Free Logic

Presupposition-free logic (free logic for short) is predicate logic freed of the presupposition that individual constants always denote. Our models of free logic will consist of an ordinary model $\mathfrak{\mathfrak { l }}$ together with a nonempty subset D of $|\boldsymbol{\mathfrak { N } |}|$, called the actual or inner domain. D is intended domain of quantification. $|\boldsymbol{A}| \sim \mathrm{D}$, the fictitious or outer domain consists of individuals from outside the intended domain of quantification that are enlisted to play the roles of fictitious entities. We shouldn't think of $|\boldsymbol{\mathfrak { l }}| \sim \mathrm{D}$ as consisting of nonexistent things, since presumably there are no nonexistent things.

A sentence φ is true in the free model $\langle\boldsymbol{N}, \mathrm{D}\rangle \operatorname{iff} \varphi^{\mathrm{E}}$ is true in the ordinary model we get from $\boldsymbol{\mathcal { L }}$ by adding a new predicate " E " whose extension is D. Here φ^{E} is the sentence we get from φ by restricting the quantifiers to "E," replacing $\left(\forall v_{\mathrm{i}}\right)$ with $\left(\forall \mathrm{v}_{\mathrm{i}}\right)\left(\mathrm{E}\left(\mathrm{v}_{\mathrm{i}}\right) \rightarrow \ldots\right)$ and replacing $\left(\exists \mathrm{v}_{\mathrm{i}}\right)$ with $\left(\exists \mathrm{v}_{\mathrm{i}}\right)\left(\mathrm{E}\left(\mathrm{v}_{\mathrm{i}}\right) \wedge \ldots\right)$.

Assuming the intended domain of quantification is infinite, we could do the same things with a single domain by letting the members of the domain play two roles. In addition to its day job, acting as a member of a model in the usual way, a member of the domain might have a second job acting as a character in a fiction. This would be a little more complicated, but it would let us obey Father Parmenides' advice: "Things that are not in no way are, but keep your mind from that path of inquiry." (Quoted by Plato in the Sophist 237a.)

Axioms of free logic:

(\forall Dist $)$	$\left(\forall \mathrm{v}_{\mathrm{i}}\right)(\varphi \rightarrow \psi) \rightarrow\left(\left(\forall \mathrm{v}_{\mathrm{i}}\right) \varphi \rightarrow\left(\forall \mathrm{v}_{\mathrm{i}}\right) \psi\right)$
(RUS)	$\left.\left(\forall \mathrm{v}_{\mathrm{i}}\right) \varphi\left(\mathrm{v}_{\mathrm{i}}\right) \rightarrow\left(\exists \mathrm{v}_{\mathrm{j}}\right)\left(\mathrm{v}_{\mathrm{j}}=\mathrm{c} \rightarrow \varphi(\mathrm{c})\right)\right)$
(Vac)	$\left(\varphi \leftrightarrow\left(\forall \mathrm{v}_{\mathrm{i}}\right) \varphi\right), \mathrm{v}_{\mathrm{i}}$ not free in φ
($\exists \mathrm{Def})$	$\left(\exists \mathrm{v}_{\mathrm{i}}\right) \varphi\left(\mathrm{v}_{\mathrm{i}}\right) \leftrightarrow \sim\left(\forall \mathrm{v}_{\mathrm{i}}\right) \sim \varphi\left(\mathrm{v}_{\mathrm{i}}\right)$
(EE)	$\left(\forall \mathrm{v}_{\mathrm{i}}\right)\left(\exists \mathrm{v}_{\mathrm{j}}\right) \mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{j}}$
(Ref $=)$	$\mathrm{c}=\mathrm{c}$
(Sub $=)$	$(\mathrm{c}=\mathrm{d} \rightarrow(\varphi(\mathrm{c}) \leftrightarrow \varphi(\mathrm{d}))$

Rules:

TC
UG If c doesn't occur in $\varphi\left(\mathrm{v}_{\mathrm{i}}\right)$, then from $\varphi(\mathrm{c})$ you may infer $\left(\forall \mathrm{v}_{\mathrm{i}}\right) \varphi\left(\mathrm{v}_{\mathrm{i}}\right)$.
The proofs of soundness and completeness are almost unchanged. In forming Γ_{n+1} in the case where $\Gamma_{\mathrm{n}} \cup\left\{\xi_{\mathrm{n}}\right\} \quad A \chi$ and ξ_{n} has the form $\left(\exists \mathrm{v}_{\mathrm{j}}\right) \psi\left(\mathrm{v}_{\mathrm{j}}\right)$, let $\Gamma_{\mathrm{n}+1}$ be $\Gamma_{\mathrm{n}} \cup\left\{\xi_{\mathrm{n}}, \psi\left(\mathrm{c}_{\mathrm{i}}\right),\left(\exists \mathrm{v}_{\mathrm{j}}\right) \mathrm{v}_{\mathrm{j}}=\mathrm{c}_{\mathrm{i}}\right\}$. When we form the model, $\boldsymbol{A}\left(\mathrm{c}_{\mathrm{i}}\right)$ will be in the inner domain D iff $\left.\left(\exists \mathrm{v}_{\mathrm{j}}\right) \mathrm{v}_{\mathrm{j}}=\mathrm{c}_{\mathrm{i}}\right)$ is in Γ_{∞}.

