18.721 PSet 7

Due: Apr 7, 11:59 PM

At the top of your submission, list all the sources you consulted, or write "**Sources consulted:** none" if you did not consult any sources.

1. (1 point) Recall that if R is a \mathbb{C} -algebra such that Spec R is a smooth curve, then for any maximal ideal m of R, the localization R_m of R by the complement of m is a DVR. Show that the same is true if R is the ring \mathbb{Z} of integers. (This is part of a general philosophy that the integers behave like the ring of functions on a curve.)

Solution: The maximal ideals of \mathbb{Z} are (p) for p a prime number. Fix a prime number p and let m = (p). Then R_m is the ring of rational numbers of the form $\frac{a}{b}$, where a and b are integers and b is not divisible by p.

We define a valuation v_p on \mathbb{Q} as follows. For any rational number r, write it as $\frac{a}{b}$, and assume that the largest power of p dividing a is p^i and that the largest power of p dividing b is p^j . Then we set $v_p(r) = i - j$. It is straightforward to check that this defines a valuation. The set of rational numbers with $v_p(r) \ge 0$ are those with $j \le i$, which means that we have

$$\frac{a}{b} = \frac{\frac{a}{p^j}}{\frac{b}{p^j}},$$

and both the numerator and the denominator are integers. Since p^j is the maximal power of p that divides b, the denominator is not a multiple of p, so $\frac{a}{b}$ is an element of \mathbb{Z}_m . Conversely, every element r of \mathbb{Z}_m has $v_p(r) \ge 0$, so \mathbb{Z}_m is a DVR, as desired.

2. (2 points) Recall the ring $\mathbb{C}[[x, y]]$ of formal power series in two variables that we introduced in PSet 3. Show that $\mathbb{C}[[x, y]]$ is a local ring. (The exercises/solutions for PSet 3 may be helpful.)

Solution: A maximal ideal m of $\mathbb{C}[[x, y]]$ is given by (x, y). We will show that every element not in m is invertible, which is equivalent to $\mathbb{C}[[x, y]]$ being a local ring with m as its maximal ideal.

This can be done in a way along the lines of parts 4b) and 4c) of PSet 3. We will do this instead with a trick. Let f be an element of $\mathbb{C}[[x, y]]$ which is not in m. It can be written as c(1+g), where c is a nonzero complex number and g is an element of m. It suffices to show that 1 + g is invertible. An explicit inverse is given by

$$1-g+g^2-g^3+,\cdots$$

where this series converges because the g^i are elements of m^i , and so we can apply Problem 4a) from PSet 3.

- 3. This week in class, we will prove Chevalley's theorem, as well as the related fact that for any map of varieties $f: X \to Y$ with X projective, the image of f is a closed subvariety of f. Let's demonstrate the power of this theorem by proving a version of semi-continuity of fiber dimension. We'll do this through a series of exercises, each one using the previous.
 - (a) (1 point) Show that a connected projective variety over C has no nonconstant maps to A¹. (Hint: Use that a projective variety is compact in the classical topology.)

Solution: Let f be a map from a connected projective X to \mathbb{A}^1 . Let i be the standard open embedding of \mathbb{A}^1 into \mathbb{P}^1 . The image of $i \circ f$ must be a Zariski closed subset of \mathbb{P}^1 , but must also be contained in the open set \mathbb{A}^1 . This implies that the image is a finite set of points. Since X is connected, the image must be just one point, so f is constant.

(b) (2 points) Let $X \subseteq \mathbb{P}^n$ be a projective variety of dimension > 0. Show that every hyperplane in \mathbb{P}^n intersects X. Furthermore, if X has dimension d, show that every n - d-dimensional linear space in \mathbb{P}^n intersects X.

Solution: We can assume X is irreducible (if not, replace X by an irreducible component which still has positive dimension). Assume that some hyperplane H does not intersect X. We can choose coordinates so that H is the complement of the standard \mathbb{A}^n inside \mathbb{P}^n . As X does not intersect H, this implies that X is a subvariety of \mathbb{A}^n . But by part (a), the projection of X to any part \mathbb{A}^1 must be constant, so X must be just one point (and hence zero-dimensional), a contradiction.

For the second part, we use induction on d. Again, we can assume that X is irreducible. The first part gives the case d = 1. Assume d > 1, and let L be the n - d-dimensional linear space. It must be contained in some hyperplane H. The intersection $H \cap X$ is nonempty by the first part. Choose a point p in the intersection, and choose some affine open isomorphic to \mathbb{A}^n containing p. Then $H \cap \mathbb{A}^n$ is the vanishing locus of one function in \mathbb{A}^n , so $H \cap X \cap \mathbb{A}^n$

must be of dimension at least d-1, and so $H \cap X$ itself must be of dimension at least d-1. The inductive hypothesis for $H \cap X$ inside $H \cong \mathbb{P}^{n-1}$ then tells us that $H \cap X$ intersects L, so X must intersect L as desired.

The above logic can also be used to conclude that if X has dimension less than d, then some n - d-dimensional linear space does not intersect X. If d = 1, then this is clear. In general, we use the same induction, and replace X with its intersection with a generic hyperplane H, and then proceed as in the above proof. The only new fact we need to show that is $X \cap H$ has dimension exactly d - 1 (and not d). Krull's theorem tells us that this will hold as long as H does not contain (an irreducible component of) X, which is easy to arrange.

(c) (2 points) Let Y be a variety and S be a closed subvariety of $Y \times \mathbb{P}^n$. There is a natural projection $f: S \to Y$. Show that for any integer d, the locus of points p in Y where the fiber of f above p is nonempty and has dimension $\geq d$ forms a closed subvariety of Y.

Solution: In our solution to the previous part, we showed that the desired locus is the same as the locus of points p where the fiber intersects L for every n - d-dimensional linear space L. For a fixed L, call the locus where this intersection is nonempty S_L . This is the same as the image of $S \cap (Y \times L)$ inside Y, which is closed as $L \cong \mathbb{P}^{n-d}$ is proper. The desired locus is the intersection of the S_L as L ranges over all n - d-dimensional linear spaces, and thus is closed again, as desired.

(d) (1 point) Let $f: X \to Y$ be a map of varieties with X projective and let d be an integer. Again, show that the locus of points p in Y where the fiber of f above p is nonempty and has dimension $\geq d$ forms a closed subvariety of Y. (The notion of the graph of a morphism may come in handy.)

Solution: Let $Z \subseteq X \times Y \subseteq \mathbb{P}^n \times Y$ be the graph of f. The locus we are studying in this part is the same as the locus of points p in Y where the fiber of $Z \to Y$ is nonempty of dimension $\geq d$, so we can apply the result of the previous part.

(e) (1 point) Show that if X is not projective, the conclusion of the above exercise may not necessarily be true. (What is true in general is that the locus of points q in X (not Y) where q is contained in a component of f⁻¹(f(q)) of dimension at least d is closed in X. When X is projective, the image of this closed set will be a closed set of Y, and we recover the conclusion of the above exercises. We will not prove this more general statement of semicontinuity of fiber dimension.)

Solution: As a simple example, we can take $X \to Y$ to be the open immersion $\mathbb{A}^1 \to \mathbb{P}^1$. Then the locus of points q in Y where the fiber is nonempty (hence nonempty of dimension at least 0) is \mathbb{A}^1 , which is not closed in \mathbb{P}^1 .

4. (1 point) Look at the list of potential references for final projects posted on Canvas. See what interests you and choose a potential topic for your final project. (This choice is not binding in any way.)

Solution: Many possible solutions.