
18.721 PSet 5

Due: Mar 15, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. (1 point, Exercise 3.8.14 in Artin) Describe all morphisms P2 → P1.

Solution: Recall that a morphism from a variety X to P1 corresponds to a
pair of rational functions (f, g) on X modulo the equivalence relation (f, g) ∼
(hf, hg) for h a nonzero rational function, satisfying the following condition: for
any point x ∈ X, there is an open neighborhood U around x and a representative
(f, g) of the equivalence class such that f and g are both regular on U and not
both zero at x.

A rational function on P2 is a fraction P (x,y,z)
Q(x,y,z) where P and Q are homogeneous

of the same degree. Then for any pair (f, g) of rational functions, we can clear
denominators to get a find a pair (a(x, y, z), b(x, y, z)) of relatively prime homo-
geneous polynomials of the same degree such that (a, b) is proportional to (f, g).
(We warn the reader that a and b are NOT necessarily rational functions on P2.)
Then any element of the same equivalence class as (f, g) will be expressible as

(a(x, y, z) · c(x, y, z)
d(x, y, z)

, b(x, y, z) · c(x, y, z)
d(x, y, z)

).

for c and d homogeneous polynomials with deg a+ deg c = deg d.

Assume that a and b are not constant. Then by Bezout’s theorem, there is
a point p ∈ X with a and b both zero. Let us analyze the behavior of a
representative (a · c

d , b ·
c
d ) at this point. If d is not zero at p, then both elements

of this representative vanish at p. On the other hand, if d vanishes at p, then at
least one element of the representative is not regular at p. Either way, the map
P2 → P1 is not defined at p.

In conclusion, the only maps P2 → P1 are the constant maps.

2. In Artin’s Section 3.5.26, he considers the projection map

π : Pn − {(0, · · · , 0, 1)} → Pn−1
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defined by
π(x0, x1, · · · , xn) = (x0, x1, · · · , xn).

The fibers of π are the lines through {0, · · · , 0, 1} (minus the point itself,
which is not in the domain of π.)

(a) (1 point) Show that for any point p ∈ Pn, there is a map Pn−{p} →
Pn−1 whose fibers are lines through p (minus p itself).

Solution: Apply a projective transformation to take the point (0, · · · , 0, 1) to
p. The desired map is the composition of this projective transformation with
π.

(b) (1 point) Show that every plane curve has a non-constant map to P1.

Solution: Choose a point p that does not lie in your plane curve C. The
restriction of the map from the previous part to C gives a map to P1. If this
map were constant, then C would have to lie in a fiber, and so C would be
contained in some line containing p. But this is only possible if C is equal to
that line, but we assumed that p is not a point of C.

3. In the previous problem, we showed that every plane curve (in fact, any
curve) has a nontrivial to P1. Conversely, it is very rare that a curve
admits a nontrivial map from P1 - in fact, later in the class we’ll see
that P1 does not map to any other smooth curve. For now, let us give
an ad hoc argument that the projective cubic plane curve C defined by
x3 + y3 + z3 = 0 has no nontrivial map from P1.

(a) (1 point) Show that every map P1 → P2 corresponds to a triple (up
to scaling) of polynomials (f(x, y), g(x, y), h(x, y)), each of which is
homogeneous of some degree d, such that f, g, and h do not have
a common root (except for x = y = 0.) Conclude that if there is a
non-constant map from P1 to C, then there are coprime polynomials
f(t), g(t), and h(t) all of degree d > 0, with

f(t)3 + g(t)3 + h(t)3 = 0.

Solution: The the argument we used for Problem 1 also gives the desired
classification of maps P1 → P2. For such a map to land in C, we must have
f(x, y)3 + g(x, y)3 + h(x, y)3. Without loss of generality, assume that none of
f, g, or h vanish at (1, 0), i.e., that they all have a nonzero coefficient of xd.
(We can always apply a projective transformation to P1 to make this true.)
Then taking f(t) = f(t, 1), etc., all the polynomials will still have degree d
and be coprime, as desired.
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(b) (1 point) Let the Wronskian of two polynomials P (t) and Q(t) be
W (P,Q) = PQ′ − QP ′. (By e.g., P ′, we mean the derivative of P
with respect to t.) Show that W (f(t)3, g(t)3) = W (g(t)3, h(t)3) =
W (h(t)3, f(t)3). Call this polynomial w(t).

Solution: We check that

W (f(t)3, g(t)3) = W (f(t)3,−f(t)3 − h(t)3)

= −W (f(t)3, f(t)3)−W (f(t)3, h(t)3)

= −W (f(t)3, h(t)3)

= W (h(t)3, f(t)3).

An entirely symmetric argument gives us the other equality.

(c) (1 point) Show that w(t) is a multiple of all of f(t)2, g(t)2, and h(t)2.
Derive a contradiction from this fact.

Solution: We show that w(t) is a multiple of f(t)2 — the other cases will
follow by symmetry. Note that

w(t) = W (f(t)3, g(t)3) = 3f(t)3g(t)2g′(t)− 3g(t)3f(t)2f ′(t),

which is evidently a multiple of f(t)2.

Note that f(t), g(t), and h(t) are pairwise coprime. Indeed, if two of them
have a common root, then so does the third, since f(t)3 + g(t)3 + h(t)3 = 0.
But we assumed that there is no common factor of all three, so they must be
pairwise coprime. It follows then that w(t) is a multiple of f(t)2g(t)2h(t)2.
But by the definition of w(t), it is clear that it has degree at most 6d−1, while
f(t)2g(t)2h(t)2 has degree 6d, so we must have w(t) = 0.

Whenever a Wronskian W (P,Q) vanishes, that means that P and Q are con-
stant multiples of one another. Indeed, if PQ′ −QP ′ = 0, then

P

P ′ =
Q

Q′ ,

which integrates to
logP = logQ+ C,

which implies that P and Q are multiples of one another. If we apply this
to w(t), we see that f(t)3 and g(t)3 are multiples of one another. But this
contradicts coprimality.

This proof is due to Noah Snyder, and proves a more general statement known
as the Mason-Stothers theorem. It can be found online in an article entitled
”An Alternate Proof of Mason’s Theorem”.
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4. (2 points) Show that in a quasi-projective variety, the ring of regular
functions on any affine open is of finite type. (Hint: Use the affine com-
munication lemma).

Solution: Let us show that the hypothesises of the affine communication lemma
hold. First, let us show that if we have a ring R and an element f ∈ R, then Rf

is finite type if R is. Indeed, Rf is generated by the union of a set of generators
of R and 1

f .

Next, we need to show that if f1, · · · , fn are elements of R with (f1, · · · , fn) the
unit ideal, then if all the Rfi are finite type, then so is R. Let Rfi be generated
by elements

aij

f
Ni
i

, as i and j range over all possible values. As (f1, · · · , fn) is the
unit ideal, we must have some equation

∑
cifi = 1.

We claim that R is generated by the combination of the aij , the ci, and the fi.
Let r be an element of R. The generation statement for the Rfi tells us that for
each i, r is equal to a polynomial in the

aij

f
Ni
i

, so there is some integer N such

that each rfN
i is a polynomial in the aij . We have (

∑
cifi)

nN = 1, which gives
us some equation

∑
bif

N
i = 1 where each bi is equal to a polynomial in the ci

and fi. This then implies that

r = r(
∑

bif
N
i ) =

∑
bi(rf

N
i ),

and our assumptions imply that all the terms of the RHS can be expressed as
polynomials in the aij , ci, and fi, as desired.

To apply the affine communication lemma, note that it suffices to prove the prob-
lem statement for projective varieties, as any affine open in a quasi-projective
variety will still be an affine open in its closure (in projective space). A projec-
tive variety admits a cover by affine subvarieties in An, which necessarily have
finite type rings of regular functions, so the affine communication lemma applies
to tell us that every affine open must have a finite type ring of regular functions.

5. For this problem, we’ll do some algebraic geometry over Fp. You can as-
sume that everything we’ve proven over the last two weeks applies literally
to characteristic p algebraic geometry (which it does). We will also use
the version of Bezout’s theorem for P1×P1 that we proved a few problem
sets ago, that the number of intersections (with multiplicity) of a curve of
bidegree (d1, e1) and a curve of bidegree (d2, e2) is d1e2 + d2e1.

(a) (1 point) Let Fr : P1 → P1 be the map sending (x0, x1) to (xp
0, x

p
1)

(this is called the Frobenius map.) Then we have a diagonal map

P1 → P1 × P1 : x 7→ (x, x)
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and a twisted diagonal map

P1 → P1 × P1 : x 7→ (x,Fr(x)).

Call the images of these maps C and C ′. Find the bidegrees of C
and C ′.

Solution: Let coefficients for P1×P1 be ((x0, x1), (y0, y1). A defining equation
for C is x0y1 = x1y0, with bidegree (1, 1). A defining equation for C ′ is y0x

p
1 =

y1x
p
0, with bidegree (p, 1).

(b) (1 point) Calculate the number of intersections of C and C ′, and
explain why these intersections correspond to points of P1 with co-
ordinates in Fp.

Solution: The number of intersections is p+1, the same as the number of Fp

points of P1. Let (a, b) be a point of P1 with a, b elements in Fp. Then ap = a
and bp = b, so Fr((a, b)) = (a, b). Thus, ((a, b), (a, b)) would be a point that
lies on both C and C ′.

For P1 this is a severely over-complicated way of computing the num-
ber of Fp-points, but this is actually the most powerful technique for
doing so on a general variety. As one example, it is possible to prove
(this is not part of the assignment) that for a smooth projective
curve of genus g, the number of Fp-points is between p + 1 − 2g

√
p

and p+ 1 + 2g
√
p.

6. (1 point) Soon, we’ll discuss a classical theorem that a smooth cubic sur-
face has 27 lines on it. On the second floor of the math department, by the
main staircase, there is a sculpture exhibit including a cubic surface with
27 lines. Look at this exhibit and convince yourself that the marked lines
are indeed lines. Then, look at the nearby exhibits and describe what you
learned from them.

Solution: Many possible answers.
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