Subject 24.244. Modal Logic. Problem set due Tuesday, Sept. 22.

1. Consider SC connectives "NAND" and "XOR," with the following truth tables:

φ	Ψ	$(\phi \text{ NAND } \psi)$	$(\phi \text{ XOR } \psi)$
Ť	Ť	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	F

- a) Given a sentence containing only the connective "NAND" that is logically equivalent to "(P XOR Q," or explain why there can be no such connective.
- b) Given a sentence containing only the connective "XOR" that is logically equivalent to "(P NAND Q," or explain why there can be no such connective.
- 2. Use the Compactness Theorem to show that, for Γ and Δ sets of SC sentences, the following are equivalent:

 $\Gamma \cup \Delta$ is inconsistent.

There is a sentence φ such that Γ implies φ and Δ implies $\sim \varphi$.

- 3. Within the version of the sentential calculus in which the atomic sentences are uppercase letters from the English alphabet, with or without Arabic numeral subscripts, let us say that a set S of complete stories is *closed* iff there is a set of sentences Γ such that $S = \{\text{complete stories that include } \Gamma\}$.
 - a) True or false? Explain your answer: The intersection of two closed sets of complete stories is always closed.
 - b) True or false? Explain your answer: The union of two closed sets of complete stories is always closed.
 - c) Let's say a set of complete stories is *clopen* if it and its complement are both closed. Show that a set of complete stories is clopen iff there is a sentence φ with $S = \{$ complete stories that include $\varphi \}$.
 - d) True or false? Explain your answer: The complement of a closed set of complete stories is always closed.
- 4. Would any of the answers to problem 3 have changed if we were talking about the language whose atomic sentences are the 26 uppercase English letters, without the numerical subscripts? Explain your answer.
- 5. For each of the following sentences, either give a derivation in S5 or present a simple Kripke model in which it's false. In doing the derivations, you may use the derived rules from the lecture notes.
 - a) $((\Box P \lor \Box Q) \equiv \Box (P \lor Q))$
 - b) $((\Box P \land \Box Q) \equiv \Box (P \land Q))$
 - c) $((\Diamond (P \supset Q) \supset (\Diamond P \supset \Diamond Q)))$
 - d) $((\diamond P \supset \diamond Q) \supset \diamond (P \supset Q))$
 - e) $(\Box (P \lor (\diamond Q \lor \Box R)) \equiv (\Box P \lor (\diamond Q \lor \Box R)))$
 - f) $(\Box \diamond \Box (P \equiv Q) \equiv \diamond \Box \diamond (P \equiv Q))$