18.721 PSet 4

Due: Mar 8, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. Let R C C|x] be the subring of polynomials P such that the coefficient of
z in P is zero.

(a) (1 point) Give an embedding of Spec R into A2, and show that the
image has a cusp.

Solution: Note that R is generated as a C—algebra by the polynomials z?
and 22, which satisfy (2%)2 = (22)3. There is thus a surjection

f:(C[u,v]/(quﬁ) — R

sending u to 22 and v to 23. We claim that this map is an isomorphism. Indeed,
every element of the left hand side can be uniquely represented as a polynomial
in v and v without any terms of degree at least 2 in v. Therefore, as a vector
space, C[u, v]/(u® —v?) has a basis given by the u’ and the u‘v. As f(u?) = 2%
and f(u'v) = 273, this basis is sent by f to the basis of R consisting of all
powers of = except for x itself, which shows that f is an isomorphism.

Now the map

Clu,v] — Clu,v]/(u® —v?) = R

3

shows that Spec R is isomorphic to the plane curve «® = v2, which has a cusp

at the origin.

(b) (1 point) Find a smooth curve Spec S with a map Spec.S — Spec R
which is an isomorphism on topological spaces. Observe that this
means that the composition Spec S — Spec R — A? is a closed em-
bedding of topological spaces but not a closed embeddding of alge-
braic varieties.

Solution: Note that we have a map R — C[z], which gives a map of varieties
A! — Spec R. To see that this map is an isomorphism on points, we look at
the composition

g:A' = Spec R — A?



defined by
x e (22 1%).

We know that Spec R embeds into A2 as the vanishing locus of u® — v2, so it

suffices to show that every (u,v) with u® —v? = 0 can be uniquely expressed
as g(z). If v =0, then u = 0, and g sends only 0 to (0,0). On the other hand,
if v # 0, then # = ¥ is the unique point sent to (u,v), as desired.

As A and Spec R both have the cofinite topology (as they are both curves),
it follows that the map A' — Spec R is also an isomorphism of topological
spaces. Thus the map A! — A2 is a closed embedding of topological spaces,
but is not a closed embedding of varieties because the corresponding map of
algebras Clu,v] — R — CJ[z] is not surjective, as it factors through R.

2. (2 points) Let R be a finite type C-algebra that is integral (i.e., has no
zero-divisors.) Let S be a multiplicative system in R. Show that the
localization Rg is a finite type C-algebra if and only if it is isomorphic to
the localization Ry at a single nonzero element f. (Recall that Ry is the
localization of R at the multiplicative system {1, f, f2,--- }.

Solution: First we show that Ry is finitely generated. Let R be generated as
an algebra by elements fi,---, f,. Then R; will be generated by fi,---, fn, %,
so is also finite type.

On the other hand assume Rg is a finite type algebra. Then it is generated by
elements ¢ T b , with b; € S. Let f be the product of the b;, which will still
be an element of S Each %+ can be written as a fraction with denominator f, so
all polynomials in those elements can be written as fractions with denominators
powers of f. Thus, every element of Rg lies inside Ry, as desired.

3. Our definition of Spec R as a topological space still makes sense for rings
R which are not finite type C-algebras. We will not worry too much about
such algebras in this class, but let us briefly discuss the case of R-algebras.

(a) (1 point) Classify the maximal ideals of R[x], and describe the map
Spec(C[z]) — Spec(R[z]).

Solution: As R[z] is a principal ideal domain, the maximal ideals of R[z] will
be those generated by one irreducible polynomial. Thus, we get one maximal
ideal (x — a) for every real number a and one maximal ideal (22 + az + b) for
every quadratic polynomial with no real roots (equivalently, for every pair of
conjugate non-real complex numbers.)

The map f : C[z] — Rx] sends an ideal I to its intersection with R[z]. It is
clear that if r is real, f sends (z — r) to (x — r). On the other hand, if r is



non-real, then any polynomial with real coefficients and root » must also have
7 as a root and hence be a multiple of (x — r)(z — 7). Thus, f sends (z — )
for non-real r to ((z —r)(z —T7)).

(b) (1 point) Classify the maximal ideals of R[z,y]/(x? + y* + 1), and
describe the map

Spec(Clz, y]/(z* + y* + 1)) = Spec(R[z, y/(2® + y* + 1)).

Note that the vanishing locus of 22 +y? + 1 = 0 in R? is empty, and
yet we can still study the algebraic geometry of this ring.

Solution: Let g denote the map
Spec(Cla, y]/(#? + y? + 1)) — Spec(Rlz, y]/(2? + y? + 1)).

We start by claiming that g is surjective. Indeed, let m be a maximal ideal of
Spec(R[z, y] /(2% +y>+1)). Then m@®im is a non-unit ideal in Spec(C[z, y]/(x*+
y?+1)), and is thus contained in some maximal ideal m’. As m’ contains (the
image of) m, we see that g(m’) must be a maximal ideal containing m, hence
equaling m.

We know that the maximal ideals of Spec(C|x,y]/(2% +y?+1)) are of the form
((z — a), (y — b)) for a,b complex numbers with a? + b? + 1 = 0. Equivalently,
we can describe this ideal as containing exactly the polynomials that vanish
at (a,b). As a polynomial with real coefficients vanishes at (a,b) if and only if
it vanishes at (@, b), we see that g((z — a), (y — b)) = g((x — a), (y — b)).
Conversely, we will show that if g((z — a), (y — b)) = g((z — ¢), (y — d)), then
either (c,d) = (a,b) or (c¢,d) = (@,b). This will imply that maximal ideals of
Spec(R[z, y] /(2% + y? + 1)) are classified by pairs (a,b) with a® + b +1 = 0,
modulo conjugation. Assume that (c,d) is neither (a,b) nor (@, b). Then there
are real numbers r and s such that rc + sd is equal to neither ra + sb nor
ra + sb. Then the polynomial (rz + sy — ra — sb)(rx + sy — ra — sb) has real
coefficients and vanishes at (a,b) but not at (c,d). This gives an element of
g((x —a), (y — b)) that is not in g((x — ¢), (y — d)).

4. Let S be a subset of Z™ containing 0 and closed under addition (in other
words, a sub-semigroup of Z™). We can define a ring C[S] whose elements
are formal linear combinations 3 a;t* with the s; € S, with multiplication
determined by the rule ¢% - t% = ¢i+si. An affine toric variety is the
spectrum of a ring C[S]. Toric varieties give a large family of easy examples
of varieties.

(a) (1 point) Show that every inclusion S C S’ gives a map of toric
varieties Spec C[S’] — Spec C[9].



Solution: There is a map of algebras C[S] — C[S’] sending ¢* to t*. Taking
Spec gives us the desired map.

(b) (1 point) Show that any toric variety has an open subset which is
isomorphic to a torus (i.e., the spectrum of an algebra (C[xi,x;l].)
This is why these varieties are called toric.

Solution: Let S’ be the group generated by S. Then as S is a subgroup of Z",
it must be isomorphic to Z™ for some m. It follows that C[S’] is isomorphic
to an algebra Clzy,- - ,xm,xfl, -++,x,1], and hence has spectrum a torus.
It remains to show that the map Spec C[S’] — SpecCl[S] is an open embed-
ding, or equivalently that the map of algebras C[S] — C[S’] is a localization.
(Technically one needs that it is a localization by one element, but this follows
assuming S is finitely generated (a necessary assumption for the problem) by

Problem 2.)

Note that the set of elements of the form ¢% is a multiplicative system in C[S].
Inverting these elements gives C[S’], as desired.

5. (2 points) Recall in class that we mentioned that X = A? — {(0,0)} is not
an affine variety. More precisely, we claim that there is no affine variety
Y with a map 7 : Y — A% and two open subvarieties U and V satisfying
the following properties:

e Y is the union of U and V'

e 7 induces an isomorphism of varieties between U (respectively, V)
and the complement of the z-axis (respectively, the y-axis) in A2

e 7 induces an isomorphism of varieties between the intersection U NV
and the locus where zy does not vanish in AZ.

Prove this. (Hint: One way of doing this is to think about maps from
such a variety Y to Al.)

Solution: Maps from a variety Y to A! are in bijection with elements in
O(Y), so we will work in the language of regular functions. By our assump-
tions, O(U) = C[z,y,y~ ] and O(V) = C[z,y,z~1]. We also have O(U N'V) =
Clz,y,x 1, y71].

Each regular function on Y corresponds to a pair of regular functions, one
from each of O(U) and O(V), whose restrictions to O(U N V) agree. From
our computations above, we see that this implies that O(Y) = Clz,y]. As Y is
affine, this implies that Y = A2, But this is a contradiction, as then the origin
would be in the image of 7.



6. (1 point) Look up the definition of a sheaf. Use google to find as many
motivations as you can for why you would define such an object. Elaborate
on the one you find most convincing.

Solution: Many possible answers.



