18.721 PSet 4

Due: Mar 8, 11:59 PM

At the top of your submission, list all the sources you consulted, or write "Sources consulted: none" if you did not consult any sources.

1. Let $R \subset \mathbb{C}[x]$ be the subring of polynomials P such that the coefficient of x in P is zero.
(a) (1 point) Give an embedding of $\operatorname{Spec} R$ into \mathbb{A}^{2}, and show that the image has a cusp.

Solution: Note that R is generated as a \mathbb{C}-algebra by the polynomials x^{2} and x^{3}, which satisfy $\left(x^{3}\right)^{2}=\left(x^{2}\right)^{3}$. There is thus a surjection

$$
f: \mathbb{C}[u, v] /\left(u^{3}-v^{2}\right) \rightarrow R
$$

sending u to x^{2} and v to x^{3}. We claim that this map is an isomorphism. Indeed, every element of the left hand side can be uniquely represented as a polynomial in u and v without any terms of degree at least 2 in v. Therefore, as a vector space, $\mathbb{C}[u, v] /\left(u^{3}-v^{2}\right)$ has a basis given by the u^{i} and the $u^{i} v$. As $f\left(u^{i}\right)=x^{2 i}$ and $f\left(u^{i} v\right)=x^{2 i+3}$, this basis is sent by f to the basis of R consisting of all powers of x except for x itself, which shows that f is an isomorphism.
Now the map

$$
\mathbb{C}[u, v] \rightarrow \mathbb{C}[u, v] /\left(u^{3}-v^{2}\right) \cong R
$$

shows that $\operatorname{Spec} R$ is isomorphic to the plane curve $u^{3}=v^{2}$, which has a cusp at the origin.
(b) (1 point) Find a smooth curve $\operatorname{Spec} S$ with a map $\operatorname{Spec} S \rightarrow \operatorname{Spec} R$ which is an isomorphism on topological spaces. Observe that this means that the composition Spec $S \rightarrow \operatorname{Spec} R \rightarrow \mathbb{A}^{2}$ is a closed embedding of topological spaces but not a closed embeddding of algebraic varieties.

Solution: Note that we have a map $R \rightarrow \mathbb{C}[x]$, which gives a map of varieties $\mathbb{A}^{1} \rightarrow$ Spec R. To see that this map is an isomorphism on points, we look at the composition

$$
g: \mathbb{A}^{1} \rightarrow \operatorname{Spec} R \rightarrow \mathbb{A}^{2}
$$

defined by

$$
x \mapsto\left(x^{2}, x^{3}\right) .
$$

We know that $\operatorname{Spec} R$ embeds into \mathbb{A}^{2} as the vanishing locus of $u^{3}-v^{2}$, so it suffices to show that every (u, v) with $u^{3}-v^{2}=0$ can be uniquely expressed as $g(x)$. If $v=0$, then $u=0$, and g sends only 0 to $(0,0)$. On the other hand, if $v \neq 0$, then $x=\frac{u}{v}$ is the unique point sent to (u, v), as desired.
As \mathbb{A}^{1} and $\operatorname{Spec} R$ both have the cofinite topology (as they are both curves), it follows that the map $\mathbb{A}^{1} \rightarrow \operatorname{Spec} R$ is also an isomorphism of topological spaces. Thus the map $\mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ is a closed embedding of topological spaces, but is not a closed embedding of varieties because the corresponding map of algebras $\mathbb{C}[u, v] \rightarrow R \rightarrow \mathbb{C}[x]$ is not surjective, as it factors through R.
2. (2 points) Let R be a finite type \mathbb{C}-algebra that is integral (i.e., has no zero-divisors.) Let S be a multiplicative system in R. Show that the localization R_{S} is a finite type \mathbb{C}-algebra if and only if it is isomorphic to the localization R_{f} at a single nonzero element f. (Recall that R_{f} is the localization of R at the multiplicative system $\left\{1, f, f^{2}, \cdots\right\}$.

Solution: First we show that R_{f} is finitely generated. Let R be generated as an algebra by elements f_{1}, \cdots, f_{n}. Then R_{f} will be generated by $f_{1}, \cdots, f_{n}, \frac{1}{f}$, so is also finite type.

On the other hand, assume R_{S} is a finite type algebra. Then it is generated by elements $\frac{a_{1}}{b_{1}}, \cdots, \frac{a_{m}}{b_{m}}$, with $b_{i} \in S$. Let f be the product of the b_{i}, which will still be an element of S. Each $\frac{a_{i}}{b_{i}}$ can be written as a fraction with denominator f, so all polynomials in those elements can be written as fractions with denominators powers of f. Thus, every element of R_{S} lies inside R_{f}, as desired.
3. Our definition of $\operatorname{Spec} R$ as a topological space still makes sense for rings R which are not finite type \mathbb{C}-algebras. We will not worry too much about such algebras in this class, but let us briefly discuss the case of \mathbb{R}-algebras.
(a) (1 point) Classify the maximal ideals of $\mathbb{R}[x]$, and describe the map

$$
\operatorname{Spec}(\mathbb{C}[x]) \rightarrow \operatorname{Spec}(\mathbb{R}[x])
$$

Solution: As $\mathbb{R}[x]$ is a principal ideal domain, the maximal ideals of $\mathbb{R}[x]$ will be those generated by one irreducible polynomial. Thus, we get one maximal ideal $(x-a)$ for every real number a and one maximal ideal $\left(x^{2}+a x+b\right)$ for every quadratic polynomial with no real roots (equivalently, for every pair of conjugate non-real complex numbers.)
The map $f: \mathbb{C}[x] \rightarrow \mathbb{R}[x]$ sends an ideal I to its intersection with $\mathbb{R}[x]$. It is clear that if r is real, f sends $(x-r)$ to $(x-r)$. On the other hand, if r is
non-real, then any polynomial with real coefficients and root r must also have \bar{r} as a root and hence be a multiple of $(x-r)(x-\bar{r})$. Thus, f sends $(x-r)$ for non-real r to $((x-r)(x-\bar{r}))$.
(b) (1 point) Classify the maximal ideals of $\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)$, and describe the map

$$
\operatorname{Spec}\left(\mathbb{C}[x, y] /\left(x^{2}+y^{2}+1\right)\right) \rightarrow \operatorname{Spec}\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)\right)
$$

Note that the vanishing locus of $x^{2}+y^{2}+1=0$ in \mathbb{R}^{2} is empty, and yet we can still study the algebraic geometry of this ring.

Solution: Let g denote the map

$$
\operatorname{Spec}\left(\mathbb{C}[x, y] /\left(x^{2}+y^{2}+1\right)\right) \rightarrow \operatorname{Spec}\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)\right)
$$

We start by claiming that g is surjective. Indeed, let m be a maximal ideal of $\operatorname{Spec}\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)\right)$. Then $m \oplus i m$ is a non-unit ideal in $\operatorname{Spec}\left(\mathbb{C}[x, y] /\left(x^{2}+\right.\right.$ $\left.y^{2}+1\right)$), and is thus contained in some maximal ideal m^{\prime}. As m^{\prime} contains (the image of) m, we see that $g\left(m^{\prime}\right)$ must be a maximal ideal containing m, hence equaling m.
We know that the maximal ideals of $\operatorname{Spec}\left(\mathbb{C}[x, y] /\left(x^{2}+y^{2}+1\right)\right)$ are of the form $((x-a),(y-b))$ for a, b complex numbers with $a^{2}+b^{2}+1=0$. Equivalently, we can describe this ideal as containing exactly the polynomials that vanish at (a, b). As a polynomial with real coefficients vanishes at (a, b) if and only if it vanishes at (\bar{a}, \bar{b}), we see that $g((x-a),(y-b))=g((x-\bar{a}),(y-\bar{b}))$.
Conversely, we will show that if $g((x-a),(y-b))=g((x-c),(y-d))$, then either $(c, d)=(a, b)$ or $(c, d)=(\bar{a}, \bar{b})$. This will imply that maximal ideals of $\operatorname{Spec}\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)\right)$ are classified by pairs (a, b) with $a^{2}+b^{2}+1=0$, modulo conjugation. Assume that (c, d) is neither (a, b) nor (\bar{a}, \bar{b}). Then there are real numbers r and s such that $r c+s d$ is equal to neither $r a+s b$ nor $r \bar{a}+s \bar{b}$. Then the polynomial $(r x+s y-r a-s b)(r x+s y-r \bar{a}-s \bar{b})$ has real coefficients and vanishes at (a, b) but not at (c, d). This gives an element of $g((x-a),(y-b))$ that is not in $g((x-c),(y-d))$.
4. Let S be a subset of \mathbb{Z}^{n} containing 0 and closed under addition (in other words, a sub-semigroup of \mathbb{Z}^{n}). We can define a ring $\mathbb{C}[S]$ whose elements are formal linear combinations $\sum a_{i} t^{s_{i}}$ with the $s_{i} \in S$, with multiplication determined by the rule $t^{s_{i}} \cdot t^{s_{j}}=t^{s_{i}+s_{j}}$. An affine toric variety is the spectrum of a ring $\mathbb{C}[S]$. Toric varieties give a large family of easy examples of varieties.
(a) (1 point) Show that every inclusion $S \subseteq S^{\prime}$ gives a map of toric varieties Spec $\mathbb{C}\left[S^{\prime}\right] \rightarrow$ Spec $\mathbb{C}[S]$.

Solution: There is a map of algebras $\mathbb{C}[S] \rightarrow \mathbb{C}\left[S^{\prime}\right]$ sending t^{s} to t^{s}. Taking Spec gives us the desired map.
(b) (1 point) Show that any toric variety has an open subset which is isomorphic to a torus (i.e., the spectrum of an algebra $\mathbb{C}\left[x_{i}, x_{i}^{-1}\right]$.) This is why these varieties are called toric.

Solution: Let S^{\prime} be the group generated by S. Then as S is a subgroup of \mathbb{Z}^{n}, it must be isomorphic to \mathbb{Z}^{m} for some m. It follows that $\mathbb{C}\left[S^{\prime}\right]$ is isomorphic to an algebra $\mathbb{C}\left[x_{1}, \cdots, x_{m}, x_{1}^{-1}, \cdots, x_{m}^{-1}\right]$, and hence has spectrum a torus. It remains to show that the map Spec $\mathbb{C}\left[S^{\prime}\right] \rightarrow \operatorname{Spec} \mathbb{C}[S]$ is an open embedding, or equivalently that the map of algebras $\mathbb{C}[S] \rightarrow \mathbb{C}\left[S^{\prime}\right]$ is a localization. (Technically one needs that it is a localization by one element, but this follows assuming S is finitely generated (a necessary assumption for the problem) by Problem 2.)
Note that the set of elements of the form $t^{s_{i}}$ is a multiplicative system in $\mathbb{C}[S]$. Inverting these elements gives $\mathbb{C}\left[S^{\prime}\right]$, as desired.
5. (2 points) Recall in class that we mentioned that $X=\mathbb{A}^{2}-\{(0,0)\}$ is not an affine variety. More precisely, we claim that there is no affine variety Y with a map $\pi: Y \rightarrow \mathbb{A}^{2}$ and two open subvarieties U and V satisfying the following properties:

- Y is the union of U and V
- π induces an isomorphism of varieties between U (respectively, V) and the complement of the x-axis (respectively, the y-axis) in \mathbb{A}^{2}
- π induces an isomorphism of varieties between the intersection $U \cap V$ and the locus where $x y$ does not vanish in \mathbb{A}^{2}.

Prove this. (Hint: One way of doing this is to think about maps from such a variety Y to \mathbb{A}^{1}.)

Solution: Maps from a variety Y to \mathbb{A}^{1} are in bijection with elements in $\mathcal{O}(Y)$, so we will work in the language of regular functions. By our assumptions, $\mathcal{O}(U) \cong \mathbb{C}\left[x, y, y^{-1}\right]$ and $\mathcal{O}(V) \cong \mathbb{C}\left[x, y, x^{-1}\right]$. We also have $\mathcal{O}(U \cap V) \cong$ $\mathbb{C}\left[x, y, x^{-1}, y^{-1}\right]$.
Each regular function on Y corresponds to a pair of regular functions, one from each of $\mathcal{O}(U)$ and $\mathcal{O}(V)$, whose restrictions to $\mathcal{O}(U \cap V)$ agree. From our computations above, we see that this implies that $\mathcal{O}(Y) \cong \mathbb{C}[x, y]$. As Y is affine, this implies that $Y \cong \mathbb{A}^{2}$. But this is a contradiction, as then the origin would be in the image of π.
6. (1 point) Look up the definition of a sheaf. Use google to find as many motivations as you can for why you would define such an object. Elaborate on the one you find most convincing.

Solution: Many possible answers.

