18.721 PSet 7

Due: Apr 7, 11:59 PM

At the top of your submission, list all the sources you consulted, or write "**Sources consulted:** none" if you did not consult any sources.

- 1. (1 point) Recall that if R is a \mathbb{C} -algebra such that Spec R is a smooth curve, then for any maximal ideal m of R, the localization R_m of R by the complement of m is a DVR. Show that the same is true if R is the ring \mathbb{Z} of integers. (This is part of a general philosophy that the integers behave like the ring of functions on a curve.)
- 2. (2 points) Recall the ring $\mathbb{C}[[x, y]]$ of formal power series in two variables that we introduced in PSet 3. Show that $\mathbb{C}[[x, y]]$ is a local ring. (The exercises/solutions for PSet 3 may be helpful.)
- 3. This week in class, we will prove Chevalley's theorem, as well as the related fact that for any map of varieties $f: X \to Y$ with X projective, the image of f is a closed subvariety of f. Let's demonstrate the power of this theorem by proving a version of semi-continuity of fiber dimension. We'll do this through a series of exercises, each one using the previous.
 - (a) (1 point) Show that a connected projective variety over C has no nonconstant maps to A¹. (Hint: Use that a projective variety is compact in the classical topology.)
 - (b) (2 points) Let $X \subseteq \mathbb{P}^n$ be a projective variety of dimension > 0. Show that every hyperplane in \mathbb{P}^n intersects X. Furthermore, if X has dimension d, show that every n - d-dimensional linear space in \mathbb{P}^n intersects X.
 - (c) (2 points) Let Y be a variety and S be a closed subvariety of $Y \times \mathbb{P}^n$. There is a natural projection $f: S \to Y$. Show that for any integer d, the locus of points p in Y where the fiber of f above p is nonempty and has dimension $\geq d$ forms a closed subvariety of Y.
 - (d) (1 point) Let $f: X \to Y$ be a map of varieties with X projective and let d be an integer. Again, show that the locus of points p in Y where the fiber of f above p is nonempty and has dimension $\geq d$ forms a closed subvariety of Y. (The notion of the graph of a morphism may come in handy.)

- (e) (1 point) Show that if X is not projective, the conclusion of the above exercise may not necessarily be true. (What is true in general is that the locus of points q in X (not Y) where q is contained in a component of f⁻¹(f(q)) of dimension at least d is closed in X. When X is projective, the image of this closed set will be a closed set of Y, and we recover the conclusion of the above exercises. We will not prove this more general statement of semicontinuity of fiber dimension.)
- 4. (1 point) Look at the list of potential references for final projects posted on Canvas. See what interests you and choose a potential topic for your final project. (This choice is not binding in any way.)