
18.721 PSet 7

Due: Apr 7, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. (1 point) Recall that if R is a C-algebra such that SpecR is a smooth
curve, then for any maximal ideal m of R, the localization Rm of R by the
complement of m is a DVR. Show that the same is true if R is the ring Z
of integers. (This is part of a general philosophy that the integers behave
like the ring of functions on a curve.)

Solution: The maximal ideals of Z are (p) for p a prime number. Fix a prime
number p and let m = (p). Then Rm is the ring of rational numbers of the form
a
b , where a and b are integers and b is not divisible by p.

We define a valuation vp on Q as follows. For any rational number r, write it as
a
b , and assume that the largest power of p dividing a is pi and that the largest
power of p dividing b is pj . Then we set vp(r) = i − j. It is straightforward to
check that this defines a valuation. The set of rational numbers with vp(r) ≥ 0
are those with j ≤ i, which means that we have

a

b
=

a
pj

b
pj

,

and both the numerator and the denominator are integers. Since pj is the
maximal power of p that divides b, the denominator is not a multiple of p, so a

b
is an element of Zm. Conversely, every element r of Zm has vp(r) ≥ 0, so Zm is
a DVR, as desired.

2. (2 points) Recall the ring C[[x, y]] of formal power series in two variables
that we introduced in PSet 3. Show that C[[x, y]] is a local ring. (The
exercises/solutions for PSet 3 may be helpful.)

Solution: A maximal ideal m of C[[x, y]] is given by (x, y). We will show that
every element not in m is invertible, which is equivalent to C[[x, y]] being a local
ring with m as its maximal ideal.
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This can be done in a way along the lines of parts 4b) and 4c) of PSet 3. We
will do this instead with a trick. Let f be an element of C[[x, y]] which is not in
m. It can be written as c(1+ g), where c is a nonzero complex number and g is
an element of m. It suffices to show that 1 + g is invertible. An explicit inverse
is given by

1− g + g2 − g3+, · · ·

where this series converges because the gi are elements of mi, and so we can
apply Problem 4a) from PSet 3.

3. This week in class, we will prove Chevalley’s theorem, as well as the related
fact that for any map of varieties f : X → Y with X projective, the image
of f is a closed subvariety of f . Let’s demonstrate the power of this
theorem by proving a version of semi-continuity of fiber dimension. We’ll
do this through a series of exercises, each one using the previous.

(a) (1 point) Show that a connected projective variety over C has no non-
constant maps to A1. (Hint: Use that a projective variety is compact
in the classical topology.)

Solution: Let f be a map from a connected projective X to A1. Let i be
the standard open embedding of A1 into P1. The image of i ◦ f must be a
Zariski closed subset of P1, but must also be contained in the open set A1.
This implies that the image is a finite set of points. Since X is connected, the
image must be just one point, so f is constant.

(b) (2 points) Let X ⊆ Pn be a projective variety of dimension > 0.
Show that every hyperplane in Pn intersects X. Furthermore, if X
has dimension d, show that every n − d-dimensional linear space in
Pn intersects X.

Solution: We can assume X is irreducible (if not, replace X by an irreducible
component which still has positive dimension). Assume that some hyperplane
H does not intersect X. We can choose coordinates so that H is the comple-
ment of the standard An inside Pn. AsX does not intersectH, this implies that
X is a subvariety of An. But by part (a), the projection of X to any part A1

must be constant, so X must be just one point (and hence zero-dimensional),
a contradiction.

For the second part, we use induction on d. Again, we can assume that X is
irreducible. The first part gives the case d = 1. Assume d > 1, and let L be
the n− d-dimensional linear space. It must be contained in some hyperplane
H. The intersection H ∩X is nonempty by the first part. Choose a point p
in the intersection, and choose some affine open isomorphic to An containing
p. Then H ∩ An is the vanishing locus of one function in An,, so H ∩X ∩ An
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must be of dimension at least d− 1, and so H ∩X itself must be of dimension
at least d− 1. The inductive hypothesis for H ∩X inside H ∼= Pn−1 then tells
us that H ∩X intersects L, so X must intersect L as desired.

The above logic can also be used to conclude that if X has dimension less than
d, then some n − d-dimensional linear space does not intersect X. If d = 1,
then this is clear. In general, we use the same induction, and replace X with
its intersection with a generic hyperplane H, and then proceed as in the above
proof. The only new fact we need to show that is X∩H has dimension exactly
d − 1 (and not d). Krull’s theorem tells us that this will hold as long as H
does not contain (an irreducible component of) X, which is easy to arrange.

(c) (2 points) Let Y be a variety and S be a closed subvariety of Y ×Pn.
There is a natural projection f : S → Y. Show that for any integer d,
the locus of points p in Y where the fiber of f above p is nonempty
and has dimension ≥ d forms a closed subvariety of Y .

Solution: In our solution to the previous part, we showed that the desired
locus is the same as the locus of points p where the fiber intersects L for every
n − d-dimensional linear space L. For a fixed L, call the locus where this
intersection is nonempty SL. This is the same as the image of S ∩ (Y × L)
inside Y , which is closed as L ∼= Pn−d is proper. The desired locus is the
intersection of the SL as L ranges over all n−d-dimensional linear spaces, and
thus is closed again, as desired.

(d) (1 point) Let f : X → Y be a map of varieties with X projective and
let d be an integer. Again, show that the locus of points p in Y where
the fiber of f above p is nonempty and has dimension ≥ d forms a
closed subvariety of Y . (The notion of the graph of a morphism may
come in handy.)

Solution: Let Z ⊆ X × Y ⊆ Pn × Y be the graph of f . The locus we are
studying in this part is the same as the locus of points p in Y where the fiber
of Z → Y is nonempty of dimension ≥ d, so we can apply the result of the
previous part.

(e) (1 point) Show that if X is not projective, the conclusion of the
above exercise may not necessarily be true. (What is true in general
is that the locus of points q in X (not Y ) where q is contained in
a component of f−1(f(q)) of dimension at least d is closed in X.
When X is projective, the image of this closed set will be a closed
set of Y , and we recover the conclusion of the above exercises. We
will not prove this more general statement of semicontinuity of fiber
dimension.)
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Solution: As a simple example, we can take X → Y to be the open immersion
A1 → P1. Then the locus of points q in Y where the fiber is nonempty (hence
nonempty of dimension at least 0) is A1, which is not closed in P1.

4. (1 point) Look at the list of potential references for final projects posted
on Canvas. See what interests you and choose a potential topic for your
final project. (This choice is not binding in any way.)

Solution: Many possible solutions.

4


