
18.721 PSet 9

Due: Apr 19, 11:59 PM

At the top of your submission, list all the sources you consulted, or write
”Sources consulted: none” if you did not consult any sources.

1. (2 points) LetX be the complement of the origin in A2. ComputeHi(OX),
and use this to give another argument that X is not affine.

Solution: We can coverX by the affine opens SpecC[x, x−1, y] and SpecC[x, y, y−1].
The intersection of these two affine opens is SpecC[x, x−1, y, y−1]. Thus, the
resulting Čech complex for OX is

0 → C[x, x−1, y]⊕ C[x, y, y−1] → C[x, x−1, y, y−1] → 0.

The zeroth cohomology H0(OX) is thus important to the set of pairs (a, b) ∈
C[x, x−1, y] ⊕ C[x, y, y−1] such that the images of a and b in C[x, x−1, y, y−1]
agree. This happens exactly when a and b are both equal to the same element
of C[x, y], so H0(OX) ∼= C[x, y].
On the other hand, the first cohomologyH1(OX) will be the quotient of C[x, x−1, y, y−1]
by the image of C[x, x−1, y] ⊕ C[x, y, y−1]. This image is generated as a vector
space by the monomials xiyj where not both i and j are negative. Thus, this
quotient H1(OX) is generated by the monomials xiyj with i and j both neg-
ative, and is thus isomorphic to x−1y−1C[x−1, y−1]. As this is nonempty, X
cannot be affine.

2. (2 points, Artin 7.10.3) Let

0 → V0 → V1 → · · · → Vn → 0

be a complex of finite-dimensional vector spaces, and let Ci
∼= ker(Vi →

Vi+1)/ im(Vi−1 → Vi) be the ith cohomology of this complex. Show that

n∑
i=0

(−1)i dimVi =

n∑
i=0

(−1)i dimCi.
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Solution: Let Ui ⊆ Vi be the kernel of Vi → Vi+1 and let Wi ⊆ Vi be the image
of Vi−1 → Vi. Note that for each i, we have an exact sequence

0 → Wi → Ui → Ci → 0,

so by rank-nullity, we must have dimCi = dimUi − dimWi. Thus, we have

n∑
i=0

(−1)i dimCi =

n∑
i=0

(−1)i dimUi −
n∑

i=0

(−1)i dimWi.

On the other hand, we also have exact sequences

0 → Ui → Vi → Wi+1,

so dimVi = dimUi + dimWi+1. Thus,

n∑
i=0

(−1)i dimVi =

n∑
i=0

(−1)i dimUi +

n∑
i=0

(−1)i dimWi+1

=

n∑
i=0

(−1)i dimUi −
n∑

i=0

(−1)i dimWi

=

n∑
i=0

(−1)i dimCi,

as desired.

3. Let R be a commutative ring. We say that a R-module M is projective
if there is an integer n and another R-module N such that there is an
isomorphism of R-modules M ⊕N ∼= Rn.

(a) (2 points) If R is a finite type C-algebra, show that the quasicoherent
sheaf corresponding to a projective module M as above is a vector
bundle on SpecR. (Hint: For any point p in SpecR corresponding to
a maximal ideal m, choose a basis of M/mM and lifts mi of the basis
elements to M . Show that M becomes isomorphic to the free module
generated by these elements after localization by some element of R
not vanishing at p. One possible way to show this is by choosing
similar elements ni of N , and then examining when the mi and ni

collectively generate M ⊕N ∼= Rn.)

Solution: We follow the hint. Let p be a point of SpecR, and assume that
M ⊕ N ∼= Rn. Then M/mM ⊕ N/mN is isomorphic to Rn/mRn ∼= Cn, so
the dimensions a and b of M/mM and N/mN must sum to n. Choose ele-
ments m1,m2, · · · ,ma of M whose reductions mod m give a basis for M/mM.
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Similarly, choose elements n1, n2, · · · , nb of N whose reductions mod m give a
basis for N/mN.

The elements mi (resp. the elements ni) define a map Ra → M (resp. a map
Rb → N.) We will show that both of these maps become isomorphisms after
localizing by some element f which is not in m. It suffices to show that the
sum of these maps Rn → M ⊕ N ∼= Rn becomes an isomorphism after some
such localization. A R-module map Rn → Rn corresponds to a n× n matrix,
and the map is an isomorphism if and only if the determinant of this matrix
is invertible. So if we set f to be this determinant, then our maps will become
isomorphisms after localization by f .

It remains to show that f is not in m (so in particular, is not zero.) The
reduction of f mod m is the determinant of the matrix corresponding to

R/mn → M/mM ⊕N/mN ∼= R/mn.

But because how we chose our mi and ni, this map is an isomorphism, so the
reduction of f mod m must be invertible and f cannot be in m.

The fact that Mf is isomorphic to a free module over Rf implies that the
quasicoherent sheaf corresponding to M becomes free after restriction to the
open SpecRf , which contains p (because f is not in m.) As p was arbitrary,
this shows that the quasicoherent sheaf corresponding to M becomes free in
an open neighborhood of every point, hence is locally free.

(b) (1 point) It is slightly difficult at the moment for us to exhibit a finite
type C-algebra with modules that are projective but not free. How-
ever, there are simple examples coming from number theory. Recall
that the ring R = Z[

√
−5] is not a principal ideal domain because

the ideal (2, 1 +
√
−5) is not principal. Show that (2, 1 +

√
−5) is

projective but not free as a module.

Solution: This can be done conceptually using the theory of Dedekind do-
mains. Here, we give a more computational proof.

Let I1 denote the ideal (2, 1 +
√
−5) and let I2 denote the ideal (3, 1 +√

−5). The module I1 ⊕ I2 ⊆ R2 is tautologically generated by (2, 3), (1 +√
−5, 3), (2, 1 +

√
−5), and (1 +

√
−5, 1 +

√
−5). We claim that it is in fact

generated by only (1 +
√
−5, 1 +

√
−5) and (2, 3). As these two elements are

linearly independent over Q[
√
−5], this will imply that I1 ⊕ I2 is free (hence

I1 is projective.)

It suffices to show that (1+
√
−5, 3) and (2, 1+

√
−5) can be written as linear

combinations (with coefficients in R) of (2, 3) and (1 +
√
−5, 1 +

√
−5). This

follows from the identities

(1 +
√
−5, 3) = (2−

√
−5)(2, 3) + (2 +

√
−5)(1 +

√
−5, 1 +

√
−5)

and

(2, 1 +
√
−5) = (−1 +

√
−5)(2, 3) + (−1−

√
−5)(1 +

√
−5, 1 +

√
−5).
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We have thus shown that I1 is projective. It is clearly not free, because it is
not generated by one element (as it is not principal).

4. Note that the definition of Čech cohomology still makes sense for general
(i.e. not necessarily quasicoherent) sheaves of abelian groups on X (with
the Zariski topology). More precisely, for such a sheaf F , we can define
the ith Čech cohomology Hi(F , {Ui}) of F with respect to a cover by
opens Ui as the ith cohomology of the Čech complex∏

F(Ui) →
∏

F(Ui ∩ Uj) →
∏

F(Ui ∩ Uj ∩ Uk) · · · .

(a) (1 point) LetO∗ be the sheaf withO∗(U) defined to be the multiplica-
tive group of invertible elements of O(U). Assume we have an open
cover of X by two affine opens U1, U2. Compute H1(O∗, {U1, U2})
explicitly.

Solution: This is the first cohomology of the complex

0 → O∗(U1)⊕O∗(U2) → O∗(U1 ∩ U2) → 0.

Explicitly, we find that

H1(O∗, {U1, U2}) ∼= O∗(U1 ∩ U2)/O∗(U1)O∗(U2).

(b) (2 points) Use your description from the previous part to show that
H1(O∗, {U1, U2}) is isomorphic to the group of line bundles on X
which become trivial when restricted to both U1 and U2.

You may use the following result, which is a generalization of Artin’s
proposition 6.4.7 (and has the same proof):

Lemma 1. Let S be the set of triples {L, f1 : L|U1 → O(U1), f2 :
L|U2

→ O(U2)} such that f1 and f2 are isomorphisms (and so in
particular, L is a line bundle). Then elements of S are in bijection
with isomorphisms O(U1)|U1∩U2

→ O(U2)|U1∩U2
. The bijection sends

an element {L, f1, f2} to the isomorphism

O(U1)|U1∩U2

f−1
1−−→ LU1∩U2

f2−→ O(U2)|U1∩U2
.

In particular, if we knew there existed an affine variety X with such a
line bundle (as suggested by the previous problem), this would show
that the higher Čech cohomology groups do not always vanish on
affine varieties if we are looking at non-quasicoherent sheaves.

(The statement of this problem in fact still holds for an affine open
cover with more than two opens, but is significantly conceptually
harder.)
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Solution: The lemma tells us that S is isomorphic to the group of automor-
phisms of O(U1 ∩ U2). Each such automorphism corresponds to an invertible
element of O(U1 ∩ U2), so S ∼= O∗(U1 ∩ U2).

There is a surjection, defined by {L, f1, f2} 7→ L, from S to the group of line
bundles on X which become trivial when restricted to both U1 and U2. The
kernel of this surjection comes from elements of S with L ∼= O. In this case,
choices of f1 and f2 corresponds to choosing elements of O∗(U1) and O∗(U2),
so the kernel is generated by these groups, and so the group of line bundles on
X which becomes trivial when restricted to both U1 and U2 is isomorphic to
O∗(U1 ∩ U2)/O∗(U1)O∗(U2), as desired.

5. (1 point) Try to imagine how you might have come up with the concept
of sheaf cohomology. Give as plausible an explanation as you can think
of.

Solution: Many possible answers.
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