18.721 PSet 10

Due: Apr 28, 11:59 PM

At the top of your submission, list all the sources you consulted, or write "Sources consulted: none" if you did not consult any sources.

For this problem set, whenever we write "curve", we mean "irreducible projective curve."

1. (1 point, Artin Exercise 8.10.1) Show that if C is a smooth curve of genus 0 , then C is isomorphic to \mathbb{P}^{1}.
2. (2 points) Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{n}. Show that $\chi(\mathcal{F}(n))$ is a polynomial in n, and that the degre of this polynomial is the equal to the dimension of the support of \mathcal{F}. When \mathcal{F} is the sheaf $i_{*} \mathcal{O}_{X}$, for $i: X \rightarrow \mathbb{P}^{n}$ a closed embedding, this polynomial is called the Hilbert polynomial of X.
3. Let's apply the concept of a Hilbert polynomial to study some curves.
(a) (1 point) Let $C \subseteq \mathbb{P}^{n}$ be a smooth curve of degree d and genus g. Show that the Hilbert polynomial of C is $P(n)=d n+1-g$.
(b) (2 points) Calculate the degree and genus of a smooth transverse intersection of two surfaces in \mathbb{P}^{3} of degrees d and e.
4. Earlier in the course, we showed that for every curve X, not necessarily smooth, there is a smooth curve Y birational to X (recall that two varieties are birational if they have isomorphic open subvarieties.) We did this using the algebraic notion of normalization. Now that we've studied sheaf cohomology, we can give a geometric proof.
We defined divisors and their associated line bundles $\mathcal{O}(D)$ only for smooth curves. However, for a singular curve, one can still define a line bundle $\mathcal{O}(D)$ (in the same way) for any divisor D containing only smooth points.
(a) (1 point) Let C be a (possibly singular) projective curve, and let p be a smooth point of C. Show that there is some constant c such that we have

$$
H^{0}(\mathcal{O}(n p))>n-c
$$

for all $n \geq 0$.
(b) (1 point) Using the previous part, show that there is an embedding of C as a nondegenerate (i.e., not contained in a hyperplane) degree d curve in some \mathbb{P}^{m} with $d<2 m$.
(c) (1 point) Show that a nondegenerate curve in \mathbb{P}^{n} must have degree at least n. (Hint: Use induction, and consider the projection away from a point of the curve.)
(d) (1 point) Show that a nondegenerate curve in \mathbb{P}^{n} with degree less than $2 n$ must be birational to a smooth curve. (Hint: Try to argue as in the previous part, but this time projecting away from a singular point.)
5. (1 point) What theorem from the class was your favorite, and why?

