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Due: Mar 8, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. Let R ⊂ C[x] be the subring of polynomials P such that the coefficient of
x in P is zero.

(a) (1 point) Give an embedding of SpecR into A2, and show that the
image has a cusp.

Solution: Note that R is generated as a C−algebra by the polynomials x2

and x3, which satisfy (x3)2 = (x2)3. There is thus a surjection

f : C[u, v]/(u3 − v2) → R

sending u to x2 and v to x3.We claim that this map is an isomorphism. Indeed,
every element of the left hand side can be uniquely represented as a polynomial
in u and v without any terms of degree at least 2 in v. Therefore, as a vector
space, C[u, v]/(u3−v2) has a basis given by the ui and the uiv. As f(ui) = x2i

and f(uiv) = x2i+3, this basis is sent by f to the basis of R consisting of all
powers of x except for x itself, which shows that f is an isomorphism.

Now the map
C[u, v] → C[u, v]/(u3 − v2) ∼= R

shows that SpecR is isomorphic to the plane curve u3 = v2, which has a cusp
at the origin.

(b) (1 point) Find a smooth curve SpecS with a map SpecS → SpecR
which is an isomorphism on topological spaces. Observe that this
means that the composition SpecS → SpecR → A2 is a closed em-
bedding of topological spaces but not a closed embeddding of alge-
braic varieties.

Solution: Note that we have a map R → C[x], which gives a map of varieties
A1 → SpecR. To see that this map is an isomorphism on points, we look at
the composition

g : A1 → SpecR → A2
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defined by
x 7→ (x2, x3).

We know that SpecR embeds into A2 as the vanishing locus of u3 − v2, so it
suffices to show that every (u, v) with u3 − v2 = 0 can be uniquely expressed
as g(x). If v = 0, then u = 0, and g sends only 0 to (0, 0). On the other hand,
if v ̸= 0, then x = u

v is the unique point sent to (u, v), as desired.

As A1 and SpecR both have the cofinite topology (as they are both curves),
it follows that the map A1 → SpecR is also an isomorphism of topological
spaces. Thus the map A1 → A2 is a closed embedding of topological spaces,
but is not a closed embedding of varieties because the corresponding map of
algebras C[u, v] → R → C[x] is not surjective, as it factors through R.

2. (2 points) Let R be a finite type C-algebra that is integral (i.e., has no
zero-divisors.) Let S be a multiplicative system in R. Show that the
localization RS is a finite type C-algebra if and only if it is isomorphic to
the localization Rf at a single nonzero element f. (Recall that Rf is the
localization of R at the multiplicative system {1, f, f2, · · · }.

Solution: First we show that Rf is finitely generated. Let R be generated as
an algebra by elements f1, · · · , fn. Then Rf will be generated by f1, · · · , fn, 1

f ,
so is also finite type.

On the other hand, assume RS is a finite type algebra. Then it is generated by
elements a1

b1
, · · · , am

bm
, with bi ∈ S. Let f be the product of the bi, which will still

be an element of S. Each ai

bi
can be written as a fraction with denominator f , so

all polynomials in those elements can be written as fractions with denominators
powers of f . Thus, every element of RS lies inside Rf , as desired.

3. Our definition of SpecR as a topological space still makes sense for rings
R which are not finite type C-algebras. We will not worry too much about
such algebras in this class, but let us briefly discuss the case of R-algebras.

(a) (1 point) Classify the maximal ideals of R[x], and describe the map

Spec(C[x]) → Spec(R[x]).

Solution: As R[x] is a principal ideal domain, the maximal ideals of R[x] will
be those generated by one irreducible polynomial. Thus, we get one maximal
ideal (x− a) for every real number a and one maximal ideal (x2 + ax+ b) for
every quadratic polynomial with no real roots (equivalently, for every pair of
conjugate non-real complex numbers.)

The map f : C[x] → R[x] sends an ideal I to its intersection with R[x]. It is
clear that if r is real, f sends (x − r) to (x − r). On the other hand, if r is
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non-real, then any polynomial with real coefficients and root r must also have
r̄ as a root and hence be a multiple of (x − r)(x − r̄). Thus, f sends (x − r)
for non-real r to ((x− r)(x− r̄)).

(b) (1 point) Classify the maximal ideals of R[x, y]/(x2 + y2 + 1), and
describe the map

Spec(C[x, y]/(x2 + y2 + 1)) → Spec(R[x, y]/(x2 + y2 + 1)).

Note that the vanishing locus of x2 + y2 + 1 = 0 in R2 is empty, and
yet we can still study the algebraic geometry of this ring.

Solution: Let g denote the map

Spec(C[x, y]/(x2 + y2 + 1)) → Spec(R[x, y]/(x2 + y2 + 1)).

We start by claiming that g is surjective. Indeed, let m be a maximal ideal of
Spec(R[x, y]/(x2+y2+1)). Thenm⊕im is a non-unit ideal in Spec(C[x, y]/(x2+
y2 +1)), and is thus contained in some maximal ideal m′. As m′ contains (the
image of) m, we see that g(m′) must be a maximal ideal containing m, hence
equaling m.

We know that the maximal ideals of Spec(C[x, y]/(x2+y2+1)) are of the form
((x− a), (y − b)) for a, b complex numbers with a2 + b2 + 1 = 0. Equivalently,
we can describe this ideal as containing exactly the polynomials that vanish
at (a, b). As a polynomial with real coefficients vanishes at (a, b) if and only if
it vanishes at (ā, b̄), we see that g((x− a), (y − b)) = g((x− ā), (y − b̄)).

Conversely, we will show that if g((x− a), (y − b)) = g((x− c), (y − d)), then
either (c, d) = (a, b) or (c, d) = (ā, b̄). This will imply that maximal ideals of
Spec(R[x, y]/(x2 + y2 + 1)) are classified by pairs (a, b) with a2 + b2 + 1 = 0,
modulo conjugation. Assume that (c, d) is neither (a, b) nor (ā, b̄). Then there
are real numbers r and s such that rc + sd is equal to neither ra + sb nor
rā+ sb̄. Then the polynomial (rx+ sy − ra− sb)(rx+ sy − rā− sb̄) has real
coefficients and vanishes at (a, b) but not at (c, d). This gives an element of
g((x− a), (y − b)) that is not in g((x− c), (y − d)).

4. Let S be a subset of Zn containing 0 and closed under addition (in other
words, a sub-semigroup of Zn). We can define a ring C[S] whose elements
are formal linear combinations

∑
ait

si with the si ∈ S, with multiplication
determined by the rule tsi · tsj = tsi+sj . An affine toric variety is the
spectrum of a ring C[S]. Toric varieties give a large family of easy examples
of varieties.

(a) (1 point) Show that every inclusion S ⊆ S′ gives a map of toric
varieties SpecC[S′] → SpecC[S].
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Solution: There is a map of algebras C[S] → C[S′] sending ts to ts. Taking
Spec gives us the desired map.

(b) (1 point) Show that any toric variety has an open subset which is
isomorphic to a torus (i.e., the spectrum of an algebra C[xi, x

−1
i ].)

This is why these varieties are called toric.

Solution: Let S′ be the group generated by S. Then as S is a subgroup of Zn,
it must be isomorphic to Zm for some m. It follows that C[S′] is isomorphic
to an algebra C[x1, · · · , xm, x−1

1 , · · · , x−1
m ], and hence has spectrum a torus.

It remains to show that the map SpecC[S′] → SpecC[S] is an open embed-
ding, or equivalently that the map of algebras C[S] → C[S′] is a localization.
(Technically one needs that it is a localization by one element, but this follows
assuming S is finitely generated (a necessary assumption for the problem) by
Problem 2.)

Note that the set of elements of the form tsi is a multiplicative system in C[S].
Inverting these elements gives C[S′], as desired.

5. (2 points) Recall in class that we mentioned that X = A2 −{(0, 0)} is not
an affine variety. More precisely, we claim that there is no affine variety
Y with a map π : Y → A2 and two open subvarieties U and V satisfying
the following properties:

• Y is the union of U and V

• π induces an isomorphism of varieties between U (respectively, V )
and the complement of the x-axis (respectively, the y-axis) in A2

• π induces an isomorphism of varieties between the intersection U ∩V
and the locus where xy does not vanish in A2.

Prove this. (Hint: One way of doing this is to think about maps from
such a variety Y to A1.)

Solution: Maps from a variety Y to A1 are in bijection with elements in
O(Y ), so we will work in the language of regular functions. By our assump-
tions, O(U) ∼= C[x, y, y−1] and O(V ) ∼= C[x, y, x−1]. We also have O(U ∩ V ) ∼=
C[x, y, x−1, y−1].

Each regular function on Y corresponds to a pair of regular functions, one
from each of O(U) and O(V ), whose restrictions to O(U ∩ V ) agree. From
our computations above, we see that this implies that O(Y ) ∼= C[x, y]. As Y is
affine, this implies that Y ∼= A2. But this is a contradiction, as then the origin
would be in the image of π.
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6. (1 point) Look up the definition of a sheaf. Use google to find as many
motivations as you can for why you would define such an object. Elaborate
on the one you find most convincing.

Solution: Many possible answers.

5


