
18.721 PSet 6

Due: Mar 22, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. Consider the ring R ⊆ C[x, y] of polynomials where each monomial xiyj

with nonzero coefficient has i+ j a multiple of n.

(a) (1 point) Show that R is normal.

Solution: Let a be an element of the field of fractions K(R) of R. If a is
integral over R, then it is the root of a polynomial

an + r1a
n−1 + · · ·+ rn = 0

with the coefficients ri elements of R. The ri are thus also elements of C[x, y],
thus a is integral over C[x, y]. As C[x, y] is normal, this implies that the image
of a in K(C[x, y]) in fact lies in C[x, y]. So a is equal to a polynomial P (x, y).

It remains to show that if a polynomial P (x, y) is equal to the quotient of
two elements of R, then P (x, y) must itself be an element of R. This can
be shown in many ways; one way is to consider the map sending (x, y) to
(ζx, ζy), where ζ is a primitive nth root of unity. The elements of R are
precisely the polynomials which are invariant under this map, and a quotient
of such polynomials is still invariant, which proves the desired claim.

(b) (1 point) Show that the surface SpecR is not smooth, or equiva-
lently, that there is a maximal ideal m of R such that dimm/m2 >
dimSpecR = 2.

Solution: Let m be the preimage in R of the ideal (x, y) in C[x, y]. Then m is
the ideal of elements in R with no constant term, and R/m is isomorphic to C,
so m is maximal. The ideal m only contains polynomials of degree at least n,
so m2 only contains polynomials of degree at least 2n. Thus, xn, xn−1y, · · · , yn
give rise to n+ 1 linearly independent elements (they in fact form a basis) of
m/m2, so dimm/m2 ≥ n+ 1 > 2, as long as n > 1.
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2. (2 points) Recall that early on in the class, we stated Hilbert’s Null-
stellensatz: For an algebraically closed field k, every maximal ideal of
k[x1, · · · , xn] is of the form (x1 − a1, x2 − a2, · · · , xn − an). This was im-
plied by Zariski’s lemma, which states that any field extension of k which
is finite type as a k-algebra must in fact be isomorphic to k.

We used a trick to show this for k = C. Use what we’ve learned about
dimension and/or Noether normalization to give another proof of Zariski’s
lemma. This proof in fact works for any field k.

Solution: Let K be a field extension of k which is finite type as a k-algebra.
As K is a field, the zero ideal is the only maximal ideal, so SpecK is a single
point. Thus, the c-dimension of SpecK is equal to 0. We showed in class that
c-dimension is equal to t-dimension, so the transcendence degree of K over k
must be zero as well. Thus, every element of K is algebraic over k, but k is
algebraically closed, so K must be isomorphic to k.

3. Let X be the projective cubic surface in P3 defined by the Fermat equation

x3
0 + x3

1 + x3
2 + x3

3 = 0.

(a) (1 point) Write down 27 lines on X explicitly (you do not need to
prove that they are all of them, but they are).

Solution: For any third roots of unity ζ1, ζ2, the line parametrized by

(ζ1a,−a, ζ2b,−b)

gives a line on the Fermat cubic. This gives 9 lines already. Permuting x0 and
x2 gives another 9, and permuting x0 and x3 gives a third set of 9 lines, for a
total of 27.

(b) (1 point) Show that each line intersects exactly 10 other lines.

This suggests that the configuration of lines on this cubic is somewhat
symmetric. In fact, the intersection graph of the lines on a smooth
cubic surface is always the same, and the symmetry group of this
graph has size 51840 and is isomorphic to the symmetry group of the
E6-lattice.

Solution:All lines here are symmetric, as any line can be sent to any one
by some combination of permutation of the xi and multiplying some xi

by third roots of unity. So it suffices to show that the line

(a,−a, b,−b)
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intersects exactly 10 other lines. It intersects another line of the form

(ζ1a,−a, ζ2b,−b)

if and only one of the ζi is zero, which gives 4 other lines of this type. It
intersects a line of the form

(ζ2b,−a, ζ1a,−b)

if and only if ζ1ζ2 = 1, which gives 3 lines of this type. And it intersects
a line of the form

(−b,−a, ζ2b, ζ1a)

if and only if ζ1 = ζ2, which gives 3 lines of this type, for a total of
4 + 3 + 3 = 10 lines.

4. (2 points, easier after Tuesday) Now that we have some dimension theory
at our disposal, we can rigorously prove some assertions from the first unit.
Show that a generic plane curve C of degree d ≥ 2 has no tritangents, i.e.,
lines that are tangent to C at 3 distinct points. (Hint: Use the method
of incidence correspondences. In other words, write down a variety that
parametrizes pairs (curve, tritangent) and calculate its dimension.)

Solution: Let V be the vector space of degree d homogeneous polynomials in
3 variables. Then a plane curve is defined by a point in P(V ). Similarly, a line
in P2 corresponds to a point in the dual plane P2,∨. let Z be the locus of points
(C, l) in P(V )× P2,∨ where l is tritangent to C. (Technically we haven’t shown
that this a variety, which is straightforward but tedious.)

Let us compute the dimension of Z. The fiber of Z over a point l in P2,∨ is the
subset X ⊆ P(V ) of curves tritangent to l. In the language of polynomials, it
corresponds to the sublocus of V of polynomials whose restriction to l have at
least three multiple zeroes. Note that choosing a nonzero polynomial function
on l amounts to choosing n roots (with multiplicity), and so requiring at least
three multiple zeroes is a condition of codimension 3. Thus, we have

dimX = dimP(V )− 3,

and as fibers of Z over P2,∨ are isomorphic (as all lines in P2 are symmetric)
the fiber dimension theorem tells us that

dimZ = dim(X) + 2 = dimP(V )− 1 < dimP(V ),

so the map Z → P(V ) cannot be dominant, and so a generic curve has no
tritangents.
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5. (2 points, easier after Tuesday, extra credit) Let Gr(2, 4) be the Grass-
mannian of two-dimensional subspaces in a four dimensional vector space
V4. (Equivalently, it parametrizes lines in P3, if you would prefer to think
in those terms.)

Choose fixed subspaces V1, V2, and V3 of V4 such that Vi has dimension
i and V1 ⊂ V2 ⊂ V3. For any nonnegative integers a1, a2, and a3, let
Xa1,a2,a3 ⊂ Gr(2, 4) be the locus of two-dimensional subspaces W such
that for each i, W ∩ Vi has dimension ai. Show that each Xa1,a2,a3

is
either empty or isomorphic to an affine space. (Don’t worry too much
about rigorously showing the isomorphism at the level of varieties - if
you can prove that some algebraic map induces a bijection of sets that’s
good enough.) Examine the decomposition into affine spaces given by the
Xa1,a2,a3 and explain why it suggests that Gr(2, 4) is not isomorphic to a
projective space.

Solution: The chain V1 ⊂ V2 ⊂ V3 can be extended to the chain V0 ⊂ V1 ⊂
V2 ⊂ V3 ⊂ V4, where V0 contains just 0. Set a0 = 0 and a4 = 2 (as these must
be the dimensions of the intersection of W with V0 and V2, respectively.)

Assume that Xa1,a2,a3
is nonempty. Then, in terms of the ai, this implies that

a0 = 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 = 2, as each Vi is contained in Vi+1. It also implies
that there is at most a gap of 1 between any two consecutive terms in the above
chain of inequalities (as each Vi is of codimension 1 in Vi+1). Conversely, we
claim that if the ai satisfy these conditions, then the Xa1,a2,a3 are affine spaces.

Let m1 be the smallest integer such that am1
= 1, and let m2 be the smallest

integer such that am2
= 2. Then we claim that the choice of W is equivalent to

the choices of a 1-dimensional subspace l1 of Vm1
which does not lie in Vm1−1 and

a 1-dimensional subspace l2 of Vm2
/l1 which does not lie in Vm2−1/l1. Indeed,

given such aW , we can set l1 = W∩Vm1 and l2 = (W/l1)∩(Vm2/l1). Conversely,
given l1 and l2, we can set W to be the preimage of l2 under the map Vm2 →
Vm2

/l1.

The choice of a 1-dimensional subspace l1 of Vm1
which does not lie in Vm1−1

is equivalent to choosing a point in P(Vm1
) ∼= Pm1−1 which does not lie in

Pm1−2, and the space of such choices is isomorphic to Am1−1. Similarly, the
space of choices of a l2 is isomorphic to Am2−2. Thus, the space of choices of W
is isomorphic to the affine space Am1+m2−3, as desired.

Examining the numerics, we see that there are six nonempty cells Xa1,a2,a3
,

namely:

(a) X0,0,1
∼= A4,

(b) X0,1,1
∼= A3,

(c) X1,1,1
∼= A2,

(d) X0,1,2
∼= A2,

(e) X1,1,2
∼= A1, and
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(f) X1,2,2
∼= A0.

This suggests that Gr(2, 4) is not a projective space, because our cell decompo-
sition of Gr(2, 4) has two A2s vs one for our cell decomposition of P4. (This is
not a rigorous proof - however, if you know some algebraic topology, you can
use the above to show that the 4th betti number of Gr(2, 4) is 2 vs 1 for P4.)

6. (1 point) Choose a theorem from this class whose proof you don’t fully
understand. Try to explain the proof to somebody else (anybody you
want). What theorem did you choose, and what did you learn from the
process of explanation?

Solution: Many possible answers.
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