), h(x, y)), each of which is
homogeneous of some degree d, such that f, g, and h do not have
a common root (except for x = y = 0.) Conclude that if there is a
non-constant map from P1 to C, then there are coprime polynomials
f(t), g(t), and h(t) all of degree d > 0, with

f(t)3 + g(t)3 + h(t)3 = 0.

(b) (1 point) Let the Wronskian of two polynomials P (t) and Q(t) be
W (P,Q) = PQ′ − QP ′. (By e.g., P ′, we mean the derivative of P
with respect to t.) Show that W (f(t)3, g(t)3) = W (g(t)3, h(t)3) =
W (h(t)3, f(t)3). Call this polynomial w(t).
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(c) (1 point) Show that w(t) is a multiple of all of f(t)2, g(t)2, and h(t)2.
Derive a contradiction from this fact.

4. (2 points) Show that in a quasi-projective variety, the ring of regular
functions on any affine open is of finite type. (Hint: Use the affine com-
munication lemma).

5. For this problem, we’ll do some algebraic geometry over Fp. You can as-
sume that everything we’ve proven over the last two weeks applies literally
to characteristic p algebraic geometry (which it does). We will also use
the version of Bezout’s theorem for P1×P1 that we proved a few problem
sets ago, that the number of intersections (with multiplicity) of a curve of
bidegree (d1, e1) and a curve of bidegree (d2, e2) is d1e2 + d2e1.

(a) (1 point) Let Fr : P1 → P1 be the map sending (x0, x1) to (xp
0, x

p
1)

(this is called the Frobenius map.) Then we have a diagonal map

P1 → P1 × P1 : x 7→ (x, x)

and a twisted diagonal map

P1 → P1 × P1 : x 7→ (x,Fr(x)).

Call the images of these maps C and C ′. Find the bidegrees of C
and C ′.

(b) (1 point) Calculate the number of intersections of C and C ′, and
explain why these intersections correspond to points of P1 with co-
ordinates in Fp.

For P1 this is a severely over-complicated way of computing the num-
ber of Fp-points, but this is actually the most powerful technique for
doing so on a general variety. As one example, it is possible to prove
(this is not part of the assignment) that for a smooth projective
curve of genus g, the number of Fp-points is between p + 1 − 2g

√
p

and p+ 1 + 2g
√
p.

6. (1 point) Soon, we’ll discuss a classical theorem that a smooth cubic sur-
face has 27 lines on it. On the second floor of the math department, by the
main staircase, there is a sculpture exhibit including a cubic surface with
27 lines. Look at this exhibit and convince yourself that the marked lines
are indeed lines. Then, look at the nearby exhibits and describe what you
learned from them.
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