18.721 PSet 8

Due: Apr 12, 11:59 PM

At the top of your submission, list all the sources you consulted, or write "**Sources consulted:** none" if you did not consult any sources.

- 1. Let \mathbb{R} be the real numbers, equipped with its standard topology. We'll consider some presheaves on \mathbb{R} .
 - (a) (1 point) Let \mathcal{F} be the presheaf where $\mathcal{F}(U)$ is the space of continuous real-valued functions on U (and the restriction maps are given by restriction of functions). Show that \mathcal{F} is a sheaf.

Solution: Assume we have an open cover $\{U_i\}$ of an open set U. Let $\{f_i \in \mathcal{F}(U_i)\}$ be a collection of sections such that for every pair (i, j), the restrictions of f_i and f_j to $U_i \cap U_j$ agree. Then for every point p, the value of $f_i(p)$ is the same for every i such that $p \in U_i$. Indeed, if there are two different i, j such that p is in both U_i and U_j , then p is in $U_i \cap U_j$, so the values of f_i and f_j at p agree.

Let f be the function such that f(p) is equal to the value of any of the $f_i(p)$ for i such that U_i contains p. We claim that is f is continuous, and hence corresponds to a global section of \mathcal{F} . Indeed, for any point p, choose a U_i containing p. Then f coincides with f_i on U_i , so f must be continuous at p. This gives a global section of \mathcal{F} whose restriction to each U_i is the f_i .

Conversely, if g were a different global section which restricted to each of the U_i , we must have $g(p) = f_i(p) = f(p)$ for any point p and any open U_i containing p. Thus, g would have to coincide with f, so we have shown both the existence and uniqueness of the gluing of the $\{f_i\}$.

(b) (1 point) Let \mathcal{G} be the presheaf where $\mathcal{G}(U)$ is the space of constant functions on U. Show that \mathcal{G} is NOT a sheaf.

Solution: Let U_1 be the open interval (0, 1) and let U_2 be the open interval (2, 3). As $U_1 \cap U_2$ is empty, the sheaf property for the open cover $\{U_1, U_2\}$ of $U_1 \cup U_2$ states just that the natural map $\mathcal{F}(U_1 \cup U_2) \to \mathcal{F}(U_1) \times \mathcal{F}(U_2)$. But in this case, this map is the map

 $\mathbb{R} \to \mathbb{R} \times \mathbb{R}$

sending r to (r, r), which is clearly not an isomorphism.

2. (2 points, Artin Exercise 6.9.13) Let \mathcal{F} be a quasicoherent sheaf on X, and let s be a nonzero regular function defined on all of X. Show that the localization $\mathcal{F}(X)_s$ is isomorphic to $\mathcal{F}(X_s)$. (This follows from the definition of a quasi-coherent sheaf when X is affine, but it is not immediate when X is not affine.)

Solution: The sheaf property gives us the exact sequence

$$0 \to \mathcal{F}(X) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_i \cap U_j)$$

for any cover of X by opens U_i . Choose the U_i to be affine. As localization is exact, we get an exact sequence

$$0 \to \mathcal{F}(X)_s \to \prod \mathcal{F}(U_i)_s \to \prod \mathcal{F}(U_i \cap U_j)_s.$$

By quasi-coherence of \mathcal{F} , we have isomorphisms $\mathcal{F}(U_i)_s \cong \mathcal{F}((U_i)_s)$. As the intersection of two affines is affine, we also have isomorphisms $\mathcal{F}(U_i \cap U_j)_s \cong \mathcal{F}((U_i)_s \cap (U_j)_s)$. Together, these show that the above exact sequence is isomorphic to

$$0 \to \mathcal{F}(X)_s \to \prod \mathcal{F}((U_i)_s) \to \prod \mathcal{F}((U_i)_s \cap (U_j)_s),$$

so $\mathcal{F}(X)_s$ is the kernel of the map

$$\prod \mathcal{F}((U_i)_s) \to \prod \mathcal{F}((U_i)_s \cap (U_j)_s).$$

The sheaf property for the open cover of X_s by the $(U_i)_s$ tells us this kernel is isomorphic to $\mathcal{F}(X_s)$, as desired.

3. (2 points) Consider the map $f : \mathcal{O}_{\mathbb{P}^1}(-2) \to \mathcal{O}_{\mathbb{P}^1}$ corresponding to multiplication by xy, where we take (x, y) to be projective coordinates for \mathbb{P}^1 . Let \mathcal{H} be the presheaf such that $\mathcal{H}(U)$ can be identified with the cokernel of $f(U) : \mathcal{O}(-2)(U) \to \mathcal{O}(U)$. Show that \mathcal{H} is not a sheaf, and describe how it differs from the sheaf cokernel of f.

Solution: Let $U_0 \subset \mathbb{P}^1$ be the complement of (0, 1) and let $U_1 \subset \mathbb{P}^1$ be the complement of (1, 0). We can identify the restriction of $\mathcal{O}(n)$ to U_0 with the vector space of ratios $\frac{P(x,y)}{x^i}$ where P is homogeneous of degree i + n. Then the image of the restriction of f to U_0 consists of such ratios $\frac{P(x,y)}{x^i}$ where P is homogeneous of degree i and a multiple of y. The quotient of $\mathcal{O}(U_0)$ by this image is a 1-dimensional vector space spanned by the image of 1, so $\mathcal{H}(U_0)$ is 1-dimensional.

On the other hand, xy is invertible on $U_0 \cap U_1$, so $\mathcal{H}(U_0 \cap U_1)$ is the trivial vector space. The global sections of \mathcal{H} can easily be seen to correspond to the 1-dimensional vector space of constant functions. Then the sheaf property for the open cover of \mathbb{P}^1 by U_0 and U_1 would then say that

$$0 \to \mathbb{C} \to \mathbb{C}^2 \to 0$$

is exact, which is clearly false. The sheaf \mathcal{H}^{\sharp} can only differ from \mathcal{H} on non-affine opens, so in the above exact sequence, the only term that could differ would be $\mathcal{H}(\mathbb{P}^1)$, which would have to be 2-dimensional.

- 4. For our construction of cokernels of sheaves, we took the naive cokernel (as in the previous problem) and then turned it into a sheaf using Artin's Theorem 6.3.2, which constructs a quasicoherent sheaf from its values on affine opens. There is a more general "sheafification" functor which we now describe, which produces a sheaf $\mathcal{F}^{\#}$ from a presheaf \mathcal{F} on any topological space X.
 - (a) (1 point) Let S_p be the set of pairs (U, f) where U is an open subset of X containing p and f is an element of $\mathcal{F}(U)$. Say that two such pairs (U, f) and (V, g) are equivalent if there is some open W such that:
 - W contains p,
 - W is contained in both U and V, and
 - the restrictions of f and g to W agree.

Show that this is an equivalence relation on S_p . The set of equivalence classes is called the stalk \mathcal{F}_p of \mathcal{F} at p.

Solution: Reflexivity and symmetry are immediate. The only remaining property to check is transitivity. Assume (U_1, f_1) is equivalent to (U_2, f_2) and (U_2, f_2) is equivalent to (U_3, f_3) . Then there must be open neighborhoods $W_1 \subseteq U_1 \cap U_2$ and $W_2 \subseteq U_2 \cap U_3$ of p such that the restrictions of f_1 and f_2 to W_1 agree and the restrictions of f_2 and f_3 to W_2 agree. Then let $W = W_1 \cap W_2$. It is clearly an open neighborhood of p, and we have $W \subseteq W_1 \subseteq U_1$ and $W \subseteq W_2 \subseteq U_3$.

Since $W \subseteq W_1$, the restrictions of f_1 and f_2 to W agree. Similarly, the restrictions of f_2 and f_3 to W agree. It follows that the restrictions of f_1 and f_3 to W agree, so (U_1, f_1) is equivalent to (U_3, f_3) .

(b) (1 point) Let X be Spec A, with the Zariski topology, and let p correspond to a maximal ideal m. Let \mathcal{F} be the quasi-coherent sheaf corresponding to a module M. Show that the stalk \mathcal{O}_p is the local ring A_m , and that the stalk \mathcal{F}_p is the localization M_m .

Solution: We show this for \mathcal{F}_p . The case of \mathcal{O}_p then follows by taking $\mathcal{F} \cong \mathcal{O}$ and checking that the ring structures on both sides agree.

We define a map from M_m to \mathcal{F}_m as follows. Let $\frac{y}{x}$ be an element in M_m with x in $A \setminus m$ and $y \in M$. If we set U to be Spec A_y , then $\mathcal{F}(U) \cong \mathcal{F}(\text{Spec } A)_y \cong M_y$, so we can interpret $\frac{y}{x}$ as an element of $\mathcal{F}(U)$. Then the image of $\frac{y}{x}$ in \mathcal{F}_m is defined to be the equivalence class of $(U, \frac{y}{x})$.

The inverse map is given as follows. For every equivalence as in part (a), choose a representative (U, f) where U is a distinguished affine Spec A_s . Then f can be written as a ratio $\frac{x}{s^i}$. The condition that p is in U tells us that s is not in m, and so $\frac{x}{s^i}$ can be interpreted as an element of A_m . It is straightforward to check that this element does not depend on the choice of representative, and that these two maps are inverses, as desired.

- (c) (2 points) Returning to the case of a general topological space X, define $\mathcal{F}^{\#}$ by letting $\mathcal{F}^{\#}(U) \subseteq \prod \mathcal{F}_p$ be the set of collections of elements $f_p \in \mathcal{F}_p$, one f_p for each point p of U, where the collection satisfies the following property:
 - there exists a (possibly infinite) cover of U by opens U_i and a collection of sections $f_i \in \mathcal{F}(U_i)$ such that for every point p of U_i , the equivalence class of (U, f_i) in \mathcal{F}_p is f_p .

Show that $\mathcal{F}^{\#}$ is a sheaf.

Solution: Let U_i be an open cover of an open subset U, and let f_i be elements of $\mathcal{F}(U_i)$ which agree on the intersections $U_i \cap U_j$. Each f_i corresponds to a collection $f_{i,p}$, where p ranges over all points in U_i .

For any point p, all the $f_{i,p} \in \mathcal{F}_p$ which are defined must agree. (This follows from the same logic as in Part (a) of Problem 1). We can then define a global section f of \mathcal{F} with f_p equal to the common value of all the $f_{i,p}$. The property in the problem statement must still hold for \mathcal{F} , by taking the cover of U to be the union of the open covers of all the U_i , so f indeed defines a global section which glues together all the f_i . It is easy to see (again, with the same logic as in Part (a) of Problem 1) that any other global section gluing together the f_i must be equal to f, so we have proven the sheaf property.

(d) (1 point, extra credit) Let X be a variety and let \mathcal{F} be a quasicoherent presheaf on X. Show that $\mathcal{F}^{\#}(U)$ agrees with $\mathcal{F}(U)$ for any affine open U. Thus, this sheafification procedure is the same as the one used in Artin's Theorem 6.3.2.

Solution: Let the quasicoherent sheaf constructed via Artin's Theorem 6.3.2 be denoted by \mathcal{F}^{\flat} . We will construct injections $\mathcal{F}(U) \to \mathcal{F}^{\#}(U) \to \mathcal{F}^{\flat}(U)$. Artin's theorem tells us that the composition of these two injections is an isomorphism, so in fact both injections must themselves be isomorphisms, as desired.

The map $\mathcal{F}(U) \to \mathcal{F}^{\#}(U)$ is defined by sending an element x to the collection of the images of (U, x) in each \mathcal{F}_p . It remains to show that this is injective. Assume there is some element x which maps to 0 in each \mathcal{F}_p . Then that means that for each p, there is some open set U_p around p for which the restriction of x to U_p is 0. Then the sheaf property with respect to the open cover given by the U_p tells us that x must be zero, as desired.

It remains to define the map $\mathcal{F}^{\#}(U) \to \mathcal{F}^{\flat}(U)$. Assume we have a collection $\{f_p\}$ satisfying the property in Part (c) for some open cover $\{U_i\}$ and some choice of sections $f_i \in \mathcal{F}(U_i)$. The restrictions of f_i and f_j to $U_i \cap U_j$ correspond to the same element f_p at every point $p \in U_i \cap U_j$, or in the other words, f_i and f_j have the same image in $\mathcal{F}^{\flat}(U_i \cap U_j)$. By the injectivity proven in the previous paragraph, this implies that they have the same image in $\mathcal{F}(U_i \cap U_j)$. But then the sheaf property tells us that they must glue to some element $f \in \mathcal{F}^{\flat}(U)$, which gives us the desired map $\mathcal{F}^{\#}(U) \to \mathcal{F}^{\flat}(U)$. To see injectivity, note that the sheaf property would imply that any element sent to 0 would have to have the f_i equal to 0, so the starting element of $\mathcal{F}^{\#}(U)$ would also have to be zero.

5. (1 point) Look back at your answer to the last problem of Problem Set 4 (where you had to look up the definition of a sheaf.) How has your thinking around sheaves changed now that we've started formally working with them?

Solution: Many possible solutions.