18.721 PSet 8

Due: Apr 12, 11:59 PM

At the top of your submission, list all the sources you consulted, or write "**Sources consulted:** none" if you did not consult any sources.

- 1. Let \mathbb{R} be the real numbers, equipped with its standard topology. We'll consider some presheaves on \mathbb{R} .
 - (a) (1 point) Let \mathcal{F} be the presheaf where $\mathcal{F}(U)$ is the space of continuous real-valued functions on U (and the restriction maps are given by restriction of functions). Show that \mathcal{F} is a sheaf.
 - (b) (1 point) Let \mathcal{G} be the presheaf where $\mathcal{G}(U)$ is the space of constant functions on U. Show that \mathcal{G} is NOT a sheaf.
- 2. (2 points, Artin Exercise 6.9.13) Let \mathcal{F} be a quasicoherent sheaf on X, and let s be a nonzero regular function defined on all of X. Show that the localization $\mathcal{F}(X)_s$ is isomorphic to $\mathcal{F}(X_s)$. (This follows from the definition of a quasi-coherent sheaf when X is affine, but it is not immediate when X is not affine.)
- 3. (2 points) Consider the map $f: \mathcal{O}_{\mathbb{P}^1}(-2) \to \mathcal{O}_{\mathbb{P}^1}$ corresponding to multiplication by xy, where we take (x, y) to be projective coordinates for \mathbb{P}^1 . Let \mathcal{H} be the presheaf such that $\mathcal{H}(U)$ can be identified with the cokernel of $f(U): \mathcal{O}(-2)(U) \to \mathcal{O}(U)$. Show that \mathcal{H} is not a sheaf, and describe how it differs from the sheaf cokernel of f.
- 4. For our construction of cokernels of sheaves, we took the naive cokernel (as in the previous problem) and then turned it into a sheaf using Artin's Theorem 6.3.2, which constructs a quasicoherent sheaf from its values on affine opens. There is a more general "sheafification" functor which we now describe, which produces a sheaf $\mathcal{F}^{\#}$ from a presheaf \mathcal{F} on any topological space X.
 - (a) (1 point) Let S_p be the set of pairs (U, f) where U is an open subset of X containing p and f is an element of $\mathcal{F}(U)$. Say that two such pairs (U, f) and (V, g) are equivalent if there is some open W such that:
 - W contains p,

- W is contained in both U and V, and
- the restrictions of f and g to W agree.

Show that this is an equivalence relation on S_p . The set of equivalence classes is called the stalk \mathcal{F}_p of \mathcal{F} at p.

- (b) (1 point) Let X be Spec A, with the Zariski topology, and let p correspond to a maximal ideal m. Let \mathcal{F} be the quasi-coherent sheaf corresponding to a module M. Show that the stalk \mathcal{O}_p is the local ring A_m , and that the stalk \mathcal{F}_p is the localization M_m .
- (c) (2 points) Returning to the case of a general topological space X, define $\mathcal{F}^{\#}$ by letting $\mathcal{F}^{\#}(U) \subseteq \prod \mathcal{F}_p$ be the set of collections of elements $f_p \in \mathcal{F}_p$, one f_p for each point p of U, where the collection satisfies the following property:
 - there exists a (possibly infinite) cover of U by opens U_i and a collection of sections $f_i \in \mathcal{F}(U_i)$ such that for every point p of U_i , the equivalence class of (U, f_i) in \mathcal{F}_p is f_p .

Show that $\mathcal{F}^{\#}$ is a sheaf.

- (d) (1 point, extra credit) Let X be a variety and let \mathcal{F} be a quasicoherent presheaf on X. Show that $\mathcal{F}^{\#}(U)$ agrees with $\mathcal{F}(U)$ for any affine open U. Thus, this sheafification procedure is the same as the one used in Artin's Theorem 6.3.2.
- 5. (1 point) Look back at your answer to the last problem of Problem Set 4 (where you had to look up the definition of a sheaf.) How has your thinking around sheaves changed now that we've started formally working with them?